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Semi-Parametric Differential Expression
Analysis via Partial Mixture Estimation∗

David Rossell, Rudy Guerra, and Clayton Scott

Abstract

We develop an approach for microarray differential expression analysis, i.e. identifying genes
whose expression levels differ between two or more groups. Current approaches to inference rely
either on full parametric assumptions or on permutation-based techniques for sampling under the
null distribution. In some situations, however, a full parametric model cannot be justified, or the
sample size per group is too small for permutation methods to be valid.

We propose a semi-parametric framework based on partial mixture estimation which only requires
a parametric assumption for the null (equally expressed) distribution and can handle small sample
sizes where permutation methods break down. We develop two novel improvements of Scott’s
minimum integrated square error criterion for partial mixture estimation [Scott, 2004a,b]. As a
side benefit, we obtain interpretable and closed-form estimates for the proportion of EE genes.
Pseudo-Bayesian and frequentist procedures for controlling the false discovery rate are given.
Results from simulations and real datasets indicate that our approach can provide substantial ad-
vantages for small sample sizes over the SAM method of Tusher et al. [2001], the empirical Bayes
procedure of Efron and Tibshirani [2002], the mixture of normals of Pan et al. [2003] and a t-test
with p-value adjustment [Dudoit et al., 2003] to control the FDR [Benjamini and Hochberg, 1995].
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1 INTRODUCTION
The development of high-throughput biotechnology, such as microarrays, has made
possible the collection of large amounts of genomic data. In turn, we face new chal-
lenges in applying existing statistical methods or developing novel ones to properly
analyze this new generation of biological data. One problem in bioinformatics that
has attracted considerable interest is gene differential expression analysis, i.e., the
comparison of gene expression between groups defined by treatments or biological
conditions. For example, the apo-AI gene experiment (Callow et al., 2000) dis-
cussed in Section 5 compares expression levels between apo-AI knock out mice
and inbred control mice. The problem of biological interest is to determine which
genes are differentially expressed (DE) between these two groups and which are
equally expressed (EE). Statistically, the goal is to detect as many DE genes as pos-
sible while not having too many false positive genes, i.e., genes declared DE that
are, in fact, EE.

More formally, suppose that expression levels for n genes are measured and nor-
malized to account for systematic biases (Dudoit et al., 2002b). To discriminate EE
and DE genes we compute a test statistic X for each gene; for example, a t-statistic
comparing mean log-ratios (of red-to-green intensity measurements) between two
groups. Other statistics are discussed by Efron et al. (2001), Efron and Tibshirani
(2002), Tusher et al. (2001) and Smyth (2004).

The n observed values of the statistic x1, . . . ,xn may be viewed as identically
distributed (and possibly dependent) realizations of a common marginal mixture
density

f(x) = wf0(x) + (1− w)f1(x), x ∈ Sx ⊆ <p, (1.1)

where w is the proportion of EE genes, and f0 and f1 are the densities of the test
statistic for EE and DE genes, respectively.

The statistical challenge is to estimate some or all of the components of this
mixture (or functions thereof) in order to draw inferences about the genes under
consideration. Dudoit et al. (2002b) review some approaches based on comput-
ing t-tests for each gene and adjusting the raw p-values for multiple comparisons.
Tusher et al. (2001) introduced the significance analysis of microarrays (SAM),
which obtains raw p-values through permutations and uses them to compute (local)
q-values, which can be used to control the FDR. Efron and Tibshirani (2002) and
Efron (2004) proposed a non-parametric empirical Bayes approach and Pan et al.
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(2003) proposed modeling f0 and f via mixtures of normals. Newton et al. (2001),
Kendziorski et al. (2003), Newton and Kendziorski (2003) and Newton et al. (2004)
introduce parametric empirical Bayes hierarchical models in which the parameters
arise from a mixture of distributions. Do et al. (2005) formulate a fully Bayesian
non-parametric mixture model based on permutations that provides posterior proba-
bilities. Storey (2007) developed an extension of the Neyman-Pearson theory of hy-
pothesis testing and proposed the Optimal Discovery Procedure, a method that has
some optimality properties although it requires estimating some unknown quantities
from the data.

All of the methods mentioned above either make full distributional assumptions
(Newton et al., 2001; Kendziorski et al., 2003; Newton and Kendziorski, 2003;
Newton et al., 2004) or rely on resampling methods to sample under f0 (Efron and
Tibshirani, 2002; Efron, 2004; Pan et al., 2003; Do et al., 2005; Storey, 2007). In
some situations, however, these approaches can be difficult to justify. Models for
the DE distribution f1 may be difficult to estimate when very few genes are DE.
Permutation methods, on the other hand, need more than a handful of microarrays
per group in order to avoid a coarse representation of the test statistic under the
null hypothesis. With two groups of three subjects each there are only 10 distinct
permutations of the microarrays. Yet sample size is often limited by cost, time, or
subject availability, and hence methods are needed to analyze differential expression
when sample sizes are small and full parametric models are not appropriate.

In this paper we propose a semi-parametric approach that imposes no structure
on f1 and is especially useful for small sample sizes. It builds on the work of partial
mixture estimation by Scott (2004a,b), which is the problem of estimatingw and the
parameters defining f0 in (1.1), given a sample from the mixture f . Recently, this
approach was used in wavelet applications to denoise signals while relaxing some
of the distributional assumptions that are typically made by other methods (Scott,
2006). We develop two improved variants of Scott’s original L2E approach to par-
tial mixture estimation which we call weighted L2E (WL2E) and fixed-component
WL2E, respectively. The latter variant provides closed-form and interpretable esti-
mates of the proportion of EE genes.

