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Abstract

Large, multivariate datasets from high-throughput instrumentation have become ubiquitous
throughout the sciences. Frequently, it is of great interest to characterize the measurements in
these datasets by the extent to which they represent ‘nominal’ versus ‘contaminated’ instances.
However, often the nature of even the nominal patterns in the data are unknown and potentially
quite complex, making their explicit parametric modeling a daunting task. In this paper, we
introduce a nonparametric method for the simultaneous annotation of multivariate data (called
MN-SCAnn), by which one may produce an annotated ranking of the observations, indicating
the relative extent to which each may or may not be considered nominal, while making minimal
assumptions on the nature of the nominal distribution. In our framework each observation is
linked to a corresponding minimum volume set and, implicitly adopting a hypothesis testing
perspective, each set is associated with a test, which in turn is accompanied by a certain false
discovery rate. The combination of minimum volume set methods with false discovery rate prin-
ciples, in the context of contaminated data, is new. Moreover, estimation of the key underlying
quantities requires that a number of issues be addressed. We illustrate MN-SCAnn through
examples in two contexts – the pre-processing of cell-based assays in bioinformatics, and the
detection of anomalous traffic patterns in Internet measurement studies.

Keywords: Minimum volume sets, false discovery rate, nonparametric multivariate outlier
detection, multiple level set estimation, monotone density estimation, ROC smoothing

1 Introduction

High-throughput data collection has become a prominent measurement paradigm across the sci-
ences. Examples include DNA microarray technology and similar in biology, remote-sensing imaging
in geography and the earth sciences, computer network traffic monitoring in the Internet, and the
collection of consumer purchasing information in marketing and business. Given the often massive,
automated and instrument-based nature of these methods of data collection, frequently it is the
case that there is ‘contamination’ of some sort among the otherwise ‘nominal’ measurements, and
it is desirable to be able to characterize observations by the extent to which they may be one or the
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Figure 1: Scatterplot of volume levels for traffic passing through select pairs of links at (a) Atlanta
and (b) Chicago, in the Abilene network of Fig. 6 (a), over consecutive 10 minute intervals.

other. Such characterizations may be used, for example, to separate out ‘reliable’ measurements
from ‘unreliable’ ones, or to detect ‘anomalous’ observations amidst a background of otherwise
‘typical’ data. In many cases, the data are multivariate and sufficiently complicated in distribu-
tion, even under ‘nominal’ conditions, that the painstaking construction of an accurate parametric
model is quite difficult. It is therefore desirable that techniques for the assessment of contamination
in such data be nonparametric.

By way of motivation, consider the data in Fig. 1, representing measurements gathered on Inter-
net traffic flowing over links in the Abilene network described in Section 5. Each point corresponds
to the total traffic volume (measured in bytes) for a given ten minute interval over a pair of links
to a given node in the network. In Fig. 1(a), for example, the node corresponds to Atlanta, and
the links correspond to routes in the Abilene network to Atlanta from Houston and Washington. A
useful goal in this setting is to design a system that takes this collection of roughly 1000 measure-
ments and identifies the extent to which each point may represent potentially anomalous behavior,
such as might be caused by malicious activities (e.g., denial of service (DoS) attacks). The output
of such a system would be transmitted, for instance, to a network operator who might then conduct
follow-up examinations on the nature of the most suspect data. An essential feature of this system
is that it make minimal assumptions about the nature of the typical data, as it would be required
to apply equally well to data at any node in the network, such as the Chicago node, as shown in
Fig. 1 (b), whose distributional characteristics are clearly different from those of the data for the
Atlanta node.

In this paper we propose a framework well-suited to accomplish goals like the one just described.
In particular, we propose a multivariate, nonparametric method for simultaneous contamination an-
notation, which we call MN-SCAnn. Formally, we suppose we observe independent and identically
distributed measurements Xi ∈ Rd, i = 1, . . . , n from a mixture distribution i.e.,

Xi ∼ Q = (1− π)P + πµ , (1)

where P is the distribution of the nominal data, µ is the distribution of the contaminating data
(e.g., such as anomalies), and π is the a priori probability of obtaining a contaminated observation.
The challenge here is that we assume P is unknown, as is π as well. However, we will allow that
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the user be willing or able to specify µ, which we will therefore consider known. For example, in
the absence of any detailed information on the nature of the contamination, it is natural to assume
that µ is simply a uniform distribution (e.g., [1, 2]). All numerical work herein was done with this
assumption, although our overall framework and all stated analytical results hold for arbitrary µ.
We also assume the supports of P and µ are bounded, with the former contained by the latter.

We then take as our goal to produce an annotated ranking of the observations Xi. We have in
mind that the ranking serve to impose priorities through a basic ordering, while the annotations
should provide some further indication as to the extent to which observations are actually likely
to be contaminated. Our approach in this paper is to link each observation to a corresponding
minimum volume (MV) set and, implicitly adopting a hypothesis testing perspective, to associate
each set with a test. An inherent ordering of these sets yields a natural ranking, while the association
of each test with a certain false discovery rate (FDR) yields an appropriate annotation.

