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ABSTRACT

Given a probability lawP on d-dimensional Euclidean space, the
minimum volume set (MV-set) with mas$ 0 < 5 < 1, is the set

with smallest volume enclosing a probability mass of at Igadt/e
examine the use of support vector machines (SVMs) for estimating
an MV-set from a collection of data points drawn frdta problem

with applications in clustering and anomaly detection. We investi-
gate both one-class and two-class methods. The two-class approach
reduces the problem to Neyman-Pearson (NP) classification, where
we artificially generate a second class of data points according to a
uniform distribution. The simple approach to generating the uniform
data suffers from the curse of dimensionality. In this paper we (1)
describe the reduction of MV-set estimation to NP classification, (2)-: . . p ”

devise improved methods for generating artificial uniform data for}: 'g. 1. Estimated minimum volume set for "banana” dafa+ 0.9).
the two-class approach, (3) advocate a new performance measure f ~ Our task is the following: Given a reference measure3 €
systematic comparison of MV-set algorithms, and (4) establish a sg, 1), and M realizations of a distributio?, construct a se@g

of benchmark experiments to serve as a point of reference foefututthat approximates the true MV-s6f;. An example is shown in Fig-
MV-set algorithms. We find that, in general, the two-class methodyre 1. In this work we focus on one of the most successful and
performs more reliably. widely applied family of learning algorithms, support vector ma-

1. INTRODUCTION chines (SVMs).

In anomaly detection the goal is to identify measurementsR? as ~ 1.2. One-class methods

being either normal/typical or abnormal/anomalous. We seek a sul®ince MV-sets are density level sets [4], withdefining a density

set of R? such that points inside the set correspond to typical datdevel and vice-versa, an obvious approach to estimating an MV-set is
while points outside are anomalies. In practice, it is often the casto estimate the density d? and then compute an appropriate level
that such a set must be “learned” from a collect{ion};£, of train-  set. However, density estimation is a notoriously difficult problem
ing samples gathered under normal conditions. In other words, wi the case where we do not have a parametric model for our data,
must be able to detect anomalies without knowing what they lookand in fact these methods typically perform very poorly on real prob-
like. For example, in machine fault detection, we would like to pre-lems. A better strategy is to avoid estimating the entire density and
dict when a machine is about to fail, but cannot gather data from anly estimate a single level-set. The so-called one-class SVM (OC-
failed machine because it would entail breaking the machine. SVM) [3,5] is one of the more powerful methods for doing this. Our
application of the OC-SVM entails carefully setting the free param-
eters to achieve the desired mass/volume tradeoff.

1.1. Minimum volume sets

In this situation one possibility is to estimateninimum volume set . . I
(MV-set) for the probability measur® governing the typical data. 1-3- Two-class methods: Reducing to NP classification
Specifically, given a known reference measurehe MV-set with  In contrast to the one-class approach described above, a second

mass at least, 3 € (0,1), is approach is to reduce MV-set estimation to Neyman-Pearson (NP)
. ) classification [4, 6]. The advantage of this approach is that almost
G5 = arg min{u(G) : P(G) > 8, G measurablp. any standard classification algorithm can be modified to perform NP

In this paper we focus on the common case wheiethe Lebesgue Classification. The disadvantage is that this conversion often requires

measure, although our techniques extend easily to other measurée introduction of an additional free parameter (to affect the trade-

The parameteB is chosen by the user and reflects a desired fals@ff between false alarms and misses). We focus on a strategy for NP

alarm rate ofl — 3. MV-sets summarize regions where the mass ofclassification using SVMs developed in [7].

P is most concentrated. For examplePiis a multivariate Gaussian In classification our training data consist of sampfes};,

distribution and is the Lebesgue measure, then the MV-sets are eltogether with labelg;; € {—1,+1} for each sample. We assume

lipsoids. See [1-4] and references therein for additional discussiorthat wheny; = +1, x; is drawn from@Q. and wheny; = —1,

x; is drawn from@_, where@; and@_ are unknown probability
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denote thdalse alarm andmiss rates off. In NP classification, the the algorithm to trade off false alarms for misses. However, in most

goal is to design a classifig, that minimizes the miss rate while practical settings, we desire a specific false alarm rate. Therefore,
constraining the false alarm rate to not exceed some user-specifigtievaluating a specific algorithm, we need to ask not only “Can we

significance level. For a more detailed motivation for the Neyman- trade off false alarms for misses?” but also “How precisely can we

Pearson paradigm, see [6]. guarantee a desired false alarm rate?”