Our approach requires making only two assumptions. First, we assume a para-
metric form for f0. Second, we assume that the test statistics are identically dis-
tributed across all EE genes (possibly with dependence). Specifying a parametric
family for f0 is often not unreasonable because EE data are typically much more
abundant and better behaved than DE data. For some variants of our approach there
is the third implicit assumption that most genes are EE. This is not the case for our
fixed-component variant of WL2E. Obtaining identically distributed statistics can
be achieved via appropriate data pre-processing or normalization procedures, as we
illustrate with real data in Section 5. For more detail on normalization procedures
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see Dudoit et al. (2002b).
In the next section we describe the L2E, WL2E and fixed-component WL2E

criteria for partial mixture estimation. In Section 3, we describe the application
of these algorithms to differential expression analysis. To adjust for multiple test-
ing we present frequentist and Bayesian methods that control the false discovery
rate (FDR) at a desired level. In Section 4 we show with simulated data and two
real datasets that our method outperforms several existing approaches. A discus-
sion is offered in the concluding section. We provide R code for our methods
at http://rosselldavid.googlepages.com. Throughout this work we
used R version 2.6.1.

2 PARTIAL MIXTURE ESTIMATION
In general, any test statistic that we choose to test for differential expression can be
modeled as a mixture of the form presented in (1.1). Suppose that we are willing to
assume some parametric form for f0, but we do not want to impose any restrictions
on f1. In many situations some parametric choices come as a natural assumption;
for example, the marginal distribution of many statistics is approximately normal
as the number of measurements increases. Also note that if we expect most of the
genes to be EE, we can assess the parametric assumption. For example, we can
assess normality graphically with a qq-normal plot.

Partial mixture estimation is the problem of estimating w and f0 only, without
estimating the remaining components of the mixture. In Section 2.1 we review the
original L2E criterion (Scott, 2004a,b) for partial mixture estimation. In Section 2.2
we develop a new criterion to obtain partial mixture fits, WL2E, that improves some
shortcomings of L2E. In Section 2.3 we consider the possibility of treating f0 as
known and only estimating w, and we discuss how it can further improve inference.
We distinguish partial mixture estimation from standard robust estimation (Hampel
et al., 1986; Huber, 1981), which seeks to estimate f0 but not w. Robust estimators
such as M-estimators typically perform well when the DE component f1 is well
separated from f0. This is often not the case in practice, however, and simultane-
ously estimating w can improve the estimate of f0. Furthermore, most procedures
to control the FDR (frequentist or Bayesian) require an estimate of w ( Section
3). Over-estimating w can result in an overly conservative procedure leading to too
many false-negatives, while under-estimation can result in too many false-positives.
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Figure 1: L2E fit example. (a): f = .6N(0, 1) + .2N(−4, 1) + .2N(4, 1). L2E
estimate: .68N(0.02, 1.20). (b) f = .6N(0, 1) + .2N(−3, 1) + .2N(3, 1). L2E es-
timate: .97N(.03, 1.97). WL2E estimate: .74N(0.01, 1.25). The vertical segments
on the x axis indicate the generated test statistic values

2.1 L2E CRITERION
Before formally defining the approach we illustrate the idea with an example that
mimics a differential expression setup. We simulated n = 1000 test statistic values,
60% corresponding to EE genes that follow a N(0, 1) distribution, 20% to under-
expressed genes following a N(−4, 1), and 20% to over-expressed genes following
a N(4, 1). This represents an ideal scenario where there is a clear separation be-
tween EE and DE genes. As shown in Figure 1(a) the L2E fit provides a local
estimate of the overall distribution around 0, thereby effectively estimating the dis-
tribution of the EE genes. The estimate ŵ = 0.68 indicates that the L2E fit finds
32% of the data as not arising from f0. The true percentage of DE genes is 40%.
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To emphasize that as a parametric distribution f 0is indexed by a (multi-dimensional)
parameter, θ, we denote it as fθ. Scott (2001) proposed the L2E criterion for para-
metric density estimation, finding that it is asymptotically efficient and robust to
departures from the assumed model and to the presence of outliers. Note that for
partial mixture estimation purposes the sample size is the number of genes, and
hence asymptotic considerations become relevant. Scott (2004a,b) used the L2E
criterion to estimate f about its central mass with a partial mixture component wfθ.
The approach seeks to minimize the integrated squared difference or L2 distance
between the true density f and its local approximation wfθ:

∫
Sx

(wfθ(x)− f(x))2 dx = w2

∫
Sx

f 2
θ(x)dx− 2w

∫
Sx

fθ(x)f(x)dx + C, (2.1)

where C is a constant free of w and θ and hence can be ignored in the optimization.
If f(·) belongs to the assumed parametric family, i.e. f(x) = fθ0(x) ∀x ∈ Sx for
some θ0, then (2.1) achieves it minimum at ŵ = 1, θ̂ = θ0.

In differential expression analysis a common assumption is that most genes are
EE. This assumption corresponds to fθ being the largest component of the mixture
model. By requiring the estimated component to integrate to w instead of 1, fθ
will tend to approximate the largest component of f instead of blurring all mixture
components together. Of course, the approximation will depend on the degree of
separation between the components. The WL2E method developed in Section 2.2
is less dependent on the components being well-separated. The fixed-component
WL2E from Section 2.3 treats fθ as fixed and estimates only w, hence being robust
by design to the degree of separation.

The first integral in (2.1) has a closed form for several common distributions, in-
cluding the multivariate normal and t (Wand and Jones, 1995). The second integral
is the expected value of fθ(X) when X arises from the mixture density in (1.1), and
it can be approximated by its corresponding sample average since the mathematical
form of fθ is assumed known.

The L2E partial mixture estimate is thus obtained by minimizing

w2

∫
fθ(x)2dx− 2w

n

n∑
i=1

fθ(xi) (2.2)

with respect to w and θ. It is important to note that the criterion in (2.2) does not
require the genes to be independent. When fθ is multivariate normal with mean µ
and covariance Σ, the criterion simplifies to (Wand and Jones, 1995)

w2

2dπd/2|Σ|1/2
− 2w

n

n∑
i=1

f(µ,Σ)(xi). (2.3)
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To find θ̂ = (µ̂, Σ̂) and ŵ that minimize this function we use the R function nlmin
for general nonlinear minimization. In general, (2.2) may have local optima. In our
experience with univariate test statistics we have always been able to avoid local
optima by initializing w = 1 and θ to the maximum likelihood estimate, although
multivariate statistics may require more care.