MV sets have a long history in statistics, going back at least to the 1970s, where they have
been used to obtain robust estimates of location and scale (e.g.,[3, 4]) and in the study of the
modality of a distribution (e.g., [5, 6]). Consistency and rates of convergence for nonparametric
MV set estimates have also been established [7, 8, 9]. More closely related to our usage, they
have been used to quantify multivariate data-depth, with an eye towards assessing the outlying-
ness of observations (e.g., see [10] and references therein), and for the construction of classifiers
(using uncontaminated observations from P ) for predicting anomalies [1, 11, 12, 2, 9]. But our
combination of MV set methods with FDR principles is new, and is motivated by the fact that, by
incorporating a hypothesis testing element into our assessment of contamination, we are implicitly
faced with conducting a large number of such tests simultaneously. FDR methods have received a
great deal of attention in the statistics literature over the past decade (e.g., [13, 14, 15, 16, 17]), and
have emerged as the method of choice for quantifying error rates meaningfully in multiple testing
situations, with applications now found in contexts ranging from wavelet denoising to the analysis
of DNA microarrays. However, it is typically the case in such settings that the null distribution
(i.e., P , in our notation) is assumed known, which it is important to note is not the case here. We
show that FDR probabilities may nevertheless be estimated in the present context through our use
of MV sets and known µ.

The assumption of known µ can be justified on a number of grounds. In many situations,
the assumption of uniform µ is intuitive and natural, and has recently been shown to optimize
the worst-case detection rate among all choices for the unknown contamination distribution [18].
Furthermore, all of the above cited works that apply MV sets to anomaly prediction implicitly
assume µ is a known distribution on anomalies [1, 11, 12, 2, 9]. That is, these predictors are only
optimal when in fact the anomalies truly follow the volume-defining measure µ. Finally, ranking
with respect to MV sets and uniform µ coincides with the ranking determined by the so-called
likelihood data-depth [19, 10]. The connection to data depth is discussed further in the concluding
section.

The rest of this paper is organized as follows. In Section 2 we introduce the basic elements
of our proposed methodology. Estimation of the corresponding MV sets and FDR probabilities
is addressed in Section 3, and details of our implementation are discussed in Section 4. Some
numerical illustrations are presented in Section 5, using both synthetic data and data from two
different real-world contexts – the pre-processing of cell-based assays in bioinformatics and the
detection of anomalies in computer network traffic data (as described above). Finally, we close
with a brief discussion in Section 6. All proofs of formal results stated in the text have been
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collected in the appendix.

2 Methodology

Recall the model in Eqn. (1). Define GP,β to be the set with minimal µ-measure containing at
least β ∈ [0, 1] probability mass under P i.e.,

GP,β := arg min{µ(G) : P (G) ≥ β} . (2)

This is the MV set under P , where volume is assessed with respect to µ. It is easily seen that
MV sets coincide with density level sets of P , provided the density exists with respect to µ. Each
mass β corresponds to a certain level of the density of P , and as β ranges from 1 to 0, the density
level ranges from 0 to the maximum value of the density. Although we refer to MV and density
level sets interchangeably, we favor the former here because our method features the masses and
volumes that MV sets make explicit.

As stated previously, our goal is to produce an annotated ranking of the observations. We
consider the task of ranking first. For i = 1, . . . , n, let

βi := inf
0≤β≤1

{β : Xi ∈ GP,β}. (3)

That is, letting β vary freely between 0 and 1, we assign to Xi a set GP,βi that, among all MV
sets, just barely includes Xi. Ordering the βi as {β(n), . . . , β(1)}, from largest to smallest, naturally
induces a ranking {X(1∗), . . . , X(n∗)} of the observations, where (i∗) denotes the index of the i-th
most potentially anomalous observation.

Our choice of approach here may be motivated by considering the problem of formally testing
the null hypothesis H0 : Xi ∼ P versus the alternative hypothesis H1 : Xi ∼ µ, for each i = 1, . . . , n.
If we choose to use a test of size α i.e., with a Type I error rate Pr {Reject H0|H0 True} = α, then
the set Gc

P,1−α is in fact the rejection region for the most powerful test of this size. Then, if instead
of making a hard decision of H0 versus H1, we report the corresponding statistical p-value under
this class of tests, that p-value is simply 1−βi. Therefore, our proposed ranking follows the ordering
of the observed p-values, from smallest to largest.

Now consider the issue of annotation of our ranked observations. The values βi are themselves
an obvious, and indeed not unreasonable, candidate for such an annotation. However, there is
the need to interpret these values and, although the values βi are well-defined probabilities in
the context of the individual hypothesis tests for their corresponding observations Xi, they are
not designed to be meaningfully interpreted en masse when simultaneously conducting multiple
hypothesis tests. This observation is a variation on the issue at the heart of the so-called ‘multiple
testing problem’ in statistics. Stated simply, the problem is that, whereas standard testing theory
dictates that one should choose the size α of a single test to control the chance of an incorrectly
rejected null hypothesis i.e., a ‘false discovery’, in contexts where a large number of such tests are
to be conducted, one expects to end up with a correspondingly large number of false discoveries
purely by chance. Such an outcome is often unsatisfactory, particularly when nontrivial amounts
of energy are expected to be used to follow up on discoveries, as is often the case in, for example,
anomaly detection problems.

This problem has received a great deal of attention in the statistical literature over the past
decade, since the seminal paper of Benjamini and Hochberg [13]. Their proposal for this problem
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effectively boils down to focusing attention not on the size α of individual tests, but rather the
rate of false discoveries across tests. Since their paper, an entire sub-literature has evolved on the
topic of FDR’s, including a number of extensions in which analogues of the model in Eqn. (1) are
assumed (e.g., [14, 15, 16, 17]). From among these various contributions, we choose to adopt the
so-called positive FDR1 statistic of Storey [14] as a natural one for our problem. In our context,
this statistic is written as a probability

pFDR(G) = Pr {X ∼ P |X /∈ G} , (4)

where G denotes an arbitrary set and X ∼ Q. This is just the probability that, given a ‘discovery’
is made i.e., H0 is rejected due to X not being in G, that in fact this discovery is false.

Storey [14] also proposes a corresponding analogue of the p-value, which he calls a q-value. This
statistic, in our context, takes the form pFDR(GP,βi

). We therefore propose, as a more meaningful
alternative to the values βi, to annotate our ranked observations by the values

γi := 1− pFDR(GP,βi). (5)

Two questions immediately arise in the context of this proposal. First, are the values of the
γi’s consistent with the ranking arising from the βi’s? And second, if so, since we do not know
the actual values γi, how might they be estimated, given that they are formulated in terms of the
unknown measure P? The first question may be answered in the affirmative under fairly general
conditions, as summarized in the following result.

Proposition 1. Let C(s) = 1 − µ(GP,1−s), for s ∈ [0, 1]. Assume C(s) is such that for all
s, s′ ∈ [0, 1], s ≥ s′ implies C(s)/s ≤ C(s′)/s′. Then the ordered sequences {β(n), . . . , β(1)} and
{γ(n), . . . , γ(1)} produce the same rank ordering {X(1∗), . . . , X(n∗)} of the observations X1, . . . , Xn.

The proof of this and all other such results in this paper may be found in the appendix. There
we note that the function C(s) is the receiver operating characteristic (ROC) curve for the optimal
test of X ∼ P against X ∼ µ. The assumption that s ≥ s′ implies C(s)/s ≤ C(s′)/s′ says that the
slope of the line connecting the origin to a point on the ROC is monotone decreasing as the point
moves up the ROC. Equivalently, (1−µ(GP,β))/(1−β) is monotone decreasing as β decreases. This
assumption is satisfied when C(s) is concave, which occurs, for example, when P is a continuous
distribution and µ uniform. For another instance of a condition similar to the one assumed here,
see Proposition 1 of [15].

Regarding the second question raised above, as to the estimation of the γi’s, we address that in
detail in the next section.

3 Estimation

3.1 A Fundamental Relation

The γi, and even the rankings as determined through the βi, depend on P , which we assume
unknown. Instead, all we have at our disposal are the observations X1, . . . , Xn, which are from the

1The positive FDR (pFDR) is so named because it happens to be equal to the expected fraction of false discoveries,
conditional on a positive number of discoveries having been made.
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mixture distribution Q defined in (1), and our assumed knowledge of the contaminating distribution
µ. In analogy to Eqn. (2), for 0 ≤ β̃ ≤ 1 define the MV set under Q at level 0 ≤ β̃ ≤ 1 as

GQ,β̃ = arg min{µ(G) : Q(G) ≥ β̃} .

The following result is fundamental to the practical implementation of our proposed methodology,
in relating the MV sets under P to those under Q.

Proposition 2. If 0 ≤ β ≤ 1 and

β̃ ≡ β̃P,β := πµ(GP,β) + (1− π)β ,

then GQ,β̃ = GP,β. Conversely, if 0 ≤ β̃ ≤ 1 and

β ≡ βQ,β̃ :=
β̃ − (1− π)µ(GQ,β̃)

π
, (6)

then GP,β = GQ,β̃.

This result links Q-MV sets to P -MV sets in an explicit fashion. In particular, it implies that
the ordering given by the P -MV sets coincides with that of the Q-MV sets. Intuitively, the smallest
P -MV set containing Xi is also the smallest Q-MV set containing Xi. More formally, define

β̃i ≡ inf
0≤β≤1

{β̃ : Xi ∈ GQ,β̃}. (7)

in analogy to the βi defined for P in Eqn. (3). Then GP,βi = GQ,β̃i
and β(n), . . . , β(1) and

β̃(n), . . . , β̃(1) define the same rank ordering of the Xi’s.
Furthermore, using Bayes’ rule in conjunction with the expressions in (4) and (5), our proposed

annotations γi may be expressed in the form

γi = πµ(Gc
P,βi

)/Q(Gc
P,βi

)
= πµ(Gc

Q,β̃i
)/Q(Gc

Q,β̃i
). (8)

Hence, we have the key insight that, since µ is known, to estimate γi we need only estimate GQ,β̃i
,

Q(GQ,β̃i
), and π.

3.2 Estimating the Components of γi

Here we describe general strategies for estimating each of the components of γi in (8). Specific
strategies adopted in our implementation are offered in the next section.

3.2.1 Estimation of GQ,β̃i

For convenience, write Gi = GQ,β̃i
, the smallest Q-MV set containing Xi. Suppose {Ĝλ}λ∈Λ is a

family of set estimates such that (a) each Ĝλ estimates some Q-MV set, and (b) Λ is such that the
range of MV sets estimated is sufficiently rich to reasonably approximate GQ,β̃ for any 0 ≤ β̃ ≤ 1.

Then a natural estimator for Gi is Ĝi := Ĝλ̂i
, where λ̂i := arg min{µ(Ĝλ) : λ ∈ Λ, Xi ∈ Ĝλ}.
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We now briefly discuss two examples of such families {Ĝλ}λ∈Λ. The first requires solving the
intermediate task of density estimation, while the second operates on the principle of direct set
estimation.2

First, suppose a nonparametric estimate f̂(x) of the density f of Q is computed, such as a kernel
density estimate. Then the sets Ĝλ = {x : f̂(x) ≥ λ} estimate the level sets of f , which coincide
with the MV sets of Q. This approach has the advantage that the estimated sets are guaranteed to
be nested. This implies that the smallest such set containing a given Xi can be computed rapidly
via a bisection search on λ.

The second example is based on the one-class support vector machine (OCSVM) with Gaussian
kernel [11]. Here Ĝλ is the OCSVM with regularization parameter λ. It has been shown [20] that
for each λ, Ĝλ is a consistent estimator of the λ level set of Q. As λ varies through its range, all
MV sets of Q are accounted for. For more on this approach, see [21], where the algorithm of Hastie
et al. [22] is used to efficiently compute the entire family {Ĝλ}λ∈Λ.

Other methods for direct set estimation readily follow from classification algorithms having the
ability to control the tradeoff between false positives and false negatives [23, 24]. If λ is a parameter
that controls such a tradeoff, then Ĝλ may be identified with the classifier that discriminates
X1, . . . , Xn from an artificially generated sample from µ. [1, 2].

3.2.2 Estimation of Q(GQ,β̃i
)

Given estimates Ĝi of the sets Gi = GQ,β̃i
, we may then estimate β̃i = Q(Gi) and related quantities

through Q̂(Ĝi), where Q̂(·) is the empirical measure deriving from the data.

3.2.3 Estimation of π

The estimation of π is facilitated by a transformation of variables. Specifically, define Yi = µ(Gi),
where recall that Gi = GQ,β̃i

. Writing Gi = G(Xi) now to emphasize the dependence on Xi,
we consider Y = µ(G(X)) as a univariate random variable on the interval [0, 1] resulting from
transformation of the generic random variable X ∼ Q. The following result shows π to be related
to the density of Y in a simple manner.

Proposition 3. Let
D(t) := inf{β : µ(GP,β) ≤ t}

and
D̃(t) := inf{β̃ : µ(GQ,β̃) ≤ t} .

Assume D(t) to be differentiable in t. Additionally, assume D′(t) → 0 as t → 1. Then the density
of Y is D̃′(t) = π + (1− π)D′(t), and therefore π = D̃′(1−).

Thus D̃(t) is the cumulative distribution function of Y . The assumption D′(t) → 0 as t → 1
holds provided it is not possible to write P = (1 − θ)P0 + θµ for some distribution P0 and for
θ > 0. Otherwise, P has a uniform component and it is impossible to resolve π accurately. Proof
of the proposition employs arguments that, similar to those of Proposition 1, rely on ROC curves

2Note that estimating every level set of a density is equivalent to estimating the density itself, so there is no clear
advantage of one approach over another.

7



of optimal tests, only in this case in a dual sense, with P and µ switched in their roles as null and
alternative. The reader is referred to the appendix for details.

The obvious strategy now is to estimate π by estimating D̃′(1−) based on the values Y1, . . . , Yn.
Note, however, that we do not in fact have access to the Yi, given a lack of knowledge of Q. We
propose therefore to estimate each Yi by the value Ŷi := µ(Ĝi) once the estimates Ĝi are computed
and to proceed accordingly.

In the event that D(t) (and hence D̃(t)) is concave in addition to being differentiable, estimating
π amounts to estimating the value of a monotone decreasing density at the right boundary of its
support. A consistent estimator for this problem has been studied in [25]. Practical estimators
have also been developed in recent work on multiple testing [26, 14] where they are used to estimate
the proportion of true null hypothesis. There the p-values of a test play a role similar to our Yi;
under a null hypothesis, p-values are uniform, just as our Yi’s are uniform under X ∼ µ.