To estimate the MV-set using NP classification, we can think of ~ Toward this end, we advocate a recently introduced performance
settingQ_ = 1 — P andQ; = p. In this case the MV-set and measure for comparing algorithms for MV-set estimation [12]. We
NP classification solutions coincide. Specifically,aif= 1 — 8  conduct several numerical experiments and use this performance
and f is the optimal NP classifier, the@; = {z : f; = —1}.  Measure to compare the one-class and two-class methods. Since our
To implement this idea we assign the observed dta};, la- benc_hmark datg_sets_ are obtained by takl_ng one _class from a da@a set
bels of —1. We then simulafea number of points from the refer- for binary classification, we have two obV|ou§ options for measuring
ence measurg, and assign these points labelsef. Constraining performance on anomalous data. We can either estimate the volume

Pr(f) < a = 1 — 3, ensures that the probability mass of the setOf the set, which assumes that anomalies are actually uniformly dis-
whereffx) = —1is at least3, and since we draw the positively tributed, or we can treat the second class as anomalies and compare

labeled class from the reference measureninimizing Pas(f) is the MV-set with a classifier that has access to both classes. The lat-
equivalent to minimizingz. From this perspective, the reference ter gives away of assessing the robustness of the implicit assumption
measure. is a prior on the distribution for anomalies. Takipgo  thatthe anomalies are uniformly distributed. o

be the Lebesgue/uniform measure can be interpreted as assuming a Since satisfying the targeted mass constraint s so crucial in MV-
noninformative prior on anomalies. In summary, by taking our Mv-Set estimation, our emphasis on a systematic comparison using a

set to be(i, — (x: J? (x) = —1} we can estimate the MV-set of scalar performance measure highlights the importancrof es-
our data uging NP.cIaassification algorithms timation. Not only should an algorithm be flexible in the sense of

raaving a large area under its ROC, but it should also be possible to

The idea of reducing a supervised problem to an unsupervise tel imate th losed d vol that the f
problem by sampling from a reference measure has apparently pe8ficurately estimate tn€ enclosed mass and voiume so that the iree

known for some time [8]. Although they do not speak in terms ofParameters of the algorithm can be set appropriately.
“Neyman-Pearson classification,” the reduction outlined above is est.6. Summary of contributions
sentially described in [9]. The two-class idea was also applied in [10JVe contribute two methods for generating the artificial uniform data
to reduce density level set estimation to cost-sensitive classificatiothat outperform independent sampling. Employing a practical per-
In a kind of hybrid between one- and two-class methods, [11] emformance measure, we report an experimental comparison of-a one
ploys artificial uniform data to select the parameters of the OC-SVMclass method (the OC-SVM) and a two-class method (based on the
algorithm in [7]) on five benchmark datasets. We find that the two-
lass method consistently outperforms the one-class method, and
onjecture that this is in part due to the improved error estimation

1.4. The challenge of generating uniform data
The two-class approach entails generating realizations from the re

e“:fr.‘ce n:ezsurﬁ:. In tthe ca}]:se wlhe}rg is the Lehbesguebrneasutre;, .'t capabilities of this method. We also find that the MV-set performs
Sulfices to draw points unitormly from some hypercube con a'n'ngnearly as well in some cases as a classifier that was trained having

the data, with some extra care necessary when dealing with d'scretgécess to examples of actual anomalies. This indicates that the im-

valued data. However, as the number of points drawn grows, S0 dogiit \;niform prior on anomalies is often quite robust. Finally, we

the computational complexity of the training process. With a "mitedhave made our code, which is based on the LIBSVM package [13]
number of simulated points, independent generation of the uniforrg ' '

. vailable at www.dsp.rice.edu/software.

data may suffer becauggmay be concentrated in a very small vol-
ume of space. Furthermore, in high dimensions, the average inter- 2. SUPPORT VECTOR MACHINES
point distance increases, and more and more of the simulated points
will be so far from the data as to be useless in estimating the volumé&upport vector machines (SVMs) are among the most effective
This can be viewed as one aspect of the “curse of dimensionality”. methods for learning classifiers from training data [14]. Concep-