The normality assumption may be replaced with other parametric models. For
example, one could model fθ with a multivariate t distribution and estimate its
location, scale and degrees of freedom from the data. We explored the t model but
because of the relatively heavier tails, fθ tended to capture more DE genes and thus
lead to a higher false-negative rate. However, we did find the t model useful when
the value of θ is specified in the fixed-component WL2E (Section 2.3).

2.2 WEIGHTED L2E CRITERION
As seen in the example of Figure 1, when the EE genes provide values of the test
statistic well separated from those of the DE genes, the local estimate obtained via
the L2E criterion can capture the behavior of the EE genes quite well. However,
when the separation is not so clear problems can arise. To illustrate this point we
generated n = 1000 test statistic values, 60% representing EE genes from aN(0, 1),
20% under-expressed from aN(−3, 1) and 20% over-expressed from aN(3, 1). As
shown in Figure 1(b), the L2E estimate covers most of the support of f and thus
fails to capture its central mass around zero. L2E estimates the null proportion w as
ŵ = 0.97, while the true value is w = 0.6.

To overcome this problem, we propose a new criterion. Suppose θ̂ is the L2E
estimate minimizing (2.2). We now seek to minimize a weighted L2 distance∫

fθ̂(x) (wfθ(x)− f(x))2 dx. (2.4)

The weighting factor fθ̂(x) assumes the initial L2E estimate was “reasonably close,”
and places more emphasis on correctly learning the density in the region with the
highest probability density. This process can then be repeated, using the updated
estimate to specify weighting for a new fit, until the process converges to a fixed
point. In our experience convergence is usually achieved within 4 or 5 iterations.
We call this criterion weighted L2E (WL2E) for partial mixture estimation.

As in Section 2.1, we may expand the integrated weighted squared error as

w2

∫
<n

fθ̂(x)f 2
θ(x)dx− 2w

∫
<n

fθ̂(x)fθ(x)f(x)dx + C (2.5)

As before, the first term in (2.5) has a closed form expression for some distributions,
in particular for the normal family, while the second term can be approximated
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by a sample mean. Under the assumption of normality, the WL2E partial mixture
estimating criterion is to minimize

w2
exp

{
− µ̂′Σ̂−1µ̂

2
− µ′Σ−1µ+ 1

2
m′V −1m

}
(2π)p |Σ̂| 12 |Σ||V | 12

− 2w

n

n∑
i=1

fµ̂,Σ̂(xi)fµ,Σ(xi) (2.6)

where minimization is with respect to (w,µ,Σ), where m =
(

Σ̂−1µ̂+ 2Σ−1µ
)

and V = Σ̂−1 + 2Σ−1.
Returning to the example in Figure 1(b), using WL2E yields (µ̂, σ̂, ŵ) = (0.01, 1.30, 0.76),

which provides a better local approximation to the true value (µ, σ, w) = (0, 1, 0.6)
than the initial L2E estimates (µ̂, σ̂, ŵ) = (0.03, 1.97, 0.97). Now we can re-
peat the process by using the current weighted estimates to weight again and ob-
tain updated estimates. We repeat this process until the change in the parame-
ter estimates is smaller than 1% in square norm. We obtain the final estimate of
(µ̂, σ̂, ŵ) = (0.01, 1.25, 0.74).

2.3 FIXED-COMPONENT WL2E
In some situations it is reasonable to assume that θ is (practically) known, and
therefore only w needs to be estimated. For example, if xi is a two-sample t-test
statistic or a moderated t-test statistic (Smyth, 2004) it may be reasonable to assume
that fθ is given by a Student’s t distribution with known degrees of freedom ν.

In the presence of a large number of DE genes (i.e. outliers) L2E or WL2E may
result in inflated estimates of the variance and of w. See Figures 1(a) and (b) as
an example. It could also happen that EE genes are regarded as outliers and hence
that the variance and w are under-estimated. Fixing fθ protects against both these
possibilities.

In this section we derive simple closed-form expressions to estimate w via
WL2E when fixing fθ, including the important cases of the multivariate normal
and multivariate t distributions. We also obtained estimators via non-weighted L2E,
but they seemed to be slightly outperformed by their WL2E counterparts, so we do
not describe them here. First consider the normal case. Fixing µ̂ = µ and Σ̂ = Σ
in (2.6), we have a quadratic function in w with a minimum (the second derivative
is positive) at

ŵ = 3p/2
1

n

n∑
i=1

exp{−(xi − µ)′Σ−1(xi − µ)}. (2.7)
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That is, ŵ is equal to the average squared normal density function multiplied by
a constant that accounts for the dimensionality of the problem. In our example of
Figure 1(b), (2.7) gives ŵ = 0.62, which is much closer to the true value of w = 0.6
than the estimate ŵ = 0.76 obtained in Section 2.2.

Now consider the case in which fθ is assumed to be a multivariate twith location
µ, scale Σ and known degrees of freedom ν. Simple integration allows one to obtain
an expression analogous to (2.6), i.e. quadratic in w with positive second derivative.
Taking the derivative with respect tow and setting equal to zero gives the minimum:

ŵ =
Γ(ν/2)

Γ(ν+p
2

)

Γ
(

3ν+3p
2

)
Γ
(

3ν+2p
2

) 1

n

n∑
i=1

(
1 +

1

ν
(xi − µ)′Σ−1(xi − µ)

)−(ν+p)

. (2.8)

In Sections 4 and 5 below we apply this result with µ = 0 and Σ = I. Again,
ŵ is equal to the average squared null density times a constant adjusting for the
dimensionality of the problem. In fact, it is straightforward to show that for any
choice of null distribution, fθ, the estimator for w takes the form

ŵ =
Ef̂ (fθ(X)q)

Efθ
(fθ(X)q)

, (2.9)

where q is a positive integer, Eg(h(X)) denotes the expectation of h(X) with X

distributed according to the density g, and f̂ is the empirical distribution of X.
Using the L2E criterion corresponds to q = 1, whereas the WL2E criterion used
in (2.7) and (2.8) corresponds to q = 2. Having closed-form and interpretable
expressions to estimate the proportion of equally expressed genes is appealing and
useful (see, e.g., Pounds and Morris (2003) or Langaas et al. (2005)). Knowledge
about w is important as most frequentist and empirical Bayes procedures use an
estimate of w to control the FDR at a desired level, whereas Bayesian procedures
find posterior probabilities of differential expression by marginalizing with respect
to the posterior distribution of w (Section 3).

