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Sparse Approximation of a Kernel Mean
Efrén Cruz Cortés and Clayton Scott, Member, IEEE

Abstract—Kernel means are frequently used to represent prob-
ability distributions in machine learning problems. In particular,
the well known kernel density estimator and the kernel mean em-
bedding both have the form of a kernel mean. Unfortunately, kernel
means face scalability issues. A single point evaluation of the kernel
density estimator, for example, requires a computation time linear
in the training sample size. To address this challenge, we present a
method to efficiently construct a sparse approximation of a kernel
mean. We do so by first establishing an incoherence-based bound on
the approximation error. We then observe that, for any kernel with
constant norm (which includes all translation invariant kernels),
the bound can be efficiently minimized by solving the k-center
problem. The outcome is a linear time construction of a sparse ker-
nel mean, which also lends itself naturally to an automatic sparsity
selection scheme. We demonstrate the computational gains of our
method by looking at several benchmark datasets, as well as three
applications involving kernel means: Euclidean embedding of dis-
tributions, class proportion estimation, and clustering using the
mean-shift algorithm.

Index Terms—Sparse approximation, k-center problem, kernel
density estimator, kernel mean embedding.

I. INTRODUCTION

AKERNEL mean is a quantity of the form

1
n

n∑

i=1

φ(·, xi), (1)

where φ is a kernel and x1 , . . . , xn ∈ Rd are data points. We
define kernels rigorously below. Our treatment includes many
common examples of kernels, such as the Gaussian kernel,
and encompasses both symmetric positive definite kernels and
kernels used for nonparametric density estimation.

Kernel means arise frequently in machine learning and
nonparametric statistics as representations of probability
distributions. In this context, x1 , . . . , xn are understood to be
realizations of some unknown probability distribution. The
kernel density estimator (KDE) is a kernel mean that estimates
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the density of the data. The kernel mean embedding (KME)
is a kernel mean that maps the probability distribution into a
reproducing kernel Hilbert space. These two motivating
applications of kernel means are reviewed in more detail below.

This work is concerned with efficient computation of a sparse
approximation of a kernel mean, taking the form

n∑

i=1

αiφ(·, xi) (2)

where αi ∈ R and k := |{i : αi �= 0}| � n. In other words,
given x1 , . . . , xn , a kernel φ, and a target sparsity k, we seek a
sparse kernel mean (2) that accurately approximates the kernel
mean (1). This problem is motivated by applications where n
is so large that evaluation or manipulation of the full kernel
mean is computationally prohibitive. A sparse kernel mean can
be evaluated or manipulated much more efficiently. In the large
n regime, the sparse approximation algorithm itself must be
scalable, and as we argue below, existing sparse approximation
strategies are too slow.

Our primary contribution is an efficient algorithm for sparsely
approximating a kernel mean. The algorithm results from min-
imizing a sparse approximation bound based on a novel notion
of incoherence. We show that for a broad class of kernels mini-
mizing the sparse approximation bound is equivalent to solving
the k-center problem on x1 , . . . , xn , which in turn leads to an
efficient algorithm. An advantage of our approach is that it ap-
proximates an arbitrary kernel mean, so we need not address the
KDE and KME problems independently, but through a shared
methodology.

The rest of the paper is outlined as follows. In Section II we
review the KDE and KME, which motivate this work, and also
introduce a general definition of kernel that encompasses both
of these settings. We review related work and its connection to
our contributions in Section III. In Section IV we establish an
incoherence-based sparse approximation bound. We then use the
principle of bound minimization in Section V to derive a scal-
able algorithm for sparse approximation of kernel means, and
present a sparsity auto-selection scheme. Finally, to demonstrate
the efficacy of our approach, Section VI applies our methodol-
ogy in three different machine learning problems that rely on
large-scale KDEs and KMEs, and also presents its performance
on 11 benchmark datasets. A preliminary version of this work
appeared in [1]. A Matlab implementation of our algorithm is
available at [2].

II. MOTIVATION AND FORMAL SETTING

Our work is motivated by two primary examples of kernel
means. We review the KDE and KME separately, and then pro-
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pose a general notion of kernel that encompasses the essential
features of both settings and is sufficient for addressing the
sparse approximation problem. By way of notation, we denote
[n] := {1, . . . , n}.

A. Kernel Density Estimation

Let {x1 , . . . , xn} ⊂ Rd be a random sample from a distribu-
tion with density f . In the context of kernel density estimation,
a kernel is a function φ such that for all x′,

∫
φ(x, x′)dx = 1.

In addition, φ is sometimes also chosen to be nonnegative, al-
though this is not necessary for theoretical properties such as
consistency. The kernel density estimator of f is the function

f̂ =
1
n

∑

i∈[n ]

φ(·, xi).

The KDE is used as an ingredient in a number of machine
learning methodologies. For example, a common approach to
classification is a plug-in rule that estimates the class-conditional
densities with separate KDEs [3], [4]. In anomaly detection, a
detector of the form f̂(x)><γ is commonly employed to deter-
mine if a new realization comes from f [5], [6], [7], [8]. In
clustering, the mean-shift algorithm forms a KDE and asso-
ciates each data point to the mode of the KDE that is reached
by hill-climbing [9].

Evaluating the KDE at a single test point requires O(n) ker-
nel evaluations, which is undesirable and perhaps prohibitive for
large n. On the other hand, a sparse approximation with sparsity
k requires only O(k) kernel evaluations. This problem is mag-
nified in algorithms such as mean-shift, where a (derivative of
a) KDE is evaluated numerous times for each data point. In our
experiments below, we demonstrate the computational savings
of our approach in KDE-based algorithms for the embedding of
probability distributions and mean-shift clustering.

B. Kernel Mean Embedding of Distributions

Let {x1 , . . . , xn} ⊂ Rd be a random sample from a distri-
bution P . A symmetric positive definite kernel is a function
φ : Rd × Rd → R that is symmetric and is such that all square
matrices of the form [φ(xi, xj )]ni,j=1 are positive semidefinite.
Every symmetric positive definite kernel is associated to a
unique Hilbert space of functions called a reproducing kernel
Hilbert space (RKHS), which can be thought of as the closed
linear span of {φ(·, x) |x ∈ Rd} [10]. The RKHS has a property
known as the reproducing property which states that for all f
in the RKHS, f(x) = 〈f, φ(·, x)〉, where 〈·, ·〉 denotes the inner
product.

The idea behind the kernel mean embedding is to select a
symmetric positive definite kernel φ, and embed P in the RKHS
associated with φ via the mapping

Ψ(P ) :=
∫
φ(·, x)dP (x).

Since P is unknown, this mapping is estimated via the kernel
mean

Ψ̂(P ) :=
1
n

∑

i∈[n ]

φ(·, xi).

The utility of the KME derives from the fact that for certain
kernels, Ψ is injective. This permits the treatment of probability
distributions as objects in a Hilbert space, which allows many
existing machine learning methods to be applied in problems
where probability distributions play the role of feature vectors
[11], [12], [13], [14]. For example, suppose that random sam-
ples of size n are available from several probability distributions
P1 , . . . , PN . A KME-based algorithm will require the compu-
tation of all pairs of inner products of kernel mean embeddings
of these distributions. If x1 , . . . , xn ∼ P and x′1 , . . . , x

′
n ∼ P ′,

then 〈Ψ̂(P ), Ψ̂(P ′)〉 = 1
n2

∑
i,j φ(xi, x′j ) by the reproducing

property. Therefore the calculation of all pairwise inner prod-
ucts of kernel mean embeddings requiresO(N 2n2) kernel eval-
uations. On the other hand, if we have sparse representations
of the kernel means, these pairwise inner products can be cal-
culated with only O(N 2k2) kernel evaluations, a substantial
computational savings. In our experiments below, we demon-
strate the computational savings of our approach in KME-based
algorithms for the embedding of probability distributions and
class-proportion estimation.