We consider two alternative methods for overcoming these chafually, we construct the support vector classifier in a two step pro-
lenges. The first involves drawing many more points than are ulcess. In the first step we transform tke € R? via a mapping
timately desired and then adaptively removing pointsthimning, @ : RY — M where is a high (possibly infinite) dimensional
to get the desired number of points. This approximately results ifilbert space. The intuition is that we should be able to separate
a “packing set” with a large minimum distance between neighborthese classes more easilyZfithan inR<. For algorithmic reasons,
ing points. While thinning does offer a significant gain with respectwe choosed so that we can compute inner productsHnthrough
to independent uniform sampling, it does not account for the “vastthekernel operatork(x, x') = (®(x), ®(x'))».

ness of space” in high dimensions. A second approach, aateit In the second step, we determine a hyperplane in the induced

fold sampling, does address this concern and also adapts to potentifgature space according to the max-margin principle, which states

manifold structure in the data. that, in the case where we can separate the two classes by a hyper-
) ] plane, we should pick the hyperplane that maximizesaegin —

1.5. Performance analysis and benchmark experiments the distance between the decision boundary and the closest point to

Most papers proposing algorithms for MV/level set estimation orthe boundary. This hyperplane is then our decision boundary. Thus,
NP/cost-sensitive classification do not adopt a systematic methoddk w ¢ H andb € R are the normal vector and affine shift (ugs)

ogy for comparing different methods. The typical paper introduces gefining the max-margin hyperplane, then the support vector classi-
new algorithm and provides an ROC curve that conveys the ability ofier is given by, »(x) = sgr((w, ®(x))# + b).

INote that the MV-set does not change if we truncateutside of the ~ 2-1. Neyman-Pearson support vector machines _
support of P. Thus, if 1 is Lebesgue measure then it suffices to simulate There are several different formulations of the SVM. In this pa-

points uniformly on some region containing the supporPof per we will focus on the cost-sensitiveSVM, or the 2v-SVM,



first proposed in [15]. Lety = {i : w = + 1} and points fromu and then calculating the fraction of these points that

I- = {i:y = —1},andsetn; = |[Iy|andn_ = |I_|. lie in G for each parameter setting, as in [11]. We will now proceed
The2v-SVM has the primal formulation: to describe several different methods for generating these points.
min 1||w|\2 v pt = o+ ks & 3. GENERATING UNIFORM DATA
wb&.p 2 Mt et "= jer : : o

- The two-class method entails generating realizations from the ref-
st yi(k(w,xi) +b) >2p—& fori=1,2,....n erence measurg. In the case wherg is the Lebesgue measure

&>0 fori =1,2,...,n and the features are real-valued, it suffices to draw points uniformly

p>0. from some hypercube containing the data. In some cases we will

have training data where some (or all) of the features assume a fi-
In [7] it was shown that we can use tf2-SVM to achieve nite number of discrete values. For example, one feature might be
the desired false alarm rate by adjusting andv_ appropriately. gender, in which case the data points will assume only one of two
Specifically, we conduct a grid search over the SVM parameters arepssible values. In this case it makes little sense to draw training
estimatePr and Py, using some error estimation technique such agPoints uniformly from a hypercube containing the data, thus we in-
cross-validation, denoting these estimakesand Py;. Finally, we  Stéad draw points uniformly from the discrete set of values the fea-
select the parameter combination minimizifig such thatPr < o, " cal? assume. drawing th o bt g
and train an SVM on the full training set using these parametersd In HOt cases, t;}awmg tbesefpow_ltf 'Za straig torward prociﬁ-
The dual formulation of P,) is feasible if and only i, < 1 and  2Yre. MOWEVEr, as the number of points drawn grows, so does the
v_ < 1, with a trivial solution ifv, < 0 orv_ < 0 [16]. Therefore, computational complexity of the training process. Thus, in prac-

to search over the parameters of theSVM it suffices to conduct a tice, we must only draw a small number of points. Unfortunately,
search over a uniform grid d,., v_) in [0, 1] x [0, 1] with a limited number of simulated points, independent generation
+5 Y= ) s L]

ST h Pf the uniform data may suffer becausemay be concentrated in
Furthermore, we can significantly improve the performance o

the basic grid search method. First, the additional parameter in trf‘ very small volume of space. Furthermore, in high dimensions,

91-SVM can render a full arid search somewhat time consumin fe average interpoint distance increases, and more and more of the
v 9 Ysimulated points will be so far from the data as to be useless in esti-