4 Implementation

In our experiments we estimate MV sets via the level sets

Ĝλ = {x :
1
n

n∑

i=1

Kσ(x−Xi) ≥ λ}

of a kernel density estimate having a Gaussian kernel with bandwidth σ. Estimation of a particular
Gi involves a bisection search (up to a certain accuracy) on λ until Xi is just barely enclosed. Since
each Xi is just barely contained in Ĝi (having Xi be on the boundary of Q̂(Ĝi) would require infinite

precision), we will estimate ˆ̃
βi = (i − 1/2)/n, i = 1, . . . , n. Note that there will be overlap in the

iterations of the bisection search needed for different Xi which allows for significant computational
savings. The issue of automatic bandwidth selection is addressed below.

4.1 Computation of µ(GQ,β̃i
)

In practice, it is not necessary to specify the precise support of µ in advance. It suffices to specify
µ on some bounding set (such as a hypercube or hypersphere) containing all of the data. After
estimating the MV sets Gi, µ can be truncated to the region Ĝ(n), which is an estimate of the
support GQ,1 of µ.

Exact computation of µ(Ĝi) is not possible in our implementation, even if µ is a uniform
measure, because the sets Ĝi, obtained by thresholding a kernel density estimate, are not sufficiently
simple. Therefore we adopt a Monte Carlo approach based on simulation from µ. Sampling from the
truncated µ is accomplished by simple rejection sampling from the original µ. In our experiments
we take µ to be uniform and estimate µ using samples with size on the order of 10,000, drawn
uniformly from a hypercube containing the data.

4.2 Empirical ROC smoothing

The estimated points (Ŷi,
ˆ̃
βi) form an empirical version of D̃(t). By an argument similar to that

which established Proposition 1, the γ̂i and ˆ̃
βi determine the same ranking provided the values
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(1 − ˆ̃
βi)/(1 − Ŷi) are nonincreasing as i increases. Because of estimation error, however, this will

typically not be the case.
Our experiments involve continuous data, and therefore we expect D̃(t) to be concave. To

ensure that the γ̂is and ˆ̃
βis produce the same rankings, we propose to smooth the empirical ROC

by fitting a function that is monotone, concave, and has endpoints at (0, 0) and (1, 1). Note that

one may either regress Ŷi on ˆ̃
βi or 1− ˆ̃

βi on 1− Ŷi. The latter approach, which we employ in our
experiments, corresponds to smoothing an empirical version of C̃(s) := inf{1−µ(GQ,β̃) : 1−β̃ ≤ s},
which is simply the reflection of D̃(t) about the anti-diagonal of the unit square. In either case,
the rankings are preserved.

ROC smoothing has two additional benefits. First, the slope of the estimated ROC at 1 gives
an estimate of π as per Proposition 3. Second, the estimates γ̂i satisfy 0 ≤ γ̂i ≤ 1, which they
should being probabilities. Without smoothing, this might not be the case.

In our experiments we consider four methods of smoothing the empirical ROC under mono-
tonicity, concavity, and endpoint constraints. Other options are possible, such as a natural cubic
smoothing spline [27]. See [26] for a survey of results on the related problem of estimating the
proportion of true null hypotheses in a traditional (p-value based) multiple testing problem. Recall
that the empirical ROC is also an empirical CDF of the variable Y .

1. Least Concave Majorant: The derivative of the least concave majorant (LCM) of the
empirical CDF was shown by Grenander [28] to be a nonparametric MLE of a nonincreasing
density.

2. Linear Spline: The least squares linear smoothing spline with M fixed pieces, subject to
monotonicity, concavity, and endpoint constraints, can be easily formulated as a quadratic
program with M constraints. In our implementation we take M = 20 logarithmically spaced
pieces and use Matlab’s quadprog routine, which converges reliably for this sized problem.

3. Lomax Curve: A specialized case of the Lomax family of distribution functions [29, 30] can
be parametrized as

D̃(t) =
[
1 + θ(t−ν − 1)

]− 1
ν .

Here θ > 0 controls the area under the curve and ν > 0 is a skewness parameter. We estimate
these parameters by minimizing the total squared error using Matlab’s fminsearch command
for nonlinear optimization.

Other common parametric ROC models, such as the binormal and bilogistic models, are not
suitable for our purposes because their derivative at 1 is always 0.

4. Convex Decreasing Density NPMLE: The fourth estimate is obtained from a NPMLE
for a convex decreasing density. In a recent empirical study [26], this is recommended as
the most accurate among several estimators for the proportion of true null hypotheses in
a multiple testing scenario. This finding does not necessarily have direct bearing on our
problem, since the proportion of true nulls is typically large in a traditional multiple testing
problem, while our π is typically very close to 0.

The convexity assumption was motivated in [26] by the observation that the Grenander
estimate tends to tail off toward zero at the right endpoint of its support, thus underestimating
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the right endpoint. Equivalently, we note, convexity of the density estimate implies that the
concavity of the estimated ROC cannot increase sharply near 1.

The resulting density estimate is a linear spline. We use the R implementation of [26],
available as part of Bioconductor [31].

An alternative (which we did not explore) to enforcing a concave ROC would be to enforce the
slope of the line connecting (D̃(t), t) and (1, 1) to be nonincreasing. The linear spline approach can
be easily adapted to this setting.