C. Generalized Notion of Kernel

The problem of sparsely approximating a sample mean can
be addressed more generally in an inner product space. This
motivates the following definition of kernel, which is satisfied by
both density estimation kernels and symmetric positive definite
kernels.

Definition 1: We say that φ : Rd × Rd → R is a kernel if
there exists an inner product space H such that for all x in Rd ,
φ(·, x) ∈ H.

In the case of kernel density estimation, all commonly used
kernels satisfy φ(·, x) ∈ L2(Rd) for all x ∈ Rd . Here, L2(Rd)
is the space of equivalence classes of square integrable func-
tions. When we write φ(·, x) ∈ L2(Rd), we view φ(·, x) as a
representative of its equivalence class. In the case of the ker-
nel mean embedding, we may simply take H to be the RKHS
associated with φ.

Definition 2: For {x1 , . . . , xn} a subset of Rd and φ a
kernel with associated inner product space H, we call K :=
(〈φ(·, xi), φ(·, xj )〉H)i,j∈[n ] the kernel matrix.

Our proposed methodology applies to translation invariant
kernels and beyond. For concreteness, however, we focus on
radial kernels because of the connection to Euclidean geometry.

Definition 3: We say φ : Rd × Rd → R is a radial kernel if
φ is a kernel as in Def. 1 and there exists a strictly decreasing
function g : [0,∞) → R such that, for all x, x′ ∈ Rd ,

〈φ(·, x), φ(·, x′)〉H = g(‖x− x′‖2).

We now review some common examples of radial kernels.
The Gaussian kernel with parameter σ > 0 has the form

φ(x, x′) = cσ exp

(
−‖x− x′‖2

2

2σ2

)
,

the Laplacian kernel with parameter γ > 0 has the form

φ(x, x′) = cγ exp
(
−‖x− x′‖2

γ

)
,
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and the Student-type kernel with parameters α, β > 0 has the
form

φ(x, x′) = cα,β

(
1 +

‖x− x′‖2
2

β

)−α
.

The parameters cσ , cγ and cα,β can be set to 1 for the KME, or
so as to normalize φ to be a density estimation kernel, depending
on the application.

These examples illustrate that the space H such that φ(·, x) ∈
H is not unique. Indeed, each of these three kernels is a sym-
metric positive definite kernel, and therefore we may take H to
be the RKHS associated with φ [10], [15]. On the other hand,
we may also select H = L2(Rd).

Each of these three examples is also a radial kernel. If
we take H to be the RKHS, then by the reproducing prop-
erty we simply have 〈φ(·, x), φ(·, x′)〉 = φ(x, x′), and in each
case, φ(x, x′) = g(‖x− x′‖) for some strictly decreasing g.
These kernels are also radial if we take H = L2(Rd). For
example, consider the Gaussian kernel, and let us write φ =
φσ to indicate the dependence on the bandwidth parameter.
Then 〈φσ (·, x), φσ (·, x′)〉L2 = φ√2σ (x, x′). Similarly, for the
Student kernel with α = (1 + d)/2 (the Cauchy kernel), we
have 〈φβ (·, x), φβ (·, x′)〉L2 = φ2β (x, x′). For other kernels, al-
though there may not be a closed form expression for g, it can
still be argued that such a g exists, which is all we will need.

D. Abstract Problem Formulation

In the interest of generality and clarity, we consider the prob-
lem of sparsely approximating a sample mean in a more ab-
stract setting. Thus, let (H, 〈·, ·〉) be an inner product space with
induced norm ‖ · ‖H, and let {z1 , . . . , zn} ⊂ H. For α ∈ Rn ,
define ‖α‖0 := |{i | αi �= 0}|. Given an integer k ≤ n, our ob-
jective is to approximate the sample mean z̄ = 1

n

∑
i zi as a k-

sparse linear combination of z1 , . . . , zn . In particular, we want
to solve the problem

minimize ‖z̄ − zα‖H (3)

subject to ‖α‖0 = k

where zα =
∑

i∈[n ] αizi .
Note that problem (3) is of the form of the standard sparse ap-

proximation problem [16], where {z1 , . . . , zn} is the so-called
dictionary out of which the sparse approximation is built. Later
we argue that existing sparse approximation algorithms are not
suitable from a scalability perspective. Instead, we develop an
approach that leverages the fact that the vector being sparsely
approximated is the sample mean of the dictionary elements.
We are most interested in the case where zi = φ(·, xi) and φ is
a kernel, but the discussion in Section IV is held in this more
abstract sense.

III. RELATED WORK AND CONTRIBUTIONS

Problem (3) is a specific case of the sparse approximation
problem. Since in general it is NP-hard many efforts have been
made to approximate its solution in a feasible amount of time.

See [16] for an overview. A standard method of approximation
is Matching Pursuit. Matching Pursuit is a greedy algorithm
originally designed for finite-dimensional signals, i.e., H = Rd .
Following the notation of Problem (3) let z̄ be the target vec-
tor we wish to approximate. In Matching Pursuit the first step
is to pick an “atom” in {z1 , . . . , zn} which captures most of
z̄ as measured by the magnitude of the inner product. After
this first step the subsequent atoms are iteratively chosen ac-
cording to which one captures more of the portion of z̄ that
hasn’t been accounted for [17]. Note that just the first step of
this algorithm requires to compute, for each zi , the quantity
〈z̄, zi〉 = 1

n

∑
j∈[n ]〈zi, zj 〉. Since we have n zi’s, the first step

already takes Ω(n2) inner product (kernel) evaluations, which
is undesirable. A variant of matching pursuit specifically de-
signed to approximate probability distributions through kernel
means is kernel herding [18]. While [18] chooses the nonzero
values of αi to equal 1/k, [19] proposes to use a line search
to obtain nonuniform αi values. In herding the complete kernel
matrix is also computed, taking quadratic computational time.
Another general common approach to sparse approximation,
Basis Pursuit, has similar time complexity.

Several algorithms which focus specifically on the sparse
KDE problem have been developed. In [20] a clustering method
is used to approximate the KDE at a point by rejecting points
which fail to belong to close clusters. In [21] a relevant subset of
the data is chosen to minimize the L2 error but at an expensive
O(n2) cost. In [22], [23] a regression based approach is taken to
estimate the KDE through its cumulative density function. These
algorithms rely on the assumption that the kernel mean in ques-
tion is a KDE, so cannot be generalized to other kernel means.

When the kernel mean is thought of as a mixture model,
the model can be collapsed into a simpler one by reducing the
number of its components through a similarity based merging
procedure [24], [25], [26]. Since these methods necessitate the
computation of all pairwise similarities, they present quadratic
computational complexity. EM algorithms for this task result in
similar computational requirements [27], [28].

A line of work that tries to speed up general kernel sums
comes historically from n-body problems in physics, and makes
use of fast multipole methods [29], [30]. The general idea be-
hind these methods is to represent the kernel in question by a
truncated series expansion, and then use a space partitioning
scheme to group points, yielding an efficient way to approx-
imate group-group or group-point interactions, effectively re-
ducing the number of kernel evaluations. These methods are
usually kernel-dependent. For the case of the Gaussian kernel,
see [31], [32] for two different space partitioning methods. Note
that space partitioning schemes may suffer considerably in high
dimensional settings. Also, since the kernel function is truncated
through its series expansion, the resulting approximation may
not integrate to 1. Contrary to these methods, our approach can
still yield a valid density (discussed below).

The efforts of rapidly approximating general kernel based
quantities have led to the use of ε-samples, or coresets. To de-
fine ε-samples, first denote the data A := {x1 , . . . , xn} and the
kernel quantity of interest Q(A, x), where x is some query
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point (for example, the KDE is Q(A, x) = 1
n

∑
i∈[n ] φ(xi, x)).

An ε-sample is a set A′ ⊂ A such that, for every query point
x, Q(A, x) and Q(A′, x) differ by less than ε with respect to
some norm. See [33], [34] for the KDE case with �∞ norm. For
the KME using the RKHS norm, see [35]. Both cases allow for
constructions of ε-samples in near linear time with respect to the
data size and 1/ε. Notice that our approach has the advantage
that it handles both the KDE and KME cases simultaneously, and
that if desired it can yield a valid density as the approximation.

Although most of the literature seems to concentrate on the
KDE, there have also been efforts to speed up computation time
in problems involving the KME. As in the ε-sample approach
above, many of these problems require the distance between
KMEs in the RKHS, so they focus on speeding up this calcu-
lation. In [36], for example, a fast method is devised for the
specific case of the maximum mean discrepancy statistic used
for the two-sample test.

Computing the kernel mean at each of the original points
{x1 , . . . , xn} can be thought of as a matrix vector multiplication,
where the matrix in question is the kernel matrix. Therefore, an
algebraic approach to this problem consists of choosing a suit-
able subset of the matrix columns and then approximating the
complete matrix only through these columns. Among the most
common of these is the Nyström method. In the Nyström method
the kernel matrix K is approximated by the matrix QW+

r Q
T ,

where Q is composed of a subset of the columns of K, indexed
by I, W is the matrix with entries Kij for (i, j) ∈ I × I, and
W+

r is the best r-rank approximation to its pseudoinverse (see
[37] for details). The columns composingQ are typically chosen
randomly under some sampling distribution. See [38] for some
examples of sampling distributions. As explained in Section IV-
A, our approach is connected to the Nyström method and can be
viewed as a particular scheme for column selection tailored to
kernel means. The Nyström approximation of the kernel matrix
is not the only one used though, and other algebraic approaches
exist. In [39] for example, an interpolative decomposition of the
kernel matrix is proposed.

In [40] a “coherence” based sparsification criterion is used
in the context of one-class classification. The main idea is that
each set of possible atoms {zi |αi �= 0} can be quantified by
the largest absolute value of the inner product between two
different atoms. The method proposed requires the computation
of the complete kernel matrix, and is therefore not suitable for
our setting, which involves large data. The motivation for their
coherence criterion, however, lies in the minimization of a bound
on the approximation error. As seen in Section IV-B, we propose
a similar bound as a starting point for our algorithm.

Contributions

We list a summary of contributions in this paper.
� We present a bound on the sparse approximation error

based on a novel measure of incoherence.
� We recognize that for radial kernels, and more generally

for any kernel such that ‖φ(·, x)‖ is constant (which in-
cludes all translation invariant kernels), minimizing the
bound is equivalent to solving an instance of the k-center

problem. The solution to the k-center problem, in turn, can
be approximated by a linear running time algorithm.

� Our method for approximating the KDE can be imple-
mented so that the sparse kernel mean is a valid density
function, which is important for some applications. Note
that some alternative methods cannot be adapted to do so.

� Our method provides amortization of computational com-
plexity since the calculation of the set I (introduced below)
is only done once. Many subsequent calculations (e.g., ker-
nel bandwidth search) can then be performed at a relatively
small or negligible cost.

� Our method is versatile in that it addresses different types
of kernel means under a common framework. In particular,
it can be used to approximate both KMEs and KDEs at the
same time.

� Our method provides a scheme to automatically select the
sparsity level.

� We demonstrate the improved performance of the proposed
method in three different applications, Euclidean embed-
ding of probabilities (using both the KDE and the KME),
class proportion estimation (using the KME), and cluster-
ing with the mean-shift algorithm (using the KDE), as well
as on several additional benchmark datasets.

IV. SUBSET SELECTION AND INCOHERENCE-BASED BOUND

Let us now reformulate problem (3). Our approach will be to
separate the problem into two parts: that of finding the set of
indices i such that αi is not zero, and that of finding the value
of the nonzero αi’s. Letting I ⊂ [n] denote an index set, we can
pose problem (3) as

min
I⊆[n ]
|I|=k

min
(αi )i∈I

‖z̄ −
∑

i∈I
αizi‖2 . (4)

Note that the inner optimization problem is unconstrained and
quadratic, and its solution, which for fixed I and k we denote
by αI ∈ Rk , is

αI = K−1
I κI ,

where KI = (〈zi, zj 〉)i,j∈I and κI is the k-dimensional vector
with entries 1

n

∑
j∈[n ]〈zj , zl〉, l ∈ I.

Let αI = (αI,i)i∈I and zI =
∑

i∈I αI,izi . Then we can
rewrite problem (3) as

min
I⊆[n ]
|I|=k

‖z̄ − zI‖ . (5)

A. Connection to the Nyström Method

Before continuing to the approximate solution of problem
(5), we briefly highlight its relationship to the Nyström method.
Given a set I ⊂ [n], let K be the kernel matrix of {zi | i ∈ [n]},
K := (〈zi, zj 〉)i,j∈[n ] , and KI the kernel matrix of {zi | i ∈ I},
KI := (〈zi, zj 〉)i,j∈I . Also, let QI be the binary matrix such
thatKQI is composed of the columns ofK corresponding to I.
Then we can rewrite αI andKI as αI = (QT

IKQI)−1QT
IK1n

and KI = QT
IKQI , where 1n denotes the vector in Rn with
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entries 1/n. By doing so, we can express the objective of (5) as

‖z̄ − zI‖2 = 1Tn
(
K −KQIK−1

I QT
IK

T
)
1n

= 1Tn
(
K − K̃I

)
1n .

where K̃I := KQIK−1
I QT

IK
T . We recognize K̃I as the

Nyström matrix from the Nyström method [38], which is the
only term dependent on I in the objective. Therefore, our work
can be interpreted from the Nyström perspective: choose suit-
able columns of K and approximate K through the Nyström
matrix. The main difference is that the resulting approximation
is assessed using the induced norm of the inner product space
where the zi’s reside, instead of the commonly used spectral
and Frobenius norms.

B. An Incoherence-Based Sparse Approximation Bound

We now present our proposed algorithm to approximate the
solution of problem (5). Our strategy is to find an upper bound
on ‖z̄ − zI‖ which is dependent on I and then find the I that
minimizes the bound. First, we present a lemma which will aid
us in finding the bound.

Lemma 1: Let (H, 〈·, ·〉) be an inner product space. Let S be
a finite dimensional subspace of H and PS the projection onto
S. For any z0 ∈ H

‖PSz0‖ = max
z∈S,‖z‖=1

〈z0 , z〉.

