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Abstract

Mixture proportion estimation (MPE) is the

problem of estimating the weight of a compo-

nent distribution in a mixture, given samples

from the mixture and component. This prob-

lem constitutes a key part in many “weakly su-

pervised learning” problems like learning with

positive and unlabelled samples, learning with la-

bel noise, anomaly detection and crowdsourcing.

While there have been several methods proposed

to solve this problem, to the best of our knowl-

edge no efficient algorithm with a proven con-

vergence rate towards the true proportion exists

for this problem. We fill this gap by construct-

ing a provably correct algorithm for MPE, and

derive convergence rates under certain assump-

tions on the distribution. Our method is based on

embedding distributions onto an RKHS, and im-

plementing it only requires solving a simple con-

vex quadratic programming problem a few times.

We run our algorithm on several standard classifi-

cation datasets, and demonstrate that it performs

comparably to or better than other algorithms on

most datasets.

1. Introduction

Mixture proportion estimation (MPE) is the problem of es-

timating the weight of a component distribution in a mix-

ture, given samples from the mixture and component. Solv-

ing this problem happens to be a key step in solving sev-

eral “weakly supervised” learning problems. For example,
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MPE is a crucial ingredient in solving the weakly super-

vised learning problem of learning from positive and unla-

belled samples (LPUE), in which one has access to unla-

belled data and positively labelled data but wishes to con-

struct a classifier distinguishing between positive and neg-

ative data (Liu et al., 2002; Denis et al., 2005; Ward et al.,

2009). MPE also arises naturally in the task of learning a

classifier with noisy labels in the training set, i.e., positive

instances have a certain chance of being mislabelled as neg-

ative and vice-versa, independent of the observed feature

vector (Lawrence & Scholkopf, 2001; Bouveyron & Gi-

rard, 2009; Stempfel & Ralaivola, 2009; Long & Servido,

2010; Natarajan et al., 2013). Natarajan et al. (2013) show

that this problem can be solved by minimizing an appro-

priate cost sensitive loss. But the cost parameter depends

on the label noise parameters, the computation of which

can be broken into two MPE problems (Scott et al., 2013a).

MPE also has applications in several other problems like

anomaly rejection (Sanderson & Scott, 2014) and crowd-

sourcing (Raykar et al., 2010).

When no assumptions are made on the mixture and the

components, the problem is ill defined as the mixture pro-

portion is not identifiable (Scott, 2015). While several

methods have been proposed to solve the MPE problem

(Blanchard et al., 2010; Sanderson & Scott, 2014; Scott,

2015; Elkan & Noto, 2008; du Plessis & Sugiyama, 2014;

Jain et al., 2016), to the best of our knowledge no provable

and efficient method is known for solving this problem in

the general non-parametric setting with minimal assump-

tions. Some papers propose estimators that converge to the

true proportion under certain conditions (Blanchard et al.,

2010; Scott et al., 2013a; Scott, 2015), but they cannot be

efficiently computed. Hence they use a method which is

motivated based on the provable method but has no direct

guarantees of convergence to the true proportion. Some

papers propose an estimator that can be implemented ef-

ficiently (Elkan & Noto, 2008; du Plessis & Sugiyama,
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2014), but the resulting estimator is correct only under very

restrictive conditions (see Section 7) on the distribution.

Further, all these methods except the one by du Plessis

& Sugiyama (2014) require an accurate binary conditional

probability estimator as a sub-routine and use methods like

logistic regression to achieve this. In our opinion, requiring

an accurate conditional probability estimate (which is a real

valued function over the instance space) for estimating the

mixture proportion (a single number) is too roundabout.

Our main contribution in this paper is an efficient algorithm

for mixture proportion estimation along with convergence

rates of the estimate to the true proportion (under certain

conditions on the distribution). The algorithm is based on

embedding the distributions (Gretton et al., 2012) into a re-

producing kernel Hilbert space (RKHS), and only requires

a simple quadratic programming solver as a sub-routine.

Our method does not require the computation of a condi-

tional probability estimate and is hence potentially better

than other methods in terms of accuracy and efficiency. We

test our method on some standard datasets, compare our re-

sults against several other algorithms designed for mixture

proportion estimation and find that our method performs

better than or comparable to previously known algorithms

on most datasets.