3 DIFFERENTIAL EXPRESSION ANALYSIS
The goal of differential expression analysis is to detect as many DE genes as possi-
ble while controlling the number of false positives. We adopt the false discovery rate
(FDR) as a measure of false-positives. The FDR is defined in a frequentist sense as
the expected proportion of genes labeled as DE that are actually EE, setting FDR=0
when no genes are called as DE. The expectation is defined with respect to repeated
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sampling of the data. The Bayesian FDR is also defined as the expected value of
this same proportion, but the expectation is taken with respect to the posterior dis-
tribution of the parameters in the model (Müller et al., 2007). Algorithm 1 details
the use of partial mixture estimation for differential expression analysis.

Algorithm 1. Partial mixture estimation for differential expression analysis

1. Compute a test statistic xi for all genes i = 1, . . . , n, e.g., difference between 2
group means or moderated t-test statistics (Smyth, 2004).

2. Fit a partial mixture by WL2E to obtain ŵ and fθ̂(x). Alternatively, treat fθ as
known and estimate only w as in Section 2.3.

3. Classify each gene as DE or EE at some specified FDR level.

There are several variants of the algorithm, depending on the choices made at
each step.

Remark 1: In step 1 the approach can work with any number of sensibly chosen
test statistics. However, it’s very important that for EE genes the test statistic (ap-
proximately) follow the parametric form fθ. As already mentioned, independence
is not assumed.

Remark 2: In step 2, estimating θ can be more flexible than treating it as fixed,
but it can make the procedure less resistant to outliers (see results in Sections 4 and
5).

Remark 3: Step 3 offers a choice between Bayesian and frequentist approaches.
An empirical Bayes approach requires estimating the overall density f . We have
found kernel density estimators to perform well, as long as the tails of fθ are not
too thick. If fθ has thick tails, then genes with extreme test statistic values will
have a large ratio, fθ̂(xi)/f̂(xi), so that their probability of DE will be small. In
our application when fθ is normal we use the usual normal kernels as implemented
in the R function density (default bandwidth); when fθ is a Student’s t we use a
Cauchy kernel as implemented in the R function akj from the quantreg library
version 4.10 (Koenker (2007)). Under the Bayesian FDR genes are declared as
DE as explained in Section 3.1. If frequentist control of the FDR is desired we
compute raw p-values for the observed xi using fθ̂ as the null distribution. Genes
are declared as DE based on p-values adjusted by some method for controlling the
FDR.

In the remainder of this section we elaborate on both Bayesian and frequentist
FDR determination.
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3.1 BAYESIAN CONTROL OF THE FDR
To estimate the Bayes FDR we use an empirical Bayes approach. Let vi = 1 −
w fθ(xi)

f(xi)
be the posterior probability that gene i is differentially expressed conditional

on w, θ and f (and the data). Both L2E and WL2E partial mixture fits provide
estimates for w and θ, while f is typically easy to estimate from the observed
test statistics using standard methods like kernel density estimation or a mixture of
normals. Plugging in these estimates provides the pseudo-posterior probabilities v̂i.
We use the term pseudo to emphasize the difference with a fully Bayesian approach,
which would compute vi by averaging with respect to the posterior distribution of
(w,θ, f).

Let di be an indicator for declaring gene i as DE: di = 1 for DE and di = 0 for
EE. We compute the Bayesian FDR (Genovese and Wasserman (2002)), denoted
F̃DR as:

F̃DR =

∑n
i=1 di(1− v̂i)∑n

i=1 di
. (3.1)

The denominator in (3.1) is just the number of genes declared DE, and the nu-
merator is the posterior expected number of false positives. Efron et al. (2001)
proposed declaring DE those genes with v̂i greater than a certain threshold, di =
I(v̂i > t), but they leave the choice of t to the user. Müller et al. (2004) studied
this problem from a decision theoretic point of view and found that to minimize the
Bayesian false negative rate while controling for F̃DR one must choose the small-
est t such that F̃DR ≤ α. This threshold is easy to find in practice since F̃DR is
constant between all order statistics v̂(i) and v̂(i+1), and it is valid under any kind of
dependence structure.

Of course, this method of controlling the FDR is dependent on the assumed
model being true. Alternatively, it is possible to find the optimal threshold non-
parametrically by permutations under the null hypothesis. Storey (2007) uses a
permutation method to find the optimal threshold for his ODP test statistic. The
validity of such a permutation-based approach is questionable when the sample size
is very small, which is not uncommon in microarray studies. Since the focus of this
paper is to provide an approach suitable when permutation-based procedures are
not adequate, we do not pursue this issue farther.

3.2 FREQUENTIST CONTROL OF THE FDR
If the test statistic is 1-dimensional one can compute the raw p-value for gene i as
the tail probability

p− value =

∫
z>|xi−µ̂|

fθ̂(z)dz.
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Multivariate xi can often be reduced to a 1-dimensional test statistic through
a function g(xi). In some instances the integral can be computed either in closed
form or via numerical approximation. The simulations in Section 4 required eval-
uating the tails of normal distributions, which was accomplished via the R func-
tion pt. More generally, the integral can be approximated by resampled values
z1 = g(x∗1), . . . , zB = g(x∗B), where x∗j are independent draws from fθ̂, and count-
ing the proportion of zj that are greater than xi. B should be large enough to obtain
a reliable estimate. With modern computing power it is fairly common to perform
at least 10,000 draws.

To control for an overall FDR≤ α, in our experiments we employ a modifica-
tion of the p-value adjustment of Benjamini and Hochberg (1995) (BH). Benjamini
and Hochberg (1995) proved that using α̃ = α/w instead of α as the desired FDR
controls the FDR below α. We simply plug in ŵ for w. Of course, when the pro-
portion of EE genes is large (w ≈ 1) it becomes equivalent to the original BH
criterion. Even though our L2E approaches make no assumptions about the depen-
dency among genes, the FDR method for p-value adjustment does assume either
independence or some form of positive association.