Proof: First note that since S is finite dimensional, by the
Projection Theorem z0 − PSz0 is orthogonal to S. Now, for any
z ∈ S with ‖z‖ = 1, we have

〈z0 , z〉 = 〈PS z0 + (z0 − PSz0), z〉
= 〈PS z0 , z〉 + 〈z0 − PSz0 , z〉
= 〈PS z0 , z〉
≤ ‖PSz0‖ ‖z‖ = ‖PSz0‖ ,

where we have used the Cauchy-Schwartz inequality. To confirm
the existence of a vector z which makes it an equality and
therefore reaches the maximum, just let z = PSz0/‖PS z0‖. �

We can now present the theorem which will be the basis for
our minimization approach. First, define

νI := min
j /∈I

max
i∈I

〈zi, zj 〉,

which we can think of as a measure of the “incoherence” of
{zi | i ∈ I}. It is now possible to establish a bound:

Theorem 1: Assume that for some C > 0 〈zi, zi〉 = C ∀i ∈
[n]. Then for every I ⊆ [n],

‖z̄ − zI‖ ≤
(

1 − |I|
n

)√
1
C

(C2 − ν2
I ).

Proof: The beginning of this proof is similar to the one in
[40]. LetSI := span({zi | i ∈ I}) and denotePSI the projection

operator onto SI and I the identity operator. We have

‖z̄ − zI‖ = ‖z̄ − PSI z̄‖ =
1
n
‖
∑

i∈[n ]

(I − PSI )zi‖

≤ 1
n

∑

i∈[n ]

‖(I − PSI )zi‖ =
1
n

∑

i /∈I
‖(I − PSI )zi‖

where we have used the triangle inequality, and the last equality
is due to the fact that zi = PSIzi when zi ∈ SI .

Now, since (zi − PSIzi) ⊥ PSIzi , we can use Pythagoras’
Theorem in H to get ‖zi − PSIzi‖2 = ‖zi‖2 − ‖PSIzi‖2 .

By Lemma 1, ‖PSIzi‖ = maxz∈SI , ‖z‖=1〈zi, z〉. Therefore,
for i /∈ I,

‖PSIzi‖ =
1√
C

max
z∈SI ,‖z‖=

√
C
〈zi, z〉

≥ 1√
C

max
�∈I

〈zi, z�〉

≥ 1√
C

min
j /∈I

max
�∈I

〈zj , z�〉 =
1√
C
νI .

Thus, for i /∈ I,

‖zi‖2 − ‖PSIzi‖2 ≤ C − ν2
I
C

and finally

‖z̄ − zI‖ ≤ 1
n

∑

i /∈I

√
C − ν2

I
C

=
(

1 − |I|
n

)√
1
C

(C2 − ν2
I ) .

�

C. Application to Kernel Means

We now apply the previous result in the context of approxi-
mating a kernel mean based on a radial kernel. Recall that, in
the kernel mean setting, zi = φ(·, xi) and 〈φ(·, xi), φ(·, xj )〉 =
g(‖xi − xj‖2), where φ is a radial kernel, {x1 , . . . , xn} ⊂ Rd ,
and g is strictly decreasing as in Definition 3. Also note that
for any radial kernel the assumption in Theorem 1 is satisfied,
since 〈φ(·, xi), φ(·, xi)〉 = g(0) = C > 0. Here f̄ and fI are
defined in an analogous way to z̄ and zI , with f̄ being a kernel
mean and fI its sparse approximation. The following corollary
follows directly from Theorem 1.

Corollary 1: Let φ be a radial kernel, with
〈φ(·, x), φ(·, x)〉H = C ∀x ∈ Rd . Then for every I ⊆ [n],

∥∥f̄ − fI
∥∥ ≤

(
1 − |I|

n

)√
1
C

(C2 − ν2
I ).

�
For the case of symmetric positive definite kernels, withH the

corresponding RKHS, bounding the H norm implies bounding
the L∞ norm, as stated in the following corollary.

Corollary 2: Let φ be a symmetric positive definite kernel
with associated RKHS H, with 〈φ(·, x), φ(·, x)〉H = C ∀x ∈
Rd . Then for every I ⊆ [n],

∥∥f̄ − fI
∥∥
∞ ≤

(
1 − |I|

n

)√
C2 − ν2

I .



CORTÉS AND SCOTT: SPARSE APPROXIMATION OF A KERNEL MEAN 1315

Proof:
∥∥f̄ − fI

∥∥
∞ = max

x

∣∣(f̄ − fI
)
(x)
∣∣

= max
x

∣∣〈f̄ − fI , φ(·, x)〉∣∣

≤ max
x

∥∥f̄ − fI
∥∥
H ‖φ(·, x)‖H

=
√
C
∥∥f̄ − fI

∥∥
H ,

where the second line is due to the reproducing property and the
third to the Cauchy-Schwarz inequality. �

For some applications, such as density estimation,
one may desire the approximation to belong to Δ :=
{∑i∈I αizi |

∑
αi = 1, αi ≥ 0}. A similar bound can be de-

rived, but is not as tight as the previous ones. It also suggests,
however, the maximization of the term νI . In particular, we have
that, under the assumptions of Corollary 1, and letting fΔ be
the projection of f̄ onto Δ:

∥∥f̄ − fΔ
∥∥ ≤

√

2
(
C −

(
1 − |I|

n

)
νI

)
.

Details are shown in the Appendix.

V. BOUND MINIMIZATION VIA k-CENTER ALGORITHM

The bound in the previous corollaries can be minimized by
maximizing the term νI . We now present a procedure to accom-
plish this for the case of radial kernels. Let φ be a radial kernel
and define the set I∗ as

I∗ := arg min
I⊆[n ]
|I|=k

max
j /∈I

min
i∈I

‖xi − xj‖ .

Then, since 〈φ(·, xi), φ(·, xj )〉 = g(‖xi − xj‖2) for g strictly
decreasing, I∗ also maximizes νI = minj /∈I maxi∈I g(‖xi −
xj‖). Therefore, I∗ is the set that minimizes the bound in
Theorem 1. We have translated a problem involving inner prod-
ucts of functions to a problem involving distances between
points in Rd .

The problem of finding I∗ is known as the k-center prob-
lem. To pose the k-center problem more precisely, we make
a few definitions. For a fixed I, let XI = {xi | i ∈ I} and
YI = {xj | j /∈ I}, and for all xj ∈ YI define its distance
to XI as d(xj ,XI) = minxi ∈XI ‖xi − xj‖. Furthermore, let
W (XI) = maxxj ∈YId(xj ,XI). Then, the k-center problem is
that of finding the set I of size k for whichW (XI) is minimized.

The k-center problem is known to be NP-complete [41].
However, there exists a greedy 2-approximation algorithm [42]
which produces a set Ik such that W (XIk ) ≤ 2W (XI∗). This
algorithm is optimal in the sense that under the assumption that
P�=NP there is no ρ-approximation algorithm with ρ < 2 [43].
The algorithm is described in Fig. 1, and as can be seen, it has
a linear time complexity in the size of the data n. In particular,
the algorithm runs in O(nkd) time.

To relate the output of the algorithm back to the bound of the
theorem, note that νI = g(W (XI)). Since the k-center
algorithm guarantees that W (XIk ) ≤ 2W (XI∗), in

Fig. 1. A linear time 2-approximation algorithm for the k-center problem.

the most general case we can say that
√
C2 − ν2

Ik =
√
C2 − g(W (XIk ))2 ≤√C2 − g(2W (XI∗))2 . Knowing

more about the form of g yields more information. For
example, for the Gaussian kernel we have

√
1
C

(
C2 − ν2

Ik
) ≤

√
1
C

(
C2 − 1

C6 ν
8
I∗

)

≤
√

1
CC6 (C4 − ν4

I∗) (C4 + ν4
I∗)

≤
√

2C4

CC6 (C2 − ν2
I∗) (C2 + ν2

I∗) ≤ 2

√
1
C

(C2 − ν2
I∗).

A. Generalization to Nonradial Kernels

The preceding argument extends to certain nonradial kernels.
For example, consider kernels satisfying 〈φ(·, x), φ(·, x′)〉 =
g(M(x, x′)), where M is a non-Euclidean metric on Rd . Ex-
amples include the Gaussian kernel with anisotropic covariance
where M is a Mahalanobis distance, or a type of Laplacian ker-
nel whereM is the �1 distance. The k-center algorithm described
previously applies in these settings as well, where distance in
the algorithm is computed using M .

Another example of a nonradial kernel is a discriminative
kernel for classification problems. Let x denote a feature vec-
tor and y ∈ {−1, 1} its label. If φ is a kernel on Rd , then
ψ((x, y), (x′, y′)) = yy′φ(x, x′) is a kernel on Rd × {−1, 1}.
A kernel mean based on this kernel is a well-known classifica-
tion algorithm [44]. For the discriminative kernel, the problem
of maximizing the incoherence reduces to a variation of the k-
center problem: find k1 points in one class and k−1 points in
the other class such that k1 + k−1 = k and the maximum dis-
tance of a point to its nearest representative in the same class is
minimized. The k-center algorithm described previously can be
easily adapted to solve this problem.

More generally, let φ be any kernel such that ‖φ(·, x)‖2 =
C is independent of x. This includes any translation invariant
kernel. Then

〈φ(·, x), φ(·, x′)〉 =
1
2
(2C − ‖φ(·, x) − φ(·, x′)‖2).
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Hence, the problem of solving

max
I⊆[n ]
|I|=k

min
j /∈I

max
i∈I

〈φ(·, xi), φ(·, xj )〉

reduces to solving

min
I⊆[n ]
|I|=k

max
j /∈I

min
i∈I

‖φ(·, xi) − φ(·, xj )‖ .

In other words, it suffices to solve the k-center problem in
the kernel feature space H, using the induced H norm, which
can be calculated efficiently using the kernel. Once again, the
same k-center algorithm can be applied, where distances are
now computed as ‖φ(·, xi) − φ(·, xj )‖ =

√
2C − 2φ(xi, xj ).

We also note that Corollaries 1 and 2 also hold in this generalized
setting. It is worth noting that for the case of radial kernels the
k-center algorithm can be used in both the feature space as
in Euclidean space, which will potentially yield two different
results. We have not empirically validated the nonradial kernel
case.

B. Computation of αI and Auto-Selection of k

The k-center algorithm allows us to find the set I on which
our approximation will be based. After finding I we can deter-
mine the optimal coefficients αI . Since the main computational
burden is in the selection of I, we now have the freedom to ex-
plore different values of αI in a relatively small amount of time.
For example, we can compute αI for each of several possible
kernel bandwidths σ.

The optimal way to compute αI depends on the application.
If the user has a good idea of what the value of k is, then a fast
way to compute αI for that specific value is to apply their pre-
ferred method to solve the equation KIαI = κI . For example,
since for symmetric positive definite kernels the kernel matrix
is positive semi-definite, the preconditioned conjugate gradient
method can be used to quickly obtain αI to high accuracy. This
approach has the advantages of being simple and fast.

A further advantage of our method is evident when the user
can accept a maximum tolerance value of k, say kmax , but
would prefer to stop at a value k0 ≤ kmax that performs about
as well as kmax . To do this, at iteration m ≥ 1 in the k-center
algorithm we compute αIm right after computing Im , which
provides a record of all the αIj for 1 ≤ j ≤ k0 . To find k0 , we
use the information from the computed coefficients to form an
error indicator and stop when some error threshold is crossed.
Before showing what these error indicators are, we first provide
an update rule to efficiently compute the α coefficients at each
iteration step.

Let Im be the set of the first m elements chosen by the k-
center algorithm, and let αIm , KIm and κIm be obtained by
using Im . If we increase the number of components to m+ 1,
then as shown in [40] we have

KIm + 1 =
[
KIm b
bT φ(xjm + 1 , xjm + 1 )

]

where xj� is the �th element selected by the k-center algorithm,
and b = (φ(xjm + 1 , xi))i∈Im . The resulting update rule for the

inverse is

K−1
Im + 1

=
[
K−1

Im 0
0 0

]
+ q0(qqT )

where q0 = 1/(φ(xjm + 1 , xjm + 1 ) − bT K−1
Im b) and q = [−bT

K−1
Im 1]T . From here the user can now compute αIm + 1 by

multiplying K−1
Im + 1

with

κIm + 1 =
[

κIm
1
n

∑n
i=1 φ(xjm + 1 , xi)

]
.

Assuming we stop at kmax , the time complexity for com-
puting all the αIm ’s is O(k3

max) and the necessary memory
O(k2

max).
Note that our incremental approach to construct αI does as-

sume that the kernel matrixKI is full rank, since it does compute
K−1

I explicitly, and not the pseudeoinverse (as opposed to, say,
the Nyström method). For Gaussian and similar kernels, KI is
positive definite assuming the xi’s are distinct. Rank deficiency
results from selecting centers that are very close to each other,
however, the k-center algorithm does the opposite and selects el-
ements far apart from each other, which supports the assumption
of a full rank matrix KI .

To automatically stop at some k0 ≤ kmax we need a stopping
criterion based on some form of error. We propose the following:
using the notation of problem (5) we have that

‖z̄−zI‖2 =

〈
1
n

∑

�∈[n ]

z�,
1
n

∑

� ′∈[n ]

z� ′

〉

− 2

〈
1
n

∑

�∈[n ]

z�,
∑

i∈I
αI,izi

〉
+

〈
∑

i∈I
αI,izi ,

∑

j∈I
αI,j zj

〉

= ‖z̄‖2 − 2 ·
∑

i∈I
αI,i · 1

n

∑

�∈[n ]

〈z�, zi〉 + αTI KIαI

= ‖z̄‖2 − αTI κI .

Since ‖z̄‖2 is a constant independent of I, we can avoid its
O(n2) computation and only use the quantities E|I| := −αTI κI
as error indicators. Note that Et is nonincreasing with respect
to t. Based on this we choose k0 to be the first value at which
some relative error is small. In this paper we use the test

|Ek0 −1 − Ek0 |
|E1 −Ek0 |

≤ ε

for some small ε. The overall complexity is then reduced to
O(nk0d+ k3

0d).
A further consideration for computing αI should be made

if the result is desired to be a probability density func-
tion. In this case a k-dimensional αI can be projected into
the simplex Δk−1 := {ν ∈ Rk |∑k

i=1 νi = 1, νi ≥ 0 ∀ 1 ≤
i ≤ k} after being obtained by any of the discussed methods
(see [45]). This extra step takes negligible time with respect to
the rest of the computations. Alternatively, a quadratic program
which takes into account the constraints of non-negativity and∑k

i=1 αI,i = 1 can be solved.
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A Matlab implementation of the complete Sparse Kernel
Mean procedure can be found at [2].

VI. EXPERIMENTS: SPEEDING UP EXISTING KERNEL

MEAN METHODS

We have implemented our approach in three specific ma-
chine learning tasks that require the computation and evalua-
tion of a mean of kernels. In the first of these, we apply our
algorithm to the task of dimensionality reduction. In the second,
we use it in the setting of class proportion estimation. In the
third, we explore its performance when used as part of the mean
shift algorithm. Finally, for 11 benchmark datasets we compare
the performance of our approach to four other similar methods.

In the following we refer to our algorithm or to the resulting
kernel mean as SKM (for Sparse Kernel Mean). We now provide
a detailed description of each task and relevant results. The
implementation has been done in Matlab.

A. Euclidean Embedding of Distributions

In this experiment we embed probability distributions in a
lower dimensional space for the purpose of visualization. Given
a collection of N distributions {P1 , . . . , PN }, the procedure
consists of creating a dissimilarity matrix for some notion of
dissimilarity among these distributions and then performing a
dimensionality reduction method. We consider two cases. In the
first case the dissimilarity matrix will be the distance between the
kernel mean embeddings of the distributions in the RKHS (KME
case), while in the second case it will be the (symmetrized)
KL divergence between KDEs (KDE case). For dimensionality
reduction we will use ISOMAP [46]. In the setup we have
access to each ofN distributions {P1 , . . . , PN } through samples
drawn from those distributions. The sample drawn from the �th

distribution is denoted {x(�)
i }n�i=1 .

Notice that in the KDE case, in order to compute the KL
divergence it is necessary to obtain a valid density function.
By choosing the coefficients as described in Section V-B, the
resulting sparse approximation is a density function.

Let us start with the KME case, in which the dissimilarity is
the difference between the distributions’ KMEs. The first task
is to estimate the KME using some symmetric positive definite
kernel φ. For the �th distribution, the empirical estimate of its
KME is

Ψ̂(P�) =
1
n�

n�∑

i=1

φ(·, x(�)
i ),

with a sparse approximation

Ψ̂0(P�) =
∑

i∈I( � )

α
(�)
i φ(·, x(�)

i ),

for some set I(�) and {α(�)
i |α(�)

i ∈ R}, where the α coefficients
have been computed according to the update method described
in Section V-B.

Given all the KMEs, we can now construct a distance matrix.
Let H be the RKHS of φ. We can use the distance induced by

Fig. 2. 2-dimensional representation of flow cytometry data - KME case.
Each point represents a patient’s distribution. The embeddings were obtained
by applying ISOMAP to distances in the RKHS.

the RKHS to create the matrix D, with entries

D�,� ′ : =
∥∥∥Ψ̂(P�) − Ψ̂(P� ′)

∥∥∥
H

=

⎡

⎣ 1
n2
�

∑

i,j

φ(x(�)
i , x

(�)
j )− 2

1
n�n� ′

∑

i,j

φ(x(�)
i , x

(� ′)
j )

+
1
n2
� ′

∑

i,j

φ(x(� ′)
i , x

(� ′)
j )

⎤

⎦
1/2

.

We similarly define D0 based on the sparse KMEs. With such
matrices ISOMAP can now be performed to visualize the dis-
tributions in, say, R2 .

Note that if the samples from P� and P� ′ have n� and n� ′

points, then D�,� ′ takes Θ(n2
� + n�n� ′ + n2

� ′) time to compute.
Since we need all the pairwise distances, we need Θ(N 2) such
computations. A sparse approximation of the KMEs of P� and
P� ′ of sizes k� and k� ′ would instead yield a computation of
Θ(k2

� + k�k� ′ + k2
� ′) for each entry. Assuming all samples have

the same size n, and the sparse approximation size is k, then the
computation of the distance matrix is reduced from Θ(N 2n2)
to Θ(N 2k2).

Inspired by the work of [47], we have performed these ex-
periments on flow cytometry data fromN = 37 cancer patients,
with sample sizes ranging from 8181 to 108343. We have used
the Gaussian kernel, chosen H to be its RKHS, and computed
the bandwidth based on the ‘iqr’ scale option in R’s KernS-
mooth package. That is, we have computed the interquartile
range of the data, averaged over each dimension, and divided by
1.35. After the embedding has been done, we have performed
Procrustes analysis on the points so as to account for possible
translation, scaling, and rotation.

To determine the maximum size k� of each sparse represen-
tation, we recall that the SKM procedure takes O(n�k� + k3

� )
kernel evaluations, so in order to respect the n�k� factor, we
have chosen a small multiple of

√
n� for k� . In this case we

picked k� to be the largest integer smaller than 3
√
n� for each

�. We have implemented the auto-selection scheme described in
Section V-B. The results for the case of ε = 10−12 are shown
in Fig. 2 and Table I. As a comparison, we also compute an al-
ternative D0 based on kernel herding (see Section III) and plot
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TABLE I
TIME COMPARISON FOR THE EUCLIDEAN EMBEDDING OF THE FLOW

CYTOMETRY DATASET - KME CASE

Fig. 3. 2-dimensional representation of flow cytometry data - KME case. D0
was found through kernel herding.

Fig. 4. The relative error and sparsity incurred by the SKM-based and HERD-
based matricesD0 as a function of ε, KME case. Not included is the computation
time, SKM achieves an error of 10−12 in 1.3 minutes, while HERD takes more
than 30 minutes.

the result in Fig. 3. Note that although for this fixed ε HERD
seems to fit better the projection resulting from using the full
kernel mean, as seen in Table I it takes 30 minutes to do so. For
the SKM an almost identical projection can be generated in just
over a minute.

Although k� is the largest allowed sparsity, each algorithm
stops at some k0� ≤ k� . The values k0 �

k�
averaged over all �’s are

shown in Fig. 4. To determine how well D0 approximates D,
we have plotted the relative error ‖D−D0 ‖F

‖D‖F for different values
of ε. The result is shown in Fig. 4.

The KDE case is similar. The dissimilarity matrix is com-
posed of the symmetrized KL divergence between the KDEs
of the distributions, defined as dKL (p, q) := DKL (p‖q) +
DKL (q‖p), where DKL indicates the KL divergence. For the
�th distribution, its KDE is

f̂� =
1
n�

n�∑

i=1

φ(·, x(�)
i ),

with a sparse approximation

f̂0 � =
∑

i∈I( � )

α
(�)
i φ(·, x(�)

i ).

for some set I(�) and {α(�)
i |α(�)

i ≥ 0,
∑

i α
(�)
i = 1}, which

has again been calculated according to the update method de-
scribed in Section V-B. Note that the KL divergence requires
two density functions as input. We achieve this by projecting
onto the simplex as indicated in V-B. As in the KME case, we
construct the dissimilarity matrix (D�,� ′) := dKL (f̂� , f̂� ′). Fig-
ures and Tables analogous to those for the KME case are shown
in the appendix, with similar results.

Figure 2 shows us that the resulting embedded points using
the sparse approximation keep the structure as of those using
the full kernel mean. Notice also from Table I that the sparse
approximation is many times faster than the full computation
(about 400 times faster). Furthermore, the main computational
investment is made in finding the elements of the sets I(�) , since
the subsequent computation of D0 is of negligible time.

In summary, for the case ε = 10−12 , SKM takes only 1.3 min-
utes and the resulting embedding is almost identical to the full
one, just as in Figure 3 shows for the herding case (which takes
30 minutes to compute). The SKM embedding is practically in-
distinguishable from that of the full one, being about 400 times
faster than the full one and about 20 times faster than HERD.

B. Class Proportion Estimation

In this problem we are presented with labeled training
data drawn from N distributions {P1 , . . . , PN } and with fur-
ther testing data drawn from a mixture of these distributions
P0 =

∑N
i=1 πiPi , where πi ≥ 0 and

∑
i πi = 1. Each Pi repre-

sents a class in a multiclass classification problem and the goal is
to estimate the mixture proportions {π1 , . . . , πN } of each class
in the unlableled data set represented byP0 (see [48], [49], [50]).