4.3 Model selection

Nonparametric MV set estimators typically have tuning parameters that must be set. We adopt the
minimum integrated volume (MIV) criterion proposed in [21]. Consider for example the bandwidth
σ of a kernel density estimator, and let ĜQ,β̃,σ denote the estimate of GQ,β̃ that results from a
kernel density estimate with bandwidth σ. It is desirable that for each β̃, ĜQ,β̃,σ has as small a
volume as possible while maintaining a mass near β̃. Therefore, assuming the actual mass of each
set is near its estimated value, the quality of a given σ for estimating all MV sets may be assessed
by the integrated volume

IV(σ) =
∫ 1

0
µ(ĜQ,β̃,σ) dβ̃,

with smaller values corresponding to better σ. Recalling that ˆ̃
βi = (i − 1/2)/n, this quantity is

estimated as
1
n

n∑

i=1

µ(Ĝ
Q,

ˆ̃
βi,σ

) =
1
n

n∑

i=1

µ(Ĝi,σ),

where the summand may be computed using the methods described above. As a side note, the
integrated volume is one minus the area under the ROC curve D̃(t). Therefore the MIV is a form
of area under the ROC (AUC) criterion.

Finally, it is essential to note that during model selection, Q̂(·) should not be the resubstitution
estimate, otherwise overfitting will occur. Cross-validation or bootstrap estimates may be used
instead. In our implementation we take the leave-one-out cross-validation estimate of the Q mass
of the λ level set:

Q̂(Ĝλ) =
|{i : 1

n−1Σj 6=iKσ(Xj −Xi) ≥ λ}|
n

.

5 Experiments

We apply MN-SCAnn to a synthetic data problem, the network traffic data from Section 1, and
flow cytometry data.

5.1 Synthetic data

Here the typical distribution P is a two dimensional, two component Gaussian mixture and the
anomalies are uniform on the unit square. A sample of size 500 consisting of π = 10% anomalies
is shown in Fig. 2 (a). Also shown is the level set containing 90% of the data. Fig. 2 (b) plots the
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Figure 2: (a) Sample of 500 points from synthetic data, together with the MV set containing 90%
of the data based on a thresholded kernel density estimate. (b) Sorted annotations γ̂(i). Vertical
stems indicate actual anomalies.

sorted annotation values γ̂i for a realization of the synthetic data. The vertical stems indicate the
approximately 50 observed anomalies. Anomalies constitute a strong majority of the data points
with highest annotation values, with almost all having value γ̂i ≥ 0.2. The presence of a few
anomalies with lower annotations is expected given the overlap between the supports of µ and P .

To assess the performance of the four methods for estimating π based on the four methods for
ROC smoothing outlined in Section 4.2, we generated 100 samples of size n = 200 for each value
of π ∈ {0.01, 0.05, 0.1, 0.15}. Figure 3 summarizes the resulting estimates of π by way of boxplots.
There is no method that consistently outperforms the others. The linear spline method is more
accurate for larger values of π, while the Lomax method is more accurate for smaller π.

Fig. 4 shows typical ROC fits of the four methods on the same data. The Lomax method,
which is the only parametric method of the four, appears to be the least accurate, although its fit
is still reasonable. Fig. 5 shows the estimated densities corresponding to the same ROC fits shown
in Fig. 4.

5.2 Network anomaly detection

Now return to the problem of detecting anomalous Internet traffic on a given network, described
at the start of this paper. Fig. 6 (a) shows a map of the Abilene network, the ‘backbone’ network
serving most universities and research labs in the United States. Developed as part of the Internet2
project [32], a project devoted to development of the ‘next-generation’ Internet, Abilene and Abilene
data frequently serve as a testbed for development methodologies. Typically measurements on a
network like Abilene are most easily available locally at network nodes (e.g., routers, regional
aggregation points, etc.). So a natural way to approach the problem of anomaly detection is to
seek to determine, at a given point in time, whether the traffic through a given network node is
anomalous in nature or not. This problem is made challenging by many issues, particularly the facts
that (a) traffic at a network node is a combination of the traffic from a number of incoming and
outgoing links, and (b) traffic on fixed links has been found to have subtle combinations of various
characteristics, and hence is not highly amenable to simple parametric modeling (e.g., [33, 34]).

Our methodology, which makes no assumptions on the distribution P of normal network traffic,
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Figure 3: Boxplots summarizing four methods for estimating π, based on 100 instances of samples
of size n = 200.

is natural for this task3. Fig. 6 (b) shows the largest 208 (out of 1008 total data points) annotations
γ̂i for the data at the Atlanta router shown in Fig. 1(a). The vertical stems are anomalies that
were detected using a global method (having access to all data on all links in the network) and
serve as ground truth anomalies for our purposes [33, 34]. There are 11 anomalies total. We see
that 8 out of 11 occur past the ‘knee’ of the curve at roughly 0.2, and three are in the top six.