4 SIMULATION STUDY
We compare via simulation the performance of our partial mixture estimation ap-
proach to that of four popular methods in a two group setup. We control the FDR
level at 0.05. To ensure reproducibility of our findings, the R code used for the
simulation is available at http://rosselldavid.googlepages.com.

4.1 COMPETING METHODS
In general, the WL2E criterion performed better than the L2E criterion, so we restrict
attention to the former. We consider three variants of our approach defined by the
choices taken in steps 1-3 of Algorithm 1.

(a) WL2E-PP. Let the test statistic xi be the difference between the two group
means, and fit a partial normal mixture (fθ= normal) via WL2E. Obtain a list
of DE genes using pseudo-posterior (PP) probabilities (Section 3.1).

(b) WL2E-BH. Same as WL2E, but obtain the list of DE genes adjusting p-values
via our modified BH whereby α̃ = α/ŵ (Section 3.2).

(c) WL2E-EBayes. Let the test statistic xi be the moderated t-test statistic (Smyth,
2004) as implemented in the R functions lmFit and eBayes in the limma
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package version 2.1 (Smyth, 2005). This moderated t-statistic is a hybrid be-
tween the classical frequentist t-statistic construction and a Bayesian version.
In place of the standard sample variance used in the denominator the mod-
erated t has a posterior variance and there are added degrees of freedom to
reflect borrowed information from other genes. Fit a fixed-component partial
tmixture (fθ = standard twith ν degrees of freedom) via WL2E (2.8), and de-
clare genes as DE based on posterior probabilities (Section 3.1). The function
eBayes from limma estimates the degrees of freedom, ν̂, In simulations ν̂
was sometimes estimated as ν̂ = ∞, which decreased slightly the quality of
our fit. In practice we restricted ν̂ to be ≤ 25.

Choosing the non-standardized difference between group means as the test statis-
tic xi (WL2E-PP and WL2E-BH) is appropriate in situations where, after normal-
ization, the variability of xi is roughly constant across all genes i = 1, . . . , n. See
Section 5 for an illustration on how to satisfy this assumption via normalization.
When this assumption cannot be met it is more sensible to use standardized differ-
ences between group means, e.g. using moderated t-statistics as in WL2E-EBayes.
Smyth (2004) showed that under the null hypothesis of EE with normally dis-
tributed data, the moderated t-test statistic follows a Student’s t distribution with
augmented degrees of freedom. This is the motivation for fitting a partial t compo-
nent under WL2E-EBayes. The naming WL2E-EBayes arises from the similarities
between this variant and related empirical Bayes methods (Efron and Tibshirani,
2002; Smyth, 2004).

The four competing methods are (a) significance analysis of microarrays (SAM,
Tusher et al. (2001)); (b) empirical Bayes (EBayes, Efron and Tibshirani (2002)),
(c) mixture of normals (MixNor, Pan et al. (2003)) and (d) a simple two-sample test
with BH p-value adjustment (t-test BH).

(a) SAM. Based on a standard t-test statistic with a modified denominator in that
there is an offset by a constant added to the standard deviation. We used the
implementation in the R function sam from the library siggenes, version
1.13.2 (Schwender, 2007). Raw p-values are computed by repeatedly permut-
ing group labels to obtain the null distribution of the t statistic. The p-values
are then used to compute q-values with the function sam. The q-value for
a given gene is defined as the pFDR (a modified definition of the FDR) that
would be expected if that gene were declared DE along with all genes having
a more extreme test statistic value (Storey, 2003). Declare DE all genes with
a q-value ≤0.05.

(b) EBayes. Based on a standard t-test statistic with a modified denominator in that
there is an offset by a constant added to the standard deviation. We used the
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implementation in the R function ebam from the library siggenes. Esti-
mate f0/f and w based group label permutations (function ebam). Compute
pseudo-posterior probabilities of DE to control the FDR (Section 3.1).

(c) MixNor. Here we use the same t-statistic as with the above EBayes approach.
Estimate w using the function ebam. Estimate f by fitting a normal mixture
with 3 components to the observed test statistics. Parameters are estimated
with the function em in the R library Mclust, version 3.1.2 (Fraley and
Raftery, 2003, 2006). To estimate f0 permute group labels and fit a single
normal component. Compute pseudo-posterior probabilities of DE to control
the FDR (Section 3.1).

(d) ttest BH. Compute the Welch t-test statistic with approximately normal data
(see Section 4.2) and the Wilcoxon test statistic otherwise. Here we attempt
to reproduce what a data analyst might do if they could perfectly assess nor-
mality. Compute raw p-values using the asymptotic normal distribution and
adjust them via regular BH.

Three of the four alternatives, SAM, EBayes and MixNor, use permutations
to compute raw p-values, whereas t-test BH assumes asymptotic normality for all
genes. In contrast, our (three) partial mixture approaches make distributional as-
sumptions only for the EE genes, which in many cases tend to follow a normal
distribution.

4.2 DATA SIMULATION
The simulation focuses on the comparison of n=5000 genes between 2 groups when
we have m=3, 5 or 10 microarrays per group. The equality of group sample sizes
is for convenience; our approach is applicable in non-balanced situations, as well.
We defined two groups as follows. Group 1 was composed entirely of EE genes
with log-ratios following a standard normal distribution centered at zero with stan-
dard deviation σ = 1. Group 2 included a mixture of equally-, over-, and under-
expressed genes according to specified proportions. The differential expression
analysis should detect the over- and under-expressed genes defined in Group 2. To
generate the data we consider three possibilities for the mixture weights (EE, OE,
UE) in Group 2: (0.8,0.1,0.1), (0.95,0.025,0.025) and (0.95,0.04,0.01). Second, we
generate log-ratios for Group 2 according to one of the four scenarios described in
Table 1. In the normal-normal scenario all expression values arise from a normal
distribution: EE genes ∼ N(0,1), OE ∼ N(2,1), UE ∼ N(-2,1). In the normal-
uniform scenario we generate Group 2 either from a normal or a uniform distribu-
tion: EE genes ∼ N(0, 1), OE ∼ U(0, 5), UE ∼ U(−5, 0). We chose the uniform
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EE over-expr. under-expr.
normal-normal N(0, 1) N(2, 1) N(−2, 1)
normal-uniform N(0, 1) U(0, 5) U(−5, 0)
uniform-uniform U(−1, 1) U(0, 4) U(−4, 0)
t-t t5(0, 1) t5(2, 1) t5(−2, 1)

Table 1: Simulation scenarios. Distribution used to generate expression values.

distribution because it represents a strong departure from normality. Other authors
have also used the uniform distribution in their modeling choices (e.g., Parmigiani
et al. (2002)). The last two scenarios do not satisfy the L2E parametric assumption
of normality for fθ. In the uniform-uniform case the EE genes arise from a uniform
distribution and in the t-t case from t-distributions with 5 degrees of freedom. We
chose a t with low degrees of freedom to represent a situation in which there may
be appreciable overlap among the three components of expression.