To do so we let Ψ̂(P�) represent the KME of P� for 0 ≤
� ≤ N . We then find the proportions {π̂i}Ni=1 that minimize the
distance

‖Ψ̂(P0) −
N∑

i=1

πiΨ̂(Pi)‖2
H,

where H is the RKHS of the kernel used to construct the KME.
By setting the derivative to zero the optimal vector of proportions
π̂− := [π̂1 , . . . , π̂N−1 ]T , subject to

∑N
i=1 π̂i = 1 but not to π̂i ≥

0, satisfies

D̂π̂− = ê,

where

D̂ij =
〈
Ψ̂(Pi) − Ψ̂(PN ), Ψ̂(Pj ) − Ψ̂(PN )

〉

H
and

êi =
〈
Ψ̂(Pi) − Ψ̂(PN ), Ψ̂(P0) − Ψ̂(PN )

〉

H
.

From here we can define

π̂ :=
[

π̂−
1 −∑N−1

i=1 π̂i

]
.

A parallel approach, using the KDE instead of the KME is shown
in [49]. In that case the distance in H was changed to the L2

distance.
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Fig. 5. Class Proportion Estimation. �1 error of estimated proportions over a
range of concentration parameters.

Notice we have not enforced the constraint π̂i ≥ 0, for 1 ≤
i ≤ N . To do so a quadratic program can be set. For most of our
simulations we did not encounter the necessity to do so, due to
the fact that the true proportions we are approximating are also
nonnegative, although this is an empirical observation without
theoretical support. Therefore, for the few cases for which π̂ lied
outside of the simplex, we have projected onto it as described
in [45].

We have used the handwritten digits data set MNIST, obtained
from [51], which contains 60,000 training images and 10,000
testing images, approximately evenly distributed among its 10
classes (see [52] for details). We have only used the first five
digits.

We present a comparison of the performance, measured by
the �1 distance between the true π and the estimate π̂, of the
sparse KME compared to the full KME. We have done this for
different values of π, meaning different locations of π inside the
simplex. To do so, we sampled π from the simplex using the
Dirichlet distribution with different concentration parameter ω.
As a reminder to the reader, a small value of ω implies sparse
values of π are most probable, ω = 1 means any value of π is
equally probable, and ω > 1 means values of π for which all its
entries are of similar value are most probable. We varied ω over
the set {.1, .2, . . . , 3.1}.

We have split the data in two and used the first half to esti-
mate the kernel bandwidth through the following process. We
first sample a true π, then we construct the KME and pick
the bandwidth σ which minimizes ‖π − π̂‖�1 . We performed
the search on σ by using Matlab’s function fminbnd. For both
the SKM and the full case we allowed for 100 iterations. We
have used the Gaussian kernel to create the sparse KME of the
�th distribution, with sparsity level of k� =

√
n� , where n� is

the size of the available sample from distribution �. Since the
α coefficients depend on σ, and for each set I(�) we perform a
search over several values of σ, we did not computeα iteratively
as we constructed I(�) . Instead, once the construction of I(�)

was finished, we used the preconditioned conjugate gradient
method to obtain α.

Once σ was estimated, we then accessed the second half of
the data to test the performance for both the SKM and the full
KME for different values of ω. The results are shown in Fig. 5.
We have also plotted for perspective a “blind” estimation of π,
which uniformly at random picks a vector π̂. A comparison of

TABLE II
COMPUTATION TIMES FOR BOTH FULL AND SPARSE KME, AVERAGED

OVER ALL VALUES OF ω

the computation times for the sparse KME and the full KME is
shown in Table II, where we have averaged over all values of ω.

Notice from Table II that, in the SKM case, the estimation of
σ takes about the same time as the computation of π̂. This is
due to the fact that the main bottleneck of the algorithm is the
computation of the set I which is independent of σ. It is in the
estimation of σ that the full kernel mean is many times slower
than SKM, as seen in the Table, SKM is about 10 times faster
for the whole process.

C. Mean-Shift Clustering

We have based this experiment on the mean-shift algo-
rithm as described in [53]. This algorithm is used in several
image processing tasks and we will use it in the context of im-
age segmentation. The goal is to form a clustering of the image
pixels into different segments.

Each pixel is represented by a 5-dimensional vector (3 dimen-
sions to describe color, and 2 for the position in the image), and
the distribution of these feature vectors is estimated by the KDE.
Denote the image pixels as {xi}ni=1 , xi ∈ R5 . The mean-shift
algorithm shifts each point lying on the surface of the density
closer to its closest peak (mode). Given a starting point x, the al-
gorithm iteratively shiftsx closer to its mode until the magnitude
of the shift is smaller than some quantity γ. The shift exerted on
x at each iteration requires the computation of the gradient of the
KDE at the current position, making mean-shift computation-
ally expensive. Denote the shifted points as {yi}ni=1 . Once all
points are shifted close to the different modes, then any cluster-
ing algorithm can be performed to find the clusters. A clustering
algorithm is described in [53], based on merging the modes’
neighborhoods which are close. We used a code following these
guidelines found at [54], slightly modified by increasing the
distance used for modes’ neighborhoods to merge.

In our experiments we used a 500 × 487 image of a painting
by Piet Mondrian (Composition A), and compared our algorithm
with the full density estimation case. We chose kmax to be the
largest integer smaller than

√
n and we have used the method for

auto-selecting k0 outlined in Section V-B, with ε = 10−8 . We
have used the Gaussian kernel and set the bandwidth according
to Equation (18) in [55], which is specifically suggested for
mode-based clustering. We compare the SKM approach to a
method based on Locality Sensitive Hashing (LSH, see [56],
[57]). This method finds for each point and with high probability
its nearest neighbors. It then approximates the KDE locally by
only using the effect from such neighbors. We chose 5 nearest
neighbors and to implement LSH we used the Matlab version
of LSH available at [58] (we have used the e2lsh scheme with
three hash tables per picture). See [58], [59] for details on LSH.
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TABLE III
TIME AND PERFORMANCE COMPARISON FOR MEAN SHIFT ALGORITHM

We present two indicators to evaluate the performance be-
tween the clustering resulting from the full KDE and that re-
sulting from the approximate KDE. In the following, let B be
used to indicate that the full kernel density estimate has been
used, while A indicates either the SKM or the LSH approaches.
With a slight abuse of notation, let A and B also indicate their
resulting clusterings.

Discrepancy Index: Our first performance measure, which
we call the discrepancy index di , is somehow intuitive, and it
describes the ratio of the number of vectors x� that the ap-
proximate methods shifted by more than δ away from their full
method counterpart. δ is here some tolerance threshold, which
we have set to three times the kernel bandwidth. More precisely,
if {x�}n�=1 indicate the picture pixels and yA� , yB� are the shifted
versions of x� according to density estimation methods A and
B respectively, then

di(A,B) =
1
n

∑

�

1{‖yA
� −yB

� ‖>δ}.

Hausdorff Distance: The second performance measure,
which describes the Hausdorff distance between clusterings,
was obtained from [60] and is denoted by dH . To define the
Hausdorff distance, let P be a distribution on Rd (in our case,
P is the distribution of the image pixels on R5). Furthermore,
let X be the set of subsets of Rd such that the distance be-
tween two sets A and B is ρ(A,B) := P (AΔB), where Δ is
the symmetric difference (to be precise, we deal with equiv-
alence classes, where two sets A and B are equivalent if
ρ(A,B) = 0). Notice X is a metric space. Let B ⊂ X , and
define ρ(A,B) := minB∈B ρ(A,B). We interpret a subset A of
X as a clustering, and an element A in X as a cluster. The
Hausdorff distance between two clusterings is

dH (A,B) = max
{

max
A∈A

ρ(A,B), max
B∈B

ρ(B,A)
}
.