Fortunately, a simple speed-up is possible. A simple coordinat ating the volume. This can be viewed as one aspect of the “curse
descent search approach can perform almost as well as a full grig dimensionality” '

search, but is much faster [7]. In addition, for the full grid search
over (v4,v_), after estimating the error at each point on the grid,3.1. Thinning

we can low-pass filter bot®r and Py; with a Gaussian window. The thinning approach is to draw many more points than are ulti-
For coordinate descent we window along lines in the grid. Thignhately desired, and then adaptively remove points to get the desired
effectively reduces the variance of the error estimates. It is espélumber of points. Specifically, say that we drawpoints and ul-
cially effective for high variance estimates such as cross-validatiorfimately wantn points, wheren > n. We then compute the Eu-
and can significantly improve the performance. Without windowing,clidean distance between all possible pairs of points. We can iter-
some grid points will look much better than they actually are, due tctively remove points by considering the remaining points and se-

chance variation [7]. lecting the pair of points that are closest to each other. We throw
away one of these points by removing the one that is closest to any
2.2. One-Class support vector machines of the remaining points. When iteratively applied, this results in a

The one-class SVM (OC-SVM) was proposed in [3] for the pr0b|em§ata set vyhere the points are ensured to be separated by a relatively
of estimating the support of a high-dimensional distribution and novarge minimum distance [17].

elty detection. The OC-SVM can be formulated as 3.2. Manifold sampling

1 1 The thinning approach described above helps to evenly distribute the

min = |w|®—vp+ = Z&- points throughout space. This is potentially problematic in high di-

wép 2 i mensions. When dealing with high-dimensional data, it is common

s.t. k(w,x;) > p—& fori=1,2,...,n for the data to occupy a very small fraction of the total volume of a
£ >0 fori=1.2.....n. hypercube containing the data. For example, our data might lie on
= ey a low-dimensional manifold embedded in a high-dimensional space.

The resulting decision function In this case, a small number of points drawn uniformly on the hyper-

cube may be of little use in estimating the MV-set — it is extremely

f(x) = sgn(k(w,x) — p) unlikely that any points will lie within the MV-set, and hence it is

. . L o . essentially impossible to estimate the volume of the set.

will be positive on a set containing mas. Thus, in this algorithm We propose a second approach that models the observed data

the MV-set is chosen to b&s = {x : f(x) > 0}. as lying on a low-dimensional manifold. First, compute the average
However, the user must set any kernel parameters and the paradistance between a point and 5" nearest neighbor, wherde is

eterv. Itis notimmediately clear how to choose these parameters sehosen by the user (in our experiments we take= 10). Then,

thatG's reasonably approximatésj. The challenge lies in the fact generate a large number of points by selecting as; at random,

that while we can estimat®(G) from the data, thus ensuring that and then randomly drawing a point from the sphere centered at

P(G) > B, there will in general be many possible parameter settingsvhose radius is the number computed in the first step. We can think

that result in sets; that satisfy this requirement, and we must selectof the union of these spheres atheckened manifold within which

only one. Specifically, we would like to choose the one vwrimi- the data lie. Again, we can apply the thinning technique to get a

mum volume. Thus we must estimate the volume of the set inducededuced set of points that are separated by a large minimum distance.

by each parameter setting. We do so by drawing a large number dhese points also lie within a set that contains the data but potentially
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(a) independent uniform sampling (b) thinned uniform sampling (c)ifolgsampling

Fig. 2. Methods for generating uniform data. (apoints sampled independently from a uniform distribution. (bhJgbints sampled from
a uniform distribution thinned te points. (c) 1h points sampled from a thickened manifold thinneat tpoints.

has a much smaller volume than that of the bounding hypercube. 5. EXPERIMENTS

This technique and those described above are illustrated in Figure 2. . .
In our experiments with the OC-SVM we used the LIBSVM

4., MEASURING PERFORMANCE package [13]. For the NP-SVM we adapted the LIBSVM pack-

Any experimental comparison of different methods for MV-set estj-29¢ to |m_plement the2v-SVM, which is available online at
www.dsp.rice.edu/software.