To focus on distributional assumptions, mixing proportions, and component sep-
arations we consider the independent case only. The 3 choices of mixing propor-
tions and the 4 distributional scenarios give rise to 12 distinct simulation configu-
rations. We also analyzed some additional scenarios in which the three expression
components had substantial overlap [e.g., EE ∼ N(0,1), OE ∼ N(1,1), UE ∼ N(-
1,1)] to explore the signal-to-noise limits. Not surprisingly, in these circumstances
all methods performed (data not shown) very poorly.

Once the expression data were generated, we used all the methods described
in Section 4.1 to obtain a list of DE genes. The FDR was estimated by repeatedly
generating data and computing the average proportion of genes in this list that were
false positives. The power was estimated as the average proportion of DE genes that
were in the list. The number of repetitions was large enough to ensure that the width
of the 95% confidence intervals for the power and FDR estimates was ≤ 0.01. In
most scenarios 100 repetitions were sufficient.

4.3 RESULTS
We now present the findings of the simulation. Figure 2 provides the estimated
power for each of the considered methods. Power is computed as the percentage of
DE genes that were indeed declared to be DE. Figure 3 reports the corresponding
estimated FDR. To reproduce the exact numerical results, see the R code available
at http://rosselldavid.googlepages.com.

In general, we observed that the WL2E-PP and WL2E-BH variants of our partial
mixture algorithm perform very similarly. These two WL2E approaches were the
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Figure 2: Power for simulation study (y-axis) at 3, 5 and 10 observations per group
(x-axis). Lines interpolate the power at 3, 5 and 10 observations. Thin solid:
WL2E-PP. Thick solid: WL2E-BH. Black dashed: WL2E-EBayes. Thin dashed
gray: SAM. Thick dashed gray: MixNor. Thin dotted: EBayes. Thick dotted: t-test
BH. All methods attempting to control FDR below 0.05.
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Figure 3: FDR for simulation study (y-axis) at 3, 5 and 10 observations per group
(x-axis). Lines interpolate the FDR at 3, 5 and 10 observations. Thin solid: WL2E-
PP. Thick solid: WL2E-BH. Black dashed: WL2E-EBayes. Thin dashed gray:
SAM. Thick dashed gray: MixNor. Thin dotted: EBayes. Thick dotted: t-test BH.
All methods attempting to control FDR below 0.05 (thick horizontal line indicates
0.05).
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most powerful under almost all conditions in the normal-normal, normal-uniform
and uniform-uniform cases, with very significant advantages being observed for
group sample sizes of 3 and 5. The fixed-component WL2E-EBayes also performed
quite well. When the sample size was 3 the power of all competitors was virtually
zero in all scenarios, whereas WL2E achieved a power between 12%-19% in the
normal-normal and 45%-55% in the normal-uniform scenario. In all these situa-
tions WL2E controlled the FDR below the desired 5% level, including the uniform-
uniform where the normality assumption is violated. The one exception occurred in
the normal-uniform case where the FDR level sometimes reached 6%.

In the t-t scenario WL2E-BH and WL2E-PP again were the most powerful but
they presented an FDR well above 5%, especially for smaller sample sizes, while
WL2E-EBayes had better FDR levels but still above 5% in some situations. In this
scenario the competing methods often failed to control the FDR as well. A possible
explanation is that the heavier tails of the t-distribution generate observations that
are regarded as outliers by a partial normal component, and are therefore tagged
as arising from DE genes, whereas the fixed-component estimate is more resistant
to these outliers. We conducted additional simulations with m = 100 and found
the FDR below 5%. At this sample size the t test statistic likely follows a stan-
dard normal distribution and the effect of outliers is minimized, corroborating our
explanation.

SAM was the best among the competitors, exceeding their power while control-
ling the FDR below the desired level in most scenarios. MixNor had good power
but its FDR was often well above 5%. EBayes and t-test BH were the only two
methods that presented an FDR below 5% in all scenarios, although the loss in
power was sometimes substantial. For instance, both methods had virtually zero
power to detect any genes for a sample size of 3 observations per group. EBayes
tended to outperform t-test BH in terms of power, especially in the normal-normal
and normal-uniform scenarios.

Power increased sharply with sample size. In the case of our three partial mix-
ture methods this could be due to the clearer separation of the mixing components
in (1.1). For SAM, EBayes and MixNor, another possible explanation. The esti-
mation of the null distribution based on permutations is not accurate when m = 3,
which likely results in a loss of power.

5 CASE STUDIES
We analyzed real data from an apolipoprotein-AI (apoAI) experiment presented by
Callow et al. (2000) and from a leukemia study of Golub et al. (1999). The methods
we used to assess differential expression were the three variants of WL2E, SAM,
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EBayes, MixNor and t-test BH, all set to control the FDR at 0.05. Dudoit et al.
(2003) analyzed the apoAI dataset with several methods and found eight DE genes
out of 6384. The original analysis of Golub’s data was based on a neighbourhood-
based method that found 1000 DE genes out of 6817. The apoAI study represents
the case in which few DE genes are expected, whereas the true proportion of DE
genes in the leukemia study is probably relatively large.

