APPENDIX A

SMO ALGORITHM

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly solve the SVM QP problem without
any extra matrix storage and without using time-consuming numerical QP optimization steps [1]. SMO decomposes
the overall QP problem into the smallest possible optimization problem. This sub-problem can be solved analytically.
An appropriate variant of SMO to solve (7) is detailed below following [2].

Given a, the algorithm optimizes two variables of o with other variables fixed. Two variables to be optimized
should be chosen from {«; | ¢ € I_} or {¢y; | ¢ € I }. Otherwise, the variables which we are trying to optimize cannot
change since the other variables are fixed and due to the constraints ) ,.; a; =1and ), 1, @ = 1. Suppose that
we choose two variables from {«; | 7 € I, }. For notational convenience, assume the two variables are «; and as
and 1,2 € I,. Then, (7) reduces to
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We discard D, which is independent of «; and s, and eliminate a; to obtain

min % (A —a2)? Q11 + g (A — a2) Qra (12)
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Since the objective function is quadratic and convex in one variable g, we can take the derivative of (12) and set

it equal to zero. Then,
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Let a* denote the value before the optimization step. If we define O; := Q107 + Q205 + d; = Z;L:1 a; Qi — ¢,
then (13) can be expressed as the update equation
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If oy is outside [0, A], we truncate it so that it is within [0, A]. After finding s, oy can be recovered from a; = A—ax.

The optimality condition and the choice of a;’s can be found in the following way. There are three cases when
choosing «; and as : (a) Both are zero, (b) One is positive and the other is zero, (c) Both are positive.
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Case (a): 1 and ay are not updated because of nonnegativity constraints.

Case (b): Assume that ay is zero. From (14), o is updated only when O; — Oz > 0 and so is o

Case (c): a3 and ay are updated only when O; # Os.
The objective value will strictly decrease if and only if o; and s are updated after optimization step. Therefore,
the optimal solution should satisfy

OZ‘ > Oj for a; =0, a5 > 0 (15)
0, = Oj for Qg O > 0. (16)

The convergence to the global minimum is thus guaranteed by choosing two «;’s which do not satisfy (15) or (16)
for each optimization step. The optimization procedure for two variables from {«; € I_} is similar.
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Note that for any given i, (ks (X;,X;)),_,; are independent and bounded by M =1/ ( 27rcr)d. For random vectors
Z~ fi(x) and W ~ f_ (x), h(X;) in (6) can be expressed as

h(X;)=E[k, (Z,X;) | X;] = 7E [k, (W, X,) | X;].
Since X; ~ fi (x) fori € Iy and X; ~ f_ (x) for ¢ € I_, it can be easily shown that
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Since we are conditioning on F, the first term in (17) is
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where the last inequality holds by Hoeffding’s inequality [3]. The second term in (17) is
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In a similar way, it can be shown that for i € I_,
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Then,
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APPENDIX C
PROOF OF THEOREM 2
Define u = (ug,...,u,) such that u; = 1/ny for i € I; and u; = 1/n_ for i € I_. By the similar argument for the

convergence of MISE of kernel density estimate [4], it can be shown, using a multivariate Taylor series, that

MISE (u;ng,n_) =E[ISE (u)]

= /Var (c@ (x; u)) + bias> (c/l:, (x; u)) dx
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where R (f) = [ f 2 (x) dx and 'H s represent the Hessian matrix of f. Therefore, ISF (u) converges to 0 in probability

d

since 0 — 0 nyo? — oo and nyo? — 0o as n — oo. Furthermore,
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From the consistency of /.SE (u) and the oracle inequality stated in Theorem 1, ISE (&) converges to 0 in probability.

APPENDIX D

PROOF OF THEOREM 3
First note that in the previous analyses we treat N, N_ and v as deterministic variables but now we turn to the
case where these variables are random. Thus, some of the previous results should be restated considering this.
Lemma 2: v converges to v* with probability 1.
Proof: Note that N; and N_ are binomial random variables with (n,p) and (n,q) where ¢ = 1 — p. From the
Hoeffding’s inequality, we know that for Ve > 0
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Then, for any € > 0
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Since Y07 | P, () < oo for all € > 0, v converges to v* with probability 1. O

Lemma 3: Suppose the assumptions in Theorem 3 are satisfied. For any ¢’ > 0, P{ISE (&) > infaqea ISE (o) + €'}
converges to 0.
Proof: We need to restate Theorem 1 as follows. For any ¢ > 0,

In (2n/9)
¢[min (N4, N_

In (2n/4) In (2n/4)
\/c[min (ny,n_) —1] SRR \/c[max (ny,n_)—1]

/(14 27*)4 and an event D = {N+ > N_ > w,w < 27*}. Then,

N . _ _ <
P{ISE(a)>&IéfAISE(a)+4\/ )_1]‘N+ N4, N_ n_}_5

since

Let us define ¢ =2 ( 27m)2d

P {ISE (@) > Jnf ISE () + 4\/ 21n (2n/0) }

¢/ [min (np,n (1 —p)) — 1]

210 (2n/4) ’D}'

< P{D°}+P{D}. P{ISE (@) > inf ISE(a) + 4\/c’[min (np,n (1 —p)) — 1]

The first term converges to 0 from the strong law of large numbers and Lemma 2. The second term becomes
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For any ¢ > 0, we can make 4\/ C,[minz(:;fi?l/f)p))_l] smaller than €’ as n — oo, provided that In n/no? — 0 as n — 0.

Therefore, P {ISE (&) > infaea ISE (o) + €'} converges to 0. O
Lemma 4: Suppose the assumptions in Theorem 3 are satisfied. Then, ISE (u) converges to 0 in probability.

Proof: Define an event D = {N+ > %,N, > @,7 < 27*}. For any € > 0,

P {ISE (u) > ¢} <P{D°} + P{ISE (u) > ¢, D}.



The first term converges to 0 from the strong law of large numbers and Lemma 2. Let define a set S = {(ny,n_) | ny >
2 on_ > M7 Z—; < 2v*}. Then,
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where the second to the last step, we used MISFE (u;n4,n_) formula in explained in Appendix C and the fact that
for (ny,n_) €S,

1 n 1 < 2 n 2 1 2 n 2
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Therefore, ISE (u) converges to 0 since ¢ — 0 and no? — oo as n — oo. O
Now let’s prove Theorem 3. From Theorem 3 in [5], it suffices to show that
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in probability. Note that
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For the first term in (18), P{ISE (&) > ¢} converges to 0 in probability since
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and from Lemma 3 and 4, . The second term in (18) also converges to 0 in probability from Lemma 2. This proves
the theorem.
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