In words,dH measures the furthest distance between elements
of A to the clustering B and elements of B to the clustering
A (that is, dH measures the less overlap between clusters of
different clusterings, as measured by P ). Since we don’t have
access to P , the empirical version of dH proposed in [60] is
obtained by replacing P by the empirical probability measure.
Letting ρ̂(A,B) := minB∈B 1

n

∑n
i=1 1{AΔB }(xi), we have

d̂H (A,B) = max
{

max
A∈A

ρ̂(A,B), max
B∈B

ρ̂(B,A)
}
.

We use this latter quantity to measure the SKM performance.
The results are presented in Table III. In the table B indicates

the full kernel density estimate has been used, ASKM indicates
the k-center based algorithm and ALSH the LSH method. Note

TABLE IV
TIME COMPLEXITY AND MEMORY COMPARISON AMONG SELECTED METHODS.
n IS THE DATA SIZE, k THE APPROXIMATION SIZE, AND T THE NUMBER OF

ITERATIONS FOR THE k-MEANS ALGORITHM FROM MATLAB

TABLE V
SPARSITY LEVEL REQUIRED FOR AN ACCURACY OF 10−3

that both the SKM and the LSH approach present significant
computational advantages. The SKM approach, however, man-
ages to be faster while incurring half the discrepancy of the LSH
and about the same Hausdorff distance.

D. Comparison with Other Subset Selection Strategies

To further illustrate the performance of SKM, we look at
the sparsity required to achieve a given accuracy ε, that is, the
smallest value k0/kmax for which the quantity Ē|I| := ‖z̄ −
zI‖2/‖z̄‖2 is smaller than ε, where k0 = |I|, (see Section V-B).
Note we selected Ē|I| as opposed to the term E|I| used for
autoselection because Ē|I| is more interpretable and for these
experiments we are not interested in efficient autoselection. We
have applied our method for 11 distinct benchmark datasets,
listed in Table V. We present these sparsity values for ε = 10−3

and also the corresponding values for four other methods:1)
RAND, which chooses the set I uniformly at random, 2) L2,
which chooses I by sampling according to the squared norm of
the columns of the kernel matrix (see [38]), 3) KMEANS which
picks as the representative set not a subset of the data but the
results from the k-means algorithm and constructs the kernel
matrix according to these (see again [38]), and 4) HERD, which
uses kernel herding (see [19]) to select I andαI . Table IV shows
the time and memory complexities for these algorithms. The
Wilcoxon signed rank test was performed pairwise comparing
the performance of SKM to the other methods. The p-values
for SKM with respect to RAND, L2, KMEANS and HERD are
respectively .024, .001, .019, and .001 favoring SKM. Note that
RAND and KMEANS have similar performance, and in fact the
p-value between the two is .64. We also present the complete
error plot for the banana dataset in Figure 6. Note that in this
case other approximations show an initial advantage because
they are more likely to pick elements from dense areas, which
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Fig. 6. Error comparison among different methods for the banana data set.
SKM incurs a larger initial error but quickly decreases as it captures more of the
fine structure of the distribution. Note that RAND and NKMEANS perform very
similarly, this can also be seen in table V.

TABLE VI
VALUES OF D(z̄‖zI ) AND D(zI‖z̄) FOR DIFFERENT DATA SETS

for small values of |I| represents better the full distribution.
However, as the size of I increases, the fine structure (e.g.,
the distribution tails) is better captured by SKM, since the k-
center algorithm picks points far apart from each other. Note
that Table V shows that SKM achieves better sparsity for a
given accuracy. Equivalently, we can say SKM achieves better
accuracy for a fixed sparsity level. In the appendix, we also
report the time required to achieve an accuracy of 10−3 and find
a similar advantage for SKM.

The sparse approximation strategy proposed in this paper
can be a valid density if the αi’s are set to satisfy αi ≥ 0 and∑

i αi = 1. Therefore, we also evaluate the performance of the
proposed sparse approximation according to the KL divergence,
a common metric between distributions whose arguments must
be density functions.

For the same benchmark data sets listed above, we computed
the KL divergences D(z̄‖zI) and D(zI‖z̄) between the sparse
and the full kernel mean. We used the auto-selection scheme
proposed in Section V-B with ε = 10−7 , and projected the re-
sulting α onto the simplex to ensure we have a valid probability
distribution. We have chosen a Gaussian kernel and used the
Jaakkola heuristic [61] to compute the bandwidth. We com-
pare the performance of SKM to that of RAND, which, as
seen above, is similar to that of KMEANS. We have performed
the Wilcoxon signed rank test [62] to determine if there is a
significant advantage of the SKM. The test for both the case
D(z̄‖zI) and the case D(zI‖z̄) yields a p-value of 0.0186,

favoring the SKM method. The results are shown in Table VI.
To understand this, note that in the extreme case in which one
density is zero in a particular region while the other is posi-
tive, the KL divergence is infinite, so the KL divergence highly
penalizes very low density approximations to positive density
regions. The SKM accurately approximates low density regions
since it selects outliers, while the random selection approach
picks mostly points in populated regions.

E. Other Results

We have performed additional experiments that explore the
performance of SKM as dimension increases. These results have
been placed in the appendix, which is available as a supple-
mental file. In conclusion, the results suggest that the sparsity
required to achieve a given accuracy increases as a function of
dimension and decreases as a function of bandwidth. We have
also compared the performance of SKM for the Laplacian and
the Student-t kernels. In general they both exhibit a similar per-
formance as for the Gaussian kernel, in terms of relative error Ē.
For the Euclidean embedding and class proportion estimation
experiments, however, it is harder to set an effective bandwidth
for the Student-t kernel.

VII. CONCLUSION

We have provided a method to rapidly and accurately build a
sparse approximation of a kernel mean. We derived an incoher-
ence based bound on the approximation error and recognized
that, for abroad class of kernels, including translation invariant
kernels, its minimization is equivalent to solving the k-center
problem either on the feature space or the Euclidean space
where the data lies. If desired, our construction of the sparse
kernel mean may be slightly modified to provide a valid density
function, which is important in some applications. Hence, the
algorithm is versatile in that it works for both kinds of kernel
means: the KDE and the KME. Our method also naturally lends
itself to a sparsity auto-selection scheme.

We showed its computational advantages and its performance
qualities in three specific applications. First, Euclidean embed-
ding of distributions (for both KDE and KME), in which, for
the KDE case, a valid density is needed to compute the KL
divergence. Second, class proportion estimation (for the KME),
which presents the amortization advantages of the SKM ap-
proach, in this case with respect to the bandwidth σ. Finally,
mean-shift clustering (for the KDE), in which with less com-
putation time than the LSH-based approach, it performs better
with respect to the discrepancy index and similar with respect
to the Hausdorff distance. In most instances the proposed sparse
kernel mean method has shown to be orders of magnitude faster
than the approach based on the full kernel mean. Furthermore,
we compared its performance in terms of error, sparsity, and time
with respect to four other subset selection schemes for several
benchmark datasets. We find that, with statistical significance,
SKM outperforms these methods. Finally, we also observed its
performance in different settings, concerning dimension and
kernel variability. These latter results are presented in detail in
the appendix.
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