mation requires a measure of performance, that is, a scalar criterion We ran our algorithms on the benchmark datasets “banana’
that can be used to compare two estimated MV-sets head-to-hea%.reast cancer’ “h%eart” “thyroid”, and “ringnorm”. The datése ’
For exampl h ir of " h n - - - ™ P L

or example, suppose we have a pair of &6, how can we de are available online with documentatidbnThe first and last data

termine which setis "better” in a meaningful way? The tendency in et are synthetic, while the other three are based on real data col-
previous work has been to adjust the parameters of the different algf- y '

rithmsa posteriori until P(G) ~ P(G"), and then say that G is “bet- ected from various repositories on the web. The “breast-cancer”
ter'if u(G) < u(G') Howeve? this sir,nply avoids t?]le issue of actu- and “heart” datasets have a mixture of discrete and continuous fea-

; ; ; / tures, while the other datasets have exclusively continuous features.
ally making a direct comparison 6t andG’ whenP(G) < P(G’) . . ;
andu(G) < u(G"), as will often happen in practice. The dimensions of the datasets are 2, 9, 13, 5, and 20 respectively.

) . . For our experiments we used the negatively labeled training vectors
One possible scalar measure of performance is to assign & the realizations of the typical distribution, and estimated aver-
“score” of (@) to the set if P(G) > 3, andoo otherwise. This yp ’

is problematic, however, because we must estin®{ig), and this age performance over 30 different permutations of each data set into

. . . . . ) .. .training and test data. The data sets contained 400, 200, 170, 140,
estimate is susceptible to error. Moreover, in practical settings, it iS

X . and 400 training vectors respectively, although the number of nega-
often acceptable (and sometimes unavoidable) to i) be a tively labeled training vectors varies over the different permutations.
small amount less thafi. Thus, it seems preferable to have some.l.he targetedd is 0.9
tolerance for estimates whose mass is slightly less than g o . . .

As an alternative, we evaluate an MV-set using _ In all of our experiments we used a r_adlal basis function (Gaus-
' sian) kernel and searched for the bandwidth paranseteter a log-
1 arithmically spaced grid of 50 points froh®~* to 10*. For the2u-
=— - P ) :
£u(G) 1-p3 max {6 (@), 0} + n(@) SVM method we considered® x 50 regular grid of(v4,v_) €

As discussed in [12], this measure has the following desirable prog?; 1] x [0, 1]. For the OC'SVM)Q’e considereds point logarith-
erties: ) It is minimized by the seG'5. (ii) It can be accurately ~Mically spaced grid ob from 107" to L. _
estimated from a test sample using the simple plug-in estimiite. ( For e_a(_:h permutation of each data set we used the negatively la-
It has the appealing property that Asdraws closer to 1, a stiffer beled training and test vectors as our normal data set. We then ran
penalty is exacted on classifiers that violate the constraint. In othéf! @lgorithms on the training data and estima&ds, andQ.. us-
words, it penalizes theslative error (3 — P(G))/(1 — 3). ing the test vectors and a large set of vectors drawn independently

In our experiments we employ benchmark data sets for binar{/om a hypercube containing the data (or uniformly on the discrete

classification and perform MV-set estimation using only the nega—set of feature values as appropriate). Table 1 reports the mean values

tively labeled class. We use the test set to estinf(6), and we for P, u, andQ+ over 30 permutations, along with standard errors.
estimateu(G) by generating a large test set of uniform data. In ad-For each permutation we also computed the performance measures

dition, since we only use one class for training, we have a secong: 21d €+, and we show the mean and median values in the ta-
performance measure: ble. The methods compared are theSVM with a windowed grid

search ovefv4,v_), and the OC-SVM. For both of these methods,
£.(G) = 1 max {8 — P(G),0} + Q+(G), we considered estimating the volume using independent sampling
1-p from a hypercube, thinned sampling, and manifold sampling. For all
whereQ, ({x : f(x) = —1}) is the probability of error on the class Methods, the parameters were selected using 5-fold cross-validation.

not used during training. In some sense this is a more appropriate Furthermore, in Table 2 we show the results of applying an es-
metric because is effectively a prior for the anomaly distribution, timated MV-set to the problem of NP classification. Specifically,
while Q. is the actual anomaly distribution. We will consider this We compare the performance of the technique outlined above with
measure as well since we would like our algorithm to perform well
regardless of the structure of the anomalous data.

?http://ida.first.fhg.de/projects/bench



it might be more appropriate to only apply the thinning technique to
the features that are continuous. Note also that as measui&g by
the manifold sampling technique seems to perform extremely well
on these two datasets, while this performance does not carry over to
E+. We regard, as the more meaningful quantity in this case, and
since this only occurs for the datasets with discrete features, we sus-
pect that for similar reasons as above, the manifold sampling method
only appears to perform significantly better than independent sam-
pling on these data sets. Both of these issues warrant further investi-
gation.