5.1 APOLIPOPROTEIN EXPERIMENT
5.1.1 DESCRIPTION

The apoAI experiment concerned lipid metabolism and atherosclerosis susceptibil-
ity in mice. The experiment compared gene expression between 8 apoAI knock-
out mice and 8 inbred control mice. cDNA was obtained from mRNA by reverse
transcription and hybridized to 6384 probes on a glass microarray. Pooled cDNA
from the 8 control mice was used as a common reference sample for all hybridiza-
tions (knock-out and control). We obtained the data from http://www.stat.
berkeley.edu/users/terry/zarray/Data/ApoA1/rg_a1ko_morph.
txt.

For two groups of 8 observations (microarrays) each there are 12,870 possible
permutations, which should be sufficiently large to accurately estimate the null dis-
tribution, f0. Both SAM and EBayes construct permutation based null distributions.

5.1.2 NORMALIZATION AND MODEL CHECKING

We normalized the gene expression intensities in two steps. First, we corrected for
chip printing effects using the maNormNN method as implemented in the nnNorm
package for the R software (see package documentation for details). For WL2E-PP
and WL2E-BH we use the simple difference between group means as a test statistic,
xi. We do not divide by its estimated standard error as is done in standard t-test as it
is well known that the variance of log-ratios is a function of their magnitude. What
is needed is a gene-specific variance estimate. Therefore, we perform a second step
to ensure that the test statistic is identically distributed across genes as required by
the L2E approach. Denote the sum of the two group means for the ith gene as Ai.
Following the MA-plot idea (Dudoit et al., 2002a) we obtain a lowess local least
squares fit of xi onAi and calculate the residuals ei, i = 1 . . . n. We then regress the
squared residuals e2

i on Ai via lowess. The fitted values at Ai give gene-specific
estimates of the residual variance. The variance-stabilized test statistic is obtained
by dividing ei by the square root of its estimated variance (the fitted value). In both
lowess fits the smoothing parameter is chosen by minimizing the mean absolute
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Figure 4: Assessing partial mixture assumptions for apo AI dataset. (a): mean in-
tensity values (A) are categorized in 10 groups according to the observed quantiles.
(b): normal quantile plot of the test statistic. Horizontal lines contain a proportion
ŵ of the data.

error by cross-validation.
Figure 4(a) displays the distribution of xi for different values of Ai after the

variance stabilization procedure. The mean and variance of xi are roughly constant
for all Ai values, suggesting that the partial mixture assumption of the test statistic
being identically distributed is not unreasonable.

The WL2E fit estimates are µ̂ = 0, σ̂ = 0.13 and ŵ = 0.96. That is, it in-
dicates that 96% of the test statistic values arise from a normal distribution and
the remaining 4% are considered anomalies. The normality of the test statistic is
assessed in Figure 4(b), which presents a qq-normal plot using the weighted L2E
estimates. The horizontal lines contain ŵ =96% of the test statistic values; obser-
vations outside the region delimited by the lines are not considered to arise from
equally expressed genes. The normality assumption is plausible since departure
from normality is observed mainly in the tails.

We also computed the moderated t-test statistics for the WL2E-EBayes variant
of our algorithm (Section 4.1). The augmented degrees of freedom were estimated
as 18, which is slightly higher than the 14 degrees of freedom that the classical t-
test statistic would have. Equation (2.8) provides the estimate ŵ = 0.95. To assess
the distributional assumptions of the moderated t-test statistic we produced plots
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WL2E WL2E WL2E EBayes SAM MixNor t-test-BH
PP BH EBayes

KO over-expr. 35 32 1 0 0 6 0
KO under-expr. 25 27 9 0 0 10 8

Table 2: Gene classification for apo AI dataset. The table describes the number of
genes declared to be over and under-expressed in knock-out mice out of the 6384
genes. PP indicates the use of posterior probabilities; BH is Benjamini-Hochberg
p-value adjustment

analogous to those in Figure 4 and found the assumptions acceptable.

5.1.3 RESULTS

Results of the differential expression analysis are shown in Table 2. WL2E-PP
and WL2E-BH declared a substantially larger number of genes to be DE than the
other methods. WL2E-EBayes finds 10 DE genes, the t-test with Benjamini &
Hochberg’s (BH) p-value adjustment detects 8 genes to be under-expressed in knock-
out mice, whereas both SAM and EBayes did not detect any (for SAM the complete
set of 12870 permutations under the null were used). MixNor, the only competing
method finding some genes to be over-expressed in the knock-out mice, detects 16
DE genes. The t-test BH procedure coincided with the findings of Dudoit et al.
(2003), who claimed significance for the 8 genes with the most extreme values the
two-sample t-test statistic. These 8 genes were also found by all our partial mixture
approaches.

We now assess the performance of all approaches when analyzing a subset of
the data. We randomly select samples 2, 3, 5, 7 and 8 from the KO group and
samples 1, 3, 4, 7 and 8 from the control group. Producing a plot analogous to
Figure 4(b) revealed a stronger departure from normality than that observed for the
full dataset. WL2E-PP and WL2E-BH found 100 and 95 genes, respectively, i.e.
more than for the full dataset, and only about 31% of these genes were found again
when analyzing the full dataset. WL2E-EBayes found 10 genes, 8 of which were
confirmed with the full data, and t-test BH found 2, none of which were confirmed
with the full data. SAM and EBayes did not declare any genes to be DE. MixNor
found 12 DE genes, 33% of which were not found again in the full dataset. These
findings suggest that WL2E-PP, WL2E-BH and t-test BH can lead to an inflated
FDR when the normality assumption is violated, but that WL2E-EBayes is more
robust.
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5.2 LEUKEMIA STUDY
5.2.1 DESCRIPTION

Golub et al. (1999) compared gene expression levels between acute lymphoblas-
tic leukemia (ALL) cells and acute myeloid leukemia (AML). We used the version
of the dataset posted with the original publication at http://www.broad.mit.
edu/cgi-bin/publications/display_pubs.cgi?id=201. The study
used Affymetrix HuGeneFL arrays that measured mRNA expression for 7129 genes,
and had 27 ALL and 11 AML samples. The original dataset also contains a variable
indicating, for each array, which genes had enough mRNA to be considered to be
present. In our analysis we only included the 4763 genes that were present in at
least 1 microarray.

5.2.2 NORMALIZATION AND MODEL CHECKING

The data obtained were already normalized per Golub et al. (1999). A qq-normal
plot revealed serious departure from normality.