5.3 Flow cytometry

A flow cytometry instrument is capable of measuring certain optical properties of biological cells,
including size, granularity, and various fluorescence properties [35]. Given a population of cells,
flow cytometry data can be used to characterize the different cell types present. Fig. 7 is a
scatterplot derived from two particular optical features known as sideward light scatter and CD45.
There are multiple cell types present in the population, in this case four. Three of these cell types
are associated with one of the three visible clusters, while a fourth is less apparent and overlaps
the upper left cluster somewhat. This dataset very clearly illustrates the need for nonparametric
methods of contamination assessment.

Unfortunately, cell populations are often contaminated by air bubbles, cell debris, and various
3Technically the datapoints in this example are correlated, due to temporal correlations in the underlying traffic

flows. However, we ignore these correlations here for the purpose of illustration.
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Figure 4: Typical ROC fits by the four methods of ROC smoothing.
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Figure 5: Estimates of the density of Y corresponding to the four ROC fits shown in Fig. 4.

other artifacts. These contaminants give rise to outliers in the flow cytometry data. It is desirable to
identify these outliers and account for their prevalence so as to minimize their affect on subsequent
processing. MN-SCAnn provides a natural way to assess the proportion of outliers present and to
quantify the degree of outlyingness of individual points.

We ran MN-SCAnn on a subsample of size4 5,000 with results shown in Fig 8. The estimated
4Using the full sample caused memory problems in our implementation, which is not optimized for memory
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Figure 6: (a) Schematic depiction of the Abilene network (b) Sorted annotations γ̂(i) for the network
traffic data. Vertical stems indicate anomalies detected by a method having access to global network
traffic.
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Figure 7: Full sample of approximately 30,000 data points from a flow cytometry experiment.

fraction of outliers is 0.01. The full sample in Fig 7 has about 30,000 points, and thus our method
interprets about 300 of these to be outliers. Although no ground truth is available for this data,
the contours and estimated proportion of outliers are consistent with our intuition based on visual
inspection. For comparison, we also show the values β̂(i), estimated by plugging in to Eqn. 6.
Although the rank ordering is consistent with γ̂(i), these values offer no information regarding the
proportion and extremity of the contaminating points.

6 Discussion

A growing body of literature has begun to address the same issues that motivated MN-SCAnn,
namely, rigorous statistical assessment of complex, multivariate data. We now offer some connec-
tions to and place MN-SCAnn in the context of this work.

The notion of data depth has flourished recently as an approach to “descriptive statistics,

efficiency.
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Figure 8: Results for flow cytometry data based on a subsample of size 5,000. (a) Contours of
density of Q, reflecting the ranking induced by the annotations β̂(i). (b) Sorted annotation values
γ̂(i). Also shown are the values β̂(i), which are conceptually similar to “unadjusted p-values” and
clearly convey no information about the composition of the sample.

graphics, and inference” in multivariate, nonparametric settings [10, 36]. The key ingredient in
data depth analysis is a “depth function” that defines an ordering of points in a multivariate
sample with respect to degree of outlyingness. Much work on data depth focuses on estimating
parameters such as generalized notions of location or kurtosis (see references in [10, 36]). Wang and
Serfling [37] discuss robust estimation of certain classes of depth functions, while Dang and Serfling
[38, 39] analyze swamping and masking breakdown points for data depth under contamination.

The so-called likelihood depth orders points with respect to the height of the density governing
the sample. When the sample is contaminated, the points are ordered with respect to the density of
the uncontaminated portion of the sample. Adopting the likelihood depth perspective, Fraiman and
Meloche demonstrated the robustness of certain kernel density estimate based estimates of centrality
for symmetric distributions [19]. We have shown in Proposition 1 that the ranking of MN-SCAnn
with a uniform reference measure coincides with that of likelihood depth. Some have argued that
likelihood depth is not a valid measure of depth because multimodal densities complicate notions of
center, among other reasons [36]. Yet the lack of a well-defined notion of center does not preclude
the likelihood depth from imparting a valid ordering. The likelihood ordering is to us the most
natural multivariate extension of “extremeness” as captured by univariate p-values. Indeed, for
multimodal nominal distributions, such as the flow cytometry data analyzed above, it is not clear
whether it is even reasonable to insist on defining centrality. Moreover, our work demonstrates how
likelihood depth can be extended beyond mere rankings to interpretable, quantitative annotations.

Other recent work has sought to combine traditional statistical approaches within a machine
learning perspective. Roth incorporated a method for outlier rejection into a kernel Fisher dis-
criminant approach to level set estimation (one-class classification) [40]. He takes advantage of
the implicit Gaussian assumption in the kernel feature space to devise a quantile-quantile driven
procedure for iteratively detecting and rejecting outliers.

On a final note, we point out that establishing the asymptotic behavior of our estimators
γ̂i of the quantities γi is an interesting open theoretical problem. For example, although the γi

are essentially just one minus a version of Storey’s q-value, and a form of consistency has been
established for q-value estimates in [41], the estimation strategy here is necessarily different, and so
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consistency would need to be shown independently. Also, given the structure of our problem and
the nature of the estimators used, it would appear that arguments somewhat distinct from those
in [41] will be necessary.
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Appendix

The proofs of Propositions 1 and 3 rely on certain ROCs (or CDFs) which we discuss here in more
detail.

Consider the optimal test for the null hypothesis X ∼ P against the alternative X ∼ µ. By
definition of GP,β , the critical region Gc

P,β is the most powerful test of size P (Gc
P,β) = 1−P (GP,β) =

1− β, with power equal to µ(Gc
P,β) = 1− µ(GP,β). Thus, {(1− β, 1− µ(GP,β)) : 0 ≤ β ≤ 1} traces

out the ROC of the optimal test. In functional form, the ROC is given by

C(s) := 1− µ(GP,1−s).

In a similar way, we can associate

C̃(s) = inf{1− µ(GQ,β̃) : 1− β̃ ≤ s}

with the optimal test for X ∼ Q versus X ∼ µ.
The estimation of π is facilitated by consideration of what might be called the dual ROC to

the primal ROC discussed in Section 2. In particular, we now view µ as the null distribution and
P as the alternative. While this is the opposite of the scenario considered throughout the paper,
it will be a useful analytical device. By definition of GP,β, the critical region GP,β gives the most
powerful test of size µ(GP,β) with power equal to P (GP,β) = β. Thus, {(µ(GP,β), β) : 0 ≤ β ≤ 1}
traces out the ROC of the optimal test. In functional form, the ROC is given by

D(t) := inf{β : µ(GP,β) ≤ t}.

Note that the dual ROC can be obtained by reflecting the “primal” ROC C(s) about the anti-
diagonal of the unit square.

Similarly, the dual ROC corresponding to the optimal test of the null X ∼ µ versus the alter-
native X ∼ Q (again, this test is viewed as purely an analytical device) is given by

D̃(t) := inf{β̃ : µ(GQ,β̃) ≤ t},

and is traced out by the curve {(µ(GQ,β̃), β̃) : 0 ≤ β̃ ≤ 1}. As before, this curve may be obtained
by reflecting C̃(s) about the anti-diagonal of the unit square.

Proof of Proposition 1.
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Consider testing H0 : X ∼ P versus H1 : X ∼ µ. By definition of GP,β, the critical region
Gc

P,β is the most powerful test of size P (Gc
P,β) = 1 − P (GP,β) = 1 − β, with power equal to

µ(Gc
P,β) = 1− µ(GP,β). Thus, {(1− β, 1− µ(GP,β)) : 0 ≤ β ≤ 1} traces out the receiver operating

characteristic (ROC) curve of the optimal test, which is given by C(s) := 1− µ(GP,1−s).
Now for any pair of indices i, i′, we wish to show βi ≤ βi′ iff γi ≤ γi′ . Note that

γi = 1− pFDR(GP,βi) =
πµ(Gc

P,βi
)

Q(Gc
P,βi

)
=

[
1 +

1− π

π

P (Gc
P,βi

)
µ(Gc

P,βi
)

]−1

. (9)

So γi ≤ γi′ iff (1 − µ(GP,βi′ ))/(1 − P (GP,βi′ )) ≥ (1 − µ(GP,βi))/(1 − P (GP,βi)) . But these ratios
of µ to P are simply the slopes of lines through the origin to the points on the β(t) ROC curve
corresponding to βi′ and βi, and these slopes are decreasing in decreasing β, by assumption. ¤
Proof of Proposition 2:

To establish the first statement, that GP,β is the Q-MV set at level β̃, we must establish (a)
Q(GP,β) ≥ β̃ and (b) if Q(G) ≥ β̃, then µ(G) ≥ µ(GP,β). To establish (a), observe

Q(GP,β) = πµ(GP,β) + (1− π)P (GP,β)
= πµ(GP,β) + (1− π)β
= β̃.

To establish (b), assume it does not hold. That is, assume there exists G such that Q(G) ≥ β̃ and
µ(G) < µ(GP,β). Then

P (G) =
Q(G)− πµ(G)

1− π

≥ β̃ − πµ(G)
1− π

≥ β̃ − πµ(GP,β)
1− π

= β,

which contradicts the definition of GP,β as the P -MV set at level β.
The second statement follows in a similar manner. ¤

Proof of Proposition 3:

Pr {Y ≤ t|X ∼ Q} = Pr {µ(G(X)) ≤ t|X ∼ Q}
= Q(µ(G(X)) ≤ t)
= Q(X ∈ GQ,D̃(t))

= D̃(t).

Thus D̃(t) = πPr {Y ≤ t|X ∼ µ}+ (1− π)Pr {Y ≤ t|X ∼ P}. Now

Pr {Y ≤ t|X ∼ µ} = Pr {µ(G(X)) ≤ t|X ∼ µ}
= µ(µ(G(X)) ≤ t)
= µ(X ∈ GQ,D̃(t))
= t.
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Similarly,

Pr {Y ≤ t|X ∼ P} = Pr {µ(G(X)) ≤ t|X ∼ P}
= P (µ(G(X)) ≤ t)
= P (X ∈ GQ,D̃(t))

= P (X ∈ GP,D(t))
= D(t).

The result follows by differentiating D̃(t). ¤
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