The rest of the paper is organised as follows. The prob-

lem set up and notations are given in Section 2. In Sec-

tion 3 we introduce the main object of our study, called

the C-distance, which essentially maps a candidate mixture

proportion value to a measure of how ‘bad’ the candidate

is. We give a new condition on the mixture and compo-

nent distributions that we call ‘separability’ in Section 4,

under which the C-distance function explicitly reveals the

true mixture proportion, and propose two estimators based

on this. In Section 5 we give the rates of convergence of

the proposed estimators to the true mixture proportion. We

give an explicit implementation of one of the estimators

based on a simple binary search procedure in Section 6.

We give brief summaries of other known algorithms for

mixture proportion estimation in Section 7 and list their

characteristics and shortcomings. We give details of our

experiments in Section 8 and conclude in Section 9.

2. Problem Setup and Notations

Let G,H be distributions over a compact metric space X
with supports given by supp(G), supp(H). Let κ⇤ 2 [0, 1)
and let F be a distribution that is given by a convex combi-

nation (or equivalently, a mixture) of G and H as follows:

F = (1− κ⇤)G+ κ⇤H.

Equivalently, we can write

G = (λ⇤)F + (1− λ⇤)H,

where λ⇤ = 1
1−κ∗ . Given samples {x1, x2, . . . , xn} drawn

i.i.d. from F and {xn+1, . . . , xn+m} drawn i.i.d. from

H , the objective in mixture proportion estimation (MPE)

(Scott, 2015) is to estimate κ⇤.

Let H be a reproducing kernel Hilbert space (RKHS)

(Aronszajn, 1950; Berlinet & Thomas, 2004) with a pos-

itive semi-definite kernel k : X ⇥ X ! R. Let φ :
X ! H represent the kernel mapping x 7! k(x, .). For

any distribution P over X , let φ(P ) = EX⇠Pφ(X). It

can be seen that for any distribution P and f 2 H, that

EX⇠P f(X) = hf, φ(P )iH. Let ∆n+m ✓ R
n+m be the

(n + m − 1)-dimensional probability simplex given by

∆n+m = {p 2 [0, 1]n+m :
P

i pi = 1}. Let C, CS be

defined as

C = {w 2 H : w = φ(P ), for some distribution P},

CS = {w 2 H : w =

n+mX

i=1

αiφ(xi), for some α 2 ∆n+m}.

Clearly, CS ✓ C, and both C, CS are convex sets.

Let bF be the distribution over X that is uniform over

{x1, x2, . . . , xn}. Let bH be the distribution over X that

is uniform over {xn+1, . . . , xn+m}. As F is a mixture of

G and H , we have that some S1 ✓ {x1, . . . , xn} is drawn

from G and the rest from H . We let bG denote the uni-

form distribution over S1. On average, we expect the car-

dinality of S1 to be n
λ∗ . Note that we do not know S1 and

hence cannot compute φ( bG) directly, however we have that

φ( bG) 2 CS .

3. RKHS Distance to Valid Distributions

Define the “C-distance” function d : [0,1) ! [0,1) as

follows:

d(λ) = inf
w2C

kλφ(F ) + (1− λ)φ(H)− wkH. (1)

Intuitively, d(λ) reconstructs φ(G) from F and H assum-

ing λ⇤ = λ, and computes its distance to C. Also, define the

empirical version of the C-distance function, bd : [0,1) !
[0,1), which we call the CS-distance function, as

bd(λ) = inf
w2CS

kλφ( bF ) + (1− λ)φ( bH)− wkH . (2)

Note that the CS-distance function bd(λ) can be computed

efficiently via solving a quadratic program. For any λ ≥ 0,

let uλ 2 R
n+m be such that u>

λ = λ
n
([1>

n ,0
>
m]) +

1−λ
m

([0>
n ,1

>
m]), where 1n is the n-dimensional all ones

vector, and 0m is the m-dimensional all zeros vector. Let

K 2 R
(n+m)⇥(n+m) be the kernel matrix given by Ki,j =

k(xi, xj). We then have

(bd(λ))2 = inf
v2∆n+m

(uλ − v)>K(uλ − v) .
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We now give some basic properties of the C-distance func-

tion and the CS-distance function that will be of use later.

All proofs not found in the paper can be found in the sup-

plementary material.

Proposition 1.

d(λ) = 0, 8λ 2 [0,λ⇤],

bd(λ) = 0, 8λ 2 [0, 1] .

Proposition 2. d(.) and bd(.) are non-decreasing convex

functions on [0,1).

Below, we give a simple reformulation of the C-distance

function and basic lower and upper bounds that reveