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Proofs

The proofs of Propositions 1 and 3 rely on certain ROCs (or CDFs) which we discuss here in
more detail. Consider the optimal test for the null hypothesis X ~ P against the alternative
X ~ p. By definition of Gpg, and since these sets are unique under [B] and [C], the critical
region G% 5 is the most powerful test of size P( f;ﬁ) =1-P(Gpg) =1— (3, with power equal to
wWGrg) =1—pu(Gpp). Thus, {(1-5,1—u(Gpg)): 0 < B < 1} traces out the ROC of the optimal

test. In functional form, the ROC is given by
C(s) =1 — p(Gra_s).
In a similar way, we can associate

é’(s) =1-p(Gg-s)
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with the optimal test for X ~ @ versus X ~ pu.

The estimation of 7 is facilitated by consideration of what might be called the dual ROCs
to the primal ROCs above. In particular, we now view p as the null distribution and P as the
alternative. While this is the opposite of the scenario considered throughout the paper, it will be
a useful analytical device. By definition of G'pg, the critical region Gpg gives the most powerful
test of size (G pg) with power equal to P(Gpg) = 3. Thus, {(u(Gpg),B) : 0 < 8 < 1} traces out

the ROC of the optimal test. In functional form, the ROC is given by

D(t) = inf{8: p(Grpp) < t}.

Note that the dual ROC can be obtained by reflecting C'(s) about the anti-diagonal of the unit
square.
Similarly, the dual ROC corresponding to the optimal test of the null X ~ u versus the alter-

native X ~ @ (again, this test is viewed as purely an analytical device) is given by

D(t) == inf{B: u(Gyy 5) < 1},

and is traced out by the curve {(,u(GQ /@),B) : 0 < 3 < 1}. Again, this curve may be obtained by

reflecting C/(s) about the anti-diagonal of the unit square.

Proof of Proposition 1.

For any pair of indices 4,4’, we wish to show 3; < §; iff 7; < ~;. Note that
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v =1 —pFDR(Gpg,) =

T(Gg) [1 1—7 P(Ghp,) ()
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So v <y iff C(1—By)/(1— By) > C(1—p;)/(1 — B;), which is true by assumption. O
Proof of Proposition 2:

To establish the first statement, that Gpg is the Q-GQ set at level 3, we must establish (a)



Q(Gpp) > 3 and (b) if Q(G) > S, then u(G) > u(Gpps). To establish (a), observe

Q(Gpp) = Tu(Gpp) + (1 —=m)P(Gpg) > mu(Gpg) + (1 —m)3 = 5.

To establish (b), assume it does not hold. That is, assume there exists G such that Q(G) > § and

#(G) < p(Gpg). Then

Q@) —7u(G) _ §—7u(G) _ §—7u(Grp)

1—m - 1—m - 1—m

P(G) = =0,

which contradicts the definition of Gpg as the P-GQ set at level j3.

To prove the second half of the proposition, consider 0 < 3 < Bmax. Consider the function
(") == mu(Gpy)+ (1 —m)P(Gpg). Since, by assumption [C], f has no plateaus, P(Gpg) = 3.
In addition, since p is absolutely continuous with respect to Lebesgue measure, by assumption [B],
1(Gpg) is continuous and nondecreasing. Therefore 7 is continuous and increasing as a function
of 0 < 3’ < 1, taking values between 0 and Bmax. By the intermediate value theorem, there exists
3 such that 3 = 7(8') = mu(Gpg) + (1 —n)3". Furthermore, this # is unique since 7 is increasing.

By the first part of this theorem, we conclude GQ 5= G p . Combining this fact with the equation

TGy ) + (L= m)B =mu(Gpg) + (1 —m)5,

which results from equating two different expressions for 3, we conclude that 3 = /3. Since the
P-GQ sets are unique, it follows that GQ 5= Gpp. O
Proof of Corollary 1

Consider first the case X; € Gp;, which implies B, < Bmax. By Proposition 2 we have that

GPﬁi = GQJ;’Z” By Bayes’ rule,

FM(G%,BZ-)
Q(Go,)
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1-Q(Gprg)  1-Q(Gyz)

vi = Pr(Y=1X¢Gpg)=




w(1—n(Cop))
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If X ¢ Gpy, then 5; =1, and Gpg, = Gp,; is a subset of GQ G- Thus

T(1-wGyz))  m(l-pGyps)) (1 —pwGg3,))
1-5  1-Q(Ggp) 1 (mu(Ggyz)+ 1 —m)P(Gy3))
_ 77(1 - M(GQ@)) 1
(1= Gy 3.))

which is the value of 7; in this case. [J

Proof of Proposition 3:

Pr(Z <t[X ~Q) = Pr(p(G(X)) <t[X ~Q)=Q{uG(X)) <t})

= Q(GQ,D(t)) = D(t)

Thus D(t) = 7Pr(Z <t|X ~p)+ (1 —m)Pr(Z < t|X ~ P). Now

Pr(Z <t[X ~p) = Pr(u(G(X)) <tX ~p) =p({u(G(X)) <t})

Similarly,

Pr(Z<tX~P) = Pr(u(G(X)) <X ~P) = P({n(G(X)) < 1})

The result follows by differentiating D(t). O