Finally, Table 2 shows that in four of the five cases, the NP
classifier trained on two real classes outperforms the MV-set classi-
fier, which trains on only one class. This is not surprising, although
somewhat unexpected is that the miss rafgs)(for the two meth-
ods are comparable on three of the five datasets. This would seem to

(1]

(2]
(3]

(b) Classifiemith knowledge of “+” class. [4]

Fig. 3. Performance of MV-sets applied to NP classification. 5]
the performance of &v-SVM which is trained with access to the [6]
anomalous data set. An example of this is illustrated in Figure 3.

6. CONCLUSIONS 7]

Our experimental results provide some interesting conclusions as
well as some questions for further research. While we do not state
the results in Table 1, we compared the methods shown with a threshi8]
olded kernel density estimate. While this method seemed to perform
relatively well on the “banana” dataset, it was not competitive at all [9]
on the other, higher-dimensional datasets. Next, we can see in Table
1 that the two-class method consistently outperforms the one-cla$so]
when measured with respect to both the mean and median (with re-
spect to the 30 permutations) values&f and£4. In particular,

as measured by, the manifold sampling two-class method always [11]
outperforms all of the one-class methods. When measuring perfor-
mance using, the manifold sampling two-class method fails to
beat the one-class methods on the “ringnorm” dataset, but is still2]
competitive.

Regarding the various sampling methods: For the one-class, the
results are generally within the standard errors, and so no concliit3]
sions can be drawn except for the case of “ringnorm”. This is a
high-dimensional dataset, and as expected, the thinning and mald4]
ifold sampling strategies result in a clear improvement over inde-
pendent sampling. For the two-class, the three methods are agditp]
indistinguishable (up to standard errors) on “banana” and “thyroid”,
and as before, the manifold sampling strategies result in a marked
improvement on “ringnorm”. However, there is a clear drop in per-[16]
formance on “heart” and “breast-cancer” when we use the thinning
technique. Recall that these two datasets are the only two with an
discrete features. The loss in performance in this case is likely du 7]
to the fact that our thinning strategy is based on trying to maximize
the minimum Euclidean distance between the points. In this setting

indicate that the uniform prior is often a reasonable assumption.
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Table 1. Mean values and standard errordfu, andQ . (over 30 permutations of each data set) and the associated mean dad ereaf
scores{,, and&..) for the six methods. The tested methods are the OC-SVM and the NP-Bpiidaches, where for both methods we tried
estimating the volume using independent sampling, thinned sampling, antbldaampling (denoted Ind, Thin, and Man in the table). Here
B = 0.9, andy is estimated by generating 10,000 points in a hypercube containing the data.

massP) | volume (u) mean&,, mediané,, Q+ meané mediané+
OC-Ind | .811+ .25 | .384+ .12 | 1.358+ 2.35 0.500 326+ .17 | 1.301+ 2.40 0.398
OC-Thin | .810+ .24 | .383+ .12 | 1.360+ 2.35 0.503 329+ .17 | 1.305+ 2.40 0.396
OC-Man | .804+ .25 | .384+ .12 | 1.430+ 2.36 0.500 343+ .18 | 1.389+2.41 0.398
banana | Np-Ind .895+ .03 | .367+.05 | 0.532+ 0.25 0.423 198+ .04 | 0.363+ 0.23 0.256
NP-Thin | .895+ .02 | .343+ .05 | 0.470+ 0.16 0.420 .184+ .03 | 0.310+ 0.14 0.246
NP-Man | .899+ .02 | .350+ .05 | 0.4444+0.15 0.403 193+ .04 | 0.287+£0.13 0.231
OC-Ind | .8844+ .05 | .297+ .08 | 0.550+ 0.49 0.369 .800+ .09 | 1.053+ 0.45 0.926
OC-Thin | .889+ .04 | .298+ .08 | 0.494+ 0.32 0.354 .801+ .10 | 0.997+0.31 0.895
OC-Man | .9194+ .04 | .586+ .15 | 0.693+ 0.26 0.702 .882+ .07 | 0.988+ 0.26 0.917
breast NP-Ind .897+ .04 | .121+ .02 | 0.293+ 0.29 0.141 .625+ .09 | 0.797+ 0.29 0.688
NP-Thin | .826+ .11 | .905+ .12 | 1.747+ 0.86 1.388 724+ .17 | 1.567+0.81 1.221
NP-Man | .927+ .04 | .007+ .00 | 0.064+ 0.14 0.008 773+ .09 | 0.830+ 0.16 0.811
OC-Ind | .883+ .06 | .283+.08 | 0.628+ 0.39 0.472 .613+ .09 | 0.958+ 0.38 0.823
OC-Thin | .883+ .07 | .292+ .08 | 0.647+ 0.45 0.480 .619+ .10 | 0.973+ 0.45 0.820
OC-Man | .9164+ .04 | .458+ .10 | 0.577+0.24 0.508 729+ .10 | 0.848+0.22 0.779
heart NP-Ind .883+ .05 | .136+ .04 | 0.432+ 0.36 0.268 411+ .09 | 0.707+£ 0.38 0.542
NP-Thin | .834+ .09 | .496+ .25 | 1.257+ 0.64 1.061 .2824+ .16 | 1.044+ 0.66 0.829
NP-Man | .918+ .06 | .0024+ .00 | 0.155+ 0.31 0.002 .607+ .14 | 0.761+ 0.24 0.695
OC-Ind | .877+.07 | .3714+ .11 | 0.767+ 0.57 0.579 1454+ .10 | 0.541+ 0.56 0.314
OC-Thin | .867+ .07 | .382+ .11 | 0.837+ 0.63 0.502 117+ .09 | 0.572+ 0.61 0.332
) OC-Man | .897+ .07 | .528+ .16 | 0.866+ 0.48 0.741 161+ .11 | 0.499+ 0.43 0.302
thyroid NP-Ind .880+ .05 | .319+ .10 | 0.630+ 0.46 0.511 .240+ .15 | 0.551+ 0.45 0.385
NP-Thin | .866+ .07 | .3254+ .10 | 0.788+ 0.56 0.621 .097+ .05 | 0.561+ 0.51 0.384
NP-Man | .870+ .07 | .2944+ .09 | 0.701+ 0.67 0.519 .034+ .04 | 0.441+0.65 0.240
OC-Ind | .904+ .03 | .022+ .01 | 0.106+ 0.16 0.035 .005+ .002 | 0.089+ 0.16 0.009
OC-Thin | .9254+ .02 | .041+ .01 | 0.053+ 0.03 0.042 .008+ .003 | 0.020+ 0.03 0.008
) OC-Man | .9264+ .02 | .039+ .01 | 0.053+ 0.03 0.042 .007+.003 | 0.020+ 0.03 0.009
rngnorm | Np-Ind .892+ .03 | .020+ .01 | 0.174+0.20 0.079 .005+ .001 | 0.158+ 0.20 0.057
NP-Thin | .960+ .03 | .104+ .04 | 0.105+ 0.04 0.094 .018+ .009 | 0.020+ 0.01 0.019
NP-Man | .941+ .02 | .0524+ .03 | 0.058+ 0.03 0.049 .010+ .005 | 0.015+ 0.03 0.009

Table 2. Mean values and standard errors@f and(Q. (over 30 permutations of each data set) and the associated mean aiach med
error scores. The two methods we compare are denoted “Without”\&ith™ The “Without” method uses the NP-SVM technique with an
artificially generated positive class (generated using manifold sampliihg).‘Without” method only has access to the negative class during
training. The “With” method also uses the NP-SVM technique but has a¢oédmth classes during training. Hete= 0.9, or equivalently,
a=0.1.

Q- Q+ meanf; | mediang;

Without | .102+ .02 | .193+ .04 | 287+ .13 231

banana | wjth 104+ .02 | 124+ .02 | 2434+ .14 160
Without | .073+ .04 | .773+ .09 | .830+ .16 811

breast | wjith 112+ .06 | .689+ .10 | .985+ .41 821
Without | .082+ .06 | .607+ .14 | .761+ .24 542

heart With 113+ .05 | .231+ .07 | .497+ .37 326
. Without | .130+ .07 | .034+ .04 | .441+ 65 240
thyroid | With 087+ .06 | .032+ .05 | .222+ .37 .051
. Without | .059+ .02 | .010+ .01 | .015+ .03 .009
ringnorm | wjith 074+ .02 | .008+ .01 | .021+ .04 .008