The partial mixture assumptions are considered in Figure 5. Panel (a) reveals
that the test statistic median decreases slightly as the average intensity (Ai) in-
creases. The spread tends to increase with the average intensity. Without any
additional normalization a WL2E fit gives µ̂ = 0.24, σ̂ = 1.79 and ŵ = 0.99,
indicating only 1% of the genes are differentially expressed. This result is dubious
since 28% of the genes have an observed test statistic exceeding 2 in absolute value,
suggesting that the proportion of DE genes is higher than 1%. A SAM analysis es-
timated ŵ = 0.53. The very small value of ŵ = 0.99 by WL2E-EBayes is likely
due to a lack of separation between the components in (1.1). Therefore, we used
the fixed-component WL2E, which is more robust to overlap since fθ is specified
by theoretical considerations and not estimated by the data. To this end, fθ is fixed
to a t distribution with augmented degrees of freedom estimated as 37. Applying
(2.8) we obtain ŵ = 0.63, which is more in line with SAM and the distribution of
t values. The Student’s t qq-plot in panel (b) suggests that the t assumption is not
unreasonable for 63% of the test statistic values closest to the mean.

5.2.3 RESULTS

WL2E-EBayes called 744 genes as DE, whereas EBayes declared 881, SAM 662,
MixNor 1303 and the Wilcoxon test with BH p-value adjustment 610. In terms of
concordance between methods, WL2E-EBayes classified 94% of the genes in the
same category (equally, over or under-expressed) as did EBayes did. For SAM this
percentages was 87%; MixNor 96%; the Wilcoxon test 92%.
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Figure 5: Assessing partial mixture assumptions for Leukemia dataset. (a): mean
intensity values (A) are categorized in 10 groups according to the observed quan-
tiles. (b): horizontal lines contain a proportion ŵ = 0.63 of the data.

Sample Size WL2E-EBayes EBayes SAM MixNor Wilcoxon-BH
27 ALL / 11 AML 744 881 662 1303 610

5 ALL / 5 AML 11 0 0 37 0

Table 3: Gene classification by method and sample size for leukemia data set. Entry
is number of genes declared to be differentially expressed among 4763 genes.

To assess the performance of the methods with a smaller sample size we ran-
domly selected samples 2, 6, 10, 19 and 27 from the ALL group and samples 3, 6,
7, 9 and 11 from the AML group, and we repeated all the analyses. Table 3 gives
the number of DE genes found by the different methods. All methods detect hun-
dreds of genes using the full sample sizes. However, at the reduced sample sizes all
methods except WL2E-EBayes and MixNor fail to detect any DE genes.

6 DISCUSSION
We have proposed the use of partial mixture estimation as a semi-parametric ap-
proach to differential expression analysis. This framework requires a parametric
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model for equally expressed genes only and can handle small group sizes. Other
methods require a full probability model or larger group sizes for permutation-based
null sampling. We have developed an iterative weighted L2E criterion that improves
upon the performance of the L2E criterion originally proposed by Scott (2004a,b).
We have also found that fixing some of the parameters in the EE mixture model
component can further improve the fit, making it more resistant to outliers and to the
extent to which the mixture components are well-separated. The fixed-component
approach allows simple closed-form expressions to estimate the proportion of EE
genes, which is used by several frequentist and empirical Bayes procedures to con-
trol the FDR. The L2E methods are computationally efficient; in our experience
only a few seconds are required to run an R-implemented program.

Our approach requires making only two assumptions. First, we assume that
the test statistic observations used to classify genes are identically distributed real-
izations from a common distribution. The method does not assume independence.
Second, we require that the distribution of equally expressed genes has a known
parametric form. The L2E and WL2E criteria make an implicit third assumption
that most genes are EE, even though in simulations we found that this can typically
be overcome by carefully setting the initial parameter estimates. By construction,
the fixed-component WL2E is robust to this assumption. We have illustrated by
example how variance stabilizing normalization can render identically distributed
observations, and we have demonstrated accompanying techniques for visual vali-
dations of both assumptions. The choice of test statistic remains important, since it
has an effect on the final results. For example, we expect test statistics that borrow
information across genes to perform better than those that are computed separately
for each gene.

Simulation studies and real data analyses have been used to compare our ap-
proach with EBayes, SAM, MixNor and the t-test with p-value adjustment. The
results suggest that partial mixture estimation can provide significant advantages
over the other approaches, especially when the sample size is small and most genes
are equally expressed. This is an important feature since under high EE mixing
probabilities it can be hard to control the FDR and some authors prefer to control
the family-wise error rate instead. Our method appears to control the FDR at desired
levels, given that the assumptions hold.

Based on our work we find fixed-component WL2E to be more useful than regu-
lar WL2E. The former can be less aggressive in identifying observations as outliers
(i.e. DE genes), which can result in a better FDR control, and it also appears more
robust to the underlying parametric assumption of the EE mixture component. In
fact, we expect inflated FDR rates to be more common in scenarios where f0 has
thicker tails than the assumed normal or t and the sample size is small. Tail thick-
ness can be assessed graphically via qq or density plots when a small proportion of
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DE genes is expected. As sample size grows permutation methods can be used to
obtain a sample under the f0, although many test statistics exhibit an improved nor-
mality for larger sample sizes and hence inflated FDR rates should a lesser concern.

In general, SAM performed best among the competitors, particularly in the sim-
ulation studies. This supports the findings of Schwender et al. (2003), who found
that SAM performed better than EBayes in simulations but the latter gave more sig-
nificant hits in a real data set. MixNor achieved good power but it controlled the
FDR poorly, especially when the proportion of DE genes was small. This suggests
that, as MixNor models both EE and DE genes, it performs better as the propor-
tions of data arising from both components are more balanced. Our partial-mixture
approaches avoid this issue by modeling only f0.

Although partial mixture estimation does not define a full probability model, we
are able to provide some summaries with connections to more formal model-based
approaches such as pseudo-posterior probabilities of differential expression. The
lack of a full probability model is tempered by the fact that differential expression
analysis is most commonly used for data exploration and hypothesis generation and
less for definitive inference.
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