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ABSTRACT

We consider an anomaly detection problem, wherein a com-
bination of typical and anomalous data are observed and it is
necessary to identify the anomalies in this particular dataset
without recourse to labeled exemplars. We take as our goal to
produce an annotated ranking of the observations, indicating
the relative priority for each to be examined further as a possi-
ble anomaly, while making no assumptions on the distribution
of typical data. We propose a framework in which each obser-
vation is linked to a corresponding minimum volume set and,
implicitly adopting a hypothesis testing perspective, each set
is associated with a test. An inherent ordering of these sets
yields a natural ranking, while the association of each test
with a false discovery rate yields an appropriate annotation.
The combination of minimum volume set methods with false
discovery rate principles, in the context of data contaminated
by anomalies, is new and estimation of the key underlying
quantities requires that a number of issues be addressed. We
offer some solutions to the relevant estimation problems, and
illustrate the proposed methodology on synthetic and com-
puter network traffic data.

Index Terms— minimum volume sets, false discovery
rate, nonparametric outlier detection, multiple level set esti-
mation, monotone density estimation

1. INTRODUCTION

Anomaly detection problems can be characterized as coming
in two flavors. In anomaly prediction, one observes training
data that represent typical or normal measurements of a sys-
tem. The goal is to use the training data to construct a pre-
diction rule that will distinguish typical data from anomalous
data in the future. In anomaly discovery, data are observed
that contain a combination of normal and abnormal data, and
the goal is to identify the anomalies in that particular dataset.
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The former learning problem is supervised in the sense that
all data are known to be typical. Our concern is with the latter
problem, which is unsupervised and more difficult.

By way of motivation, consider the data in Fig. 1, rep-
resenting measurements gathered on Internet traffic flowing
over links in the Abilene network, discussed in Section 4.
Each point corresponds to the total traffic volumes (measured
in bytes) for a given ten minute interval over a pair of links
to a given node in the network. In this example, the node
corresponds to Atlanta, and the links correspond to routes in
the Abilene network to Atlanta from Houston and Washing-
ton. The goal is to design a system that takes this collec-
tion of roughly 1000 measurements and identifies the extent
to which each point may represent potentially anomalous be-
havior. The output of this automated system would be trans-
mitted, for example, to a network operator who might then
conduct follow-up experiments on the nature of the most sus-
pect data. An essential feature of this system is that it make
no assumptions about the distribution of the typical data. Ad-
ditionally, the system is required to apply equally well to data
at other nodes in the network, whose distributional character-
istics will be markedly different from those of the data for the
Atlanta node.

In this paper we propose a framework that meets these
quite general requirements. Formally, we suppose we observe
independent and identically distributed measurements Xi ∈
Rd, i = 1, . . . , n from a mixture distribution i.e.,

Xi ∼ Q = πµ + (1− π)P, (1)

where µ is the distribution on anomalies, P is the distribu-
tion on typical data, and π is the a priori probability of an
anomaly. The challenge here is that we assume P is unknown,
as is π as well. However, we will allow that the user be will-
ing or able to specify µ, which we will therefore consider
known. For example, in the absence of any detailed informa-
tion on the nature of anomalies, it is natural to assume that µ
is simply a uniform distribution. All numerical work herein
was done with this assumption, but our overall framework and
all stated analytical results hold for arbitrary µ. We also as-
sume the supports of µ and P are bounded, with the former
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Fig. 1. Scatterplot of volume levels for traffic passing through
select pairs of links at Atlanta, in the Abilene network, over
consecutive 10 minute intervals.

containing the latter.
We then take as our goal to produce an annotated rank-

ing of the observations Xi, indicating the relative priority for
each to be examined further as a possible anomaly. We have in
mind that the ranking serve to impose priorities through a ba-
sic ordering, while the annotations should provide some indi-
cation of the likelihood that observations are actually anoma-
lous. Our approach in this paper is to link each observation to
a corresponding minimum volume (MV) set and, implicitly
adopting a hypothesis testing perspective, to associate each
set with a test. An inherent ordering of these sets yields a
natural ranking, while the association of each test with a false
discovery rate (FDR) yields an appropriate annotation.

The assumption of known µ can be justified on a number
of grounds. In many situations, the assumption of uniform µ
is intuitive and natural, and has recently been shown in a cer-
tain setting to optimize the worst-case detection rate among
all choices for the unknown anomaly distribution [1]. Fur-
thermore, previous works that apply MV sets to anomaly pre-
diction implicitly assume µ is a known distribution on anoma-
lies [2, 3, 4, 5, 6]. That is, these predictors are only optimal
when in fact the anomalies truly follow the volume-defining
measure µ. Finally, ranking with respect to MV sets and uni-
form µ coincides with the ranking determined by the so-called
likelihood data-depth [7, 8]. The connection to data depth is
discussed further in the concluding section.

Connections to previous work on MV sets and FDR,
proofs of results, additional experimental results, and all
omitted details may be found in [9].

2. METHODOLOGY

Recall the model in Eqn. (1). Define GP,β to be the set with
minimal µ-measure containing at least β ∈ [0, 1] probability
mass under P i.e.,

GP,β = arg min{µ(G) : P (G) ≥ β} . (2)

This is the MV set under P , where volume1 is assessed with
respect to µ. It is easily seen that MV sets coincide with den-
sity level sets of P , provided the density exists with respect to
µ. Each mass β corresponds to a certain level of the density
of P , and as β ranges from 1 to 0, the density level ranges
from 0 to the maximum value of the density. Although we
refer to MV and density level sets interchangeably, we favor
the former here because our method features the masses and
volumes that MV sets make explicit.

As stated previously, our goal is to produce an annotated
ranking of the observations. We consider the task of ranking
first. For i = 1, . . . , n, let

βi ≡ inf
0≤β≤1

{β : Xi ∈ GP,β}. (3)

That is, letting β vary freely between 0 and 1, we assign to Xi

a set GP,βi
that, among all MV sets, just barely includes Xi.

Ordering the βi as {β(n), . . . , β(1)}, from largest to smallest,
naturally induces a ranking {X(1∗), . . . , X(n∗)} of the obser-
vations, where (i∗) denotes the index of i-th most potentially
anomalous observation.

Our choice of approach here may be motivated by con-
sidering the problem of formally testing the null hypothesis
H0 : Xi ∼ P versus the alternative hypothesis H1 : Xi ∼ µ,
for each i = 1, . . . , n. If we choose to use a test of size α
i.e., with a Type I error rate Pr {Reject H0|H0 True} = α,
then the set Gc

P,1−α is in fact the rejection region for the most
powerful test of this size. Then, if instead of making a hard
decision of H0 versus H1, we report the corresponding sta-
tistical p-value under this class of tests, that p-value is simply
1 − βi. Therefore, our proposed ranking follows the reverse
ordering of the observed p-values.

Now consider the issue of annotation of our ranked obser-
vations. The values βi are themselves an obvious, and indeed
not unreasonable, candidate for such an annotation. However,
there is the need to interpret these values and, although the
values βi are well-defined probabilities in the context of the
individual hypothesis tests for their corresponding observa-
tions Xi, they are not designed to be meaningfully interpreted
en masse when simultaneously conducting multiple hypothe-
sis tests. This observation is a variation on the issue at the
heart of the so-called ‘multiple testing problem’ in statistics.
Stated simply, the problem is that, whereas standard testing
theory dictates that one should choose the size α of a sin-
gle test to control the chance of an incorrectly rejected null
hypothesis i.e., a ‘false discovery’, in contexts where a large
number of such tests are to be conducted, one will end up with
a correspondingly large number of false discoveries purely by
chance. Such an outcome is often unsatisfactory, particularly
when nontrivial amounts of energy are expected to be used
to follow up on discoveries, as is often the case in anomaly
detection problems.

1Here “volume” connotes a probability measure, in contrast to traffic vol-
umes in the network example.



This problem has received a great deal of attention in
the statistical literature over the past decade, since the sem-
inal paper of Benjamini and Hochberg [10]. Their proposal
for this problem effectively boils down to focusing attention
not on the size α of individual tests, but rather the rate of
false discoveries across tests. Since their paper, an entire sub-
literature has evolved on the topic of FDR’s, including a num-
ber of extensions in which analogues of the model in Eqn. (1)
are assumed (see references in [9]). From among these var-
ious contributions, we choose to adopt the so-called positive
FDR2 statistic of Storey [11] as a natural one for our problem.
In our context, this statistic is written as a probability

pFDR(G) = Pr {X ∼ P |X /∈ G} , (4)

where G denotes an arbitrary set and X ∼ Q. This is the
probability that, given a ‘discovery’ is made (i.e., X /∈ G),
that in fact this discovery is false.

Storey [11] also proposes a corresponding analogue of the
p-value, which he calls a q-value. This statistic, in our con-
text, takes the form pFDR(GP,βi

). We therefore propose, as a
more meaningful alternative to the values βi, to annotate our
ranked observations by the values

γi = 1− pFDR(GP,βi).

There immediately arises the question of whether the values
of the γi’s are consistent with the ranking arising from the
βi’s. The following result addresses this concern, in the affir-
mative.

Proposition 1 Let β(t) = sup{β : µ(GP,β) ≤ t}, for
t ∈ [0, 1]. Assume β(t) is concave. Then the ordered se-
quences {β(n), . . . , β(1)} and {γ(n), . . . , γ(1)} produce the
same rank ordering {X(1∗), . . . , X(n∗)} of the observations
X1, . . . , Xn.

Note that β(t) may be thought of as the optimal receiver
operating characteristic (ROC) curve of a testing problem
have µ as the distribution under the null and P the distribution
under the alternative. (This is the reverse of what we consider
throughout the paper, and is only used here as an analytical
device.) As a result, we know that β(t) is nondecreasing.
The assumption that β(t) is concave is satisfied, for example,
when P is a continuous distribution and µ uniform.

3. ESTIMATION

There remains the issue of computing the annotations γi, or
even the rankings through βi, since both rely on P , which
we assume unknown. Instead, all we have at our disposal
are the observations X1, . . . , Xn, which are from the mixture

2The pFDR is so named because it happens to be equal to the expected
fraction of false discoveries, conditional on a positive number of discoveries
having been made.

distribution Q defined in (1), and our assumed knowledge of
the contaminating distribution µ. In analogy to Eqn. (2), for
0 ≤ β̃ ≤ 1 define the MV set under Q at level 0 ≤ β̃ ≤ 1 as

GQ,β̃ = arg min{µ(G) : Q(G) ≥ β̃} .

The following result is fundamental to the practical imple-
mentation of our proposed methodology, in relating the MV
sets under P to those under Q.

Proposition 2 If 0 ≤ β ≤ 1 and

β̃ ≡ β̃P,β := πµ(GP,β) + (1− π)β , (5)

then GQ,β̃ = GP,β . Conversely, if 0 ≤ β̃ ≤ 1 and

β ≡ βQ,β̃ :=
β̃ − (1− π)µ(GQ,β̃)

π
, (6)

then GP,β = GQ,β̃ .

This result links Q-MV sets to P -MV sets in an explicit
fashion. In particular, it implies that the ordering given by the
P -MV sets coincides with that of the Q-MV sets. Intuitively,
the smallest P -MV set containing Xi is also the smallest Q-
MV set containing Xi. More formally, define

β̃i ≡ inf
0≤β≤1

{β̃ : Xi ∈ GQ,β̃}. (7)

in analogy to the βi defined for P in Eqn. (3). Then
β(n), . . . , β(1) and β̃(n), . . . , β̃(1) define the same rank order-
ing of the Xis.

Furthermore, using Bayes’ rule in conjunction with the
expression in (4) and the definiton of γi, our proposed anno-
tations may be expressed in the form

γi = πµ(Gc
P,βi

)/Q(Gc
P,βi

)
= πµ(Gc

Q,β̃i
)/Q(Gc

Q,β̃i
). (8)

Hence, we have the key insight that, since µ is known, to
estimate γi we need only estimate GQ,β̃i

, Q(GQ,β̃i
), and π.

3.1. Estimation of GQ,β̃i

For convenience, write Gi = GQ,β̃i
, the smallest Q-MV set

containing Xi. Suppose {Ĝλ}λ∈Λ is a family of set estimates
such that (a) each Ĝλ estimates some Q-MV set, and (b) Λ
is such that the range of MV sets estimated is sufficiently
rich to reasonably approximate GQ,β̃ for any 0 ≤ β̃ ≤ 1.
Then a natural estimator for Gi is Ĝi := Ĝλ̂i

, where λ̂i :=
arg min{µ(Ĝλ) : λ ∈ Λ, Xi ∈ Ĝλ}.

We now briefly discuss two examples of such families
{Ĝλ}λ∈Λ. The first requires solving the intermediate task of



density estimation, while the second operates on the principle
of direct set estimation.3

First, suppose a nonparametric estimate f̂(x) of the den-
sity f of Q is computed, such as a kernel density estimate.
Then the sets Ĝλ = {x : f̂(x) ≥ λ} estimate the level sets
of f , which coincide with the MV sets of Q. This approach
has the advantage that the estimated sets are guaranteed to be
nested. Therefore, the smallest such set containing a given Xi

can be computed rapidly via a bisection search on λ.
The second example is based on the one-class support

vector machine (OCSVM) with Gaussian kernel [3]. Here Ĝλ

is the OCSVM with regularization parameter λ. It has been
shown [12] that for each λ, Ĝλ is a consistent estimator of the
λ level set of Q. As λ varies through its range, all MV sets
of Q are accounted for. For more on this approach, see [13],
where the algorithm of Hastie et al. [14] is used to efficiently
compute the entire family {Ĝλ}λ∈Λ.

Other methods for direct set estimation readily follow
from classification algorithms having the ability to control the
tradeoff between false positives and false negatives [15, 16].
If λ is a parameter that controls such a tradeoff, then Ĝλ may
be identified with the classifier that discriminates X1, . . . , Xn

from an artificially generated sample from µ [2, 5].

3.2. Estimation of Q(GQ,β̃i
)

Given estimates Ĝi of the sets Gi = GQ,β̃i
, we may then

estimate β̃i = Q(Gi) and related quantities through Q̂(Ĝi),
where

Q̂(G) =
|{i : Xi ∈ G}|

n
.

Since Xi is on the boundary of GQ,β̃i
, we average the two

possible empirical estimates so that Q̂(GQ,β̃(i)
) = (i −

1/2)/n.

3.3. Estimation of π

The estimation of π is facilitated by a transformation of vari-
ables. Specifically, define Yi = µ(Gi), where recall that
Gi = GQ,β̃i

. Writing Gi = G(Xi) now to emphasize the
dependence on Xi, we consider Y = µ(G(X)) as a uni-
variate random variable on the interval [0, 1] resulting from
transformation of the generic random variable X ∼ Q. The
following result shows π to be related to the density of Y in a
simple manner.

Proposition 3 Let

D(t) := inf{β : µ(GP,β) ≤ t}
and

D̃(t) := inf{β̃ : µ(GQ,β̃) ≤ t} .

3Note that estimating every level set of a density is equivalent to estimat-
ing the density itself, so there is no clear advantage of one approach over
another.

Assume D(t) to be differentiable in t. Additionally, assume
D′(t) → 0 as t → 1. Then the density of Y is D̃′(t) =
π + (1− π)D′(t), and therefore π = D̃′(1−).

Thus D̃(t) is the cumulative distribution function of Y .
The assumption D′(t) → 0 as t → 1 holds provided it is not
possible to write P = (1−θ)P0+θµ for some distribution P0

and for θ > 0. Otherwise, P has a uniform component and
it is impossible to resolve π accurately. Proof of the proposi-
tion employs arguments that, similar to those of Proposition 3,
rely on ROC curves of optimal tests, only in this case in a dual
sense, with P and µ switched in their roles as null and alter-
native. The reader is referred to [9] for details.

The obvious strategy now is to estimate π by estimating
D̃′(1−) based on the values Y1, . . . , Yn. Note, however, that
we do not in fact have access to the Yi, given a lack of knowl-
edge of Q. We propose therefore to estimate each Yi by the
value Ŷi := µ(Ĝi) once the estimates Ĝi are computed and
to proceed accordingly.

In the event that D(t) (and hence D̃(t)) is concave in addi-
tion to being differentiable, estimating π amounts to estimat-
ing the value of a monotone decreasing density at the right
boundary of its support. A consistent estimator for this prob-
lem has been studied in [17]. Practical estimators have also
been developed in recent work on multiple testing [18, 11]
where they are used to estimate the proportion of true null hy-
pothesis. There the p-values of a test play a role similar to our
Yi; under a null hypothesis, p-values are uniform, just as our
Yi’s are uniform under X ∼ µ.

4. NETWORK ANOMALY DETECTION

Now return to the problem of detecting anomalous Internet
traffic on a given network, described at the start of this paper.
Fig. 2 (a) shows a map of the Abilene network, the ‘backbone’
network serving most universities and research labs in the
United States. Developed as part of the Internet2 project [19],
a project devoted to development of the ‘next-generation’ In-
ternet, Abilene and Abilene data frequently serve as a testbed
for development methodologies. Typically measurements on
a network like Abilene are most easily available locally at net-
work nodes (e.g., routers, regional aggregation points, etc.).
So a natural way to approach the problem of anomaly detec-
tion is to seek to determine, at a given point in time, whether
the traffic through a given network node is anomalous in na-
ture or not. This problem is made challenging by many is-
sues, particularly the facts that (i) traffic at a network node is
a combination of the traffic from a number of incoming and
outgoing links, and (ii) traffic on fixed links has been found
to have subtle combinations of various characteristics, and
hence is not highly amenable to simple parametric modeling
(e.g., [20, 21]).

Our methodology, which makes no assumptions on the
distribution P of normal network traffic, is natural for this
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Fig. 2. (a) Abilene backbone (b) Ranked annotations pro-
duced by our method for the Atlanta data, with vertical stems
corresponding to known anomalies [21].

task4. Fig. 2 (b) shows the largest 208 (out of 1008 total data
points) annotations γ̂i for the data at the Atlanta router shown
in Fig. 1. The vertical stems are anomalies that were detected
using a global method (having access to all data on all links
in the network) and serve as ground truth anomalies for our
purposes [20, 21]. There are 11 anomalies total. We see that
8 out of 11 occur past the ‘knee’ of the curve at roughly 0.2,
and three are in the top six.

Additional results, applied to synthetic and flow cytom-
etry data, as well as details of our implementation may be
found in [9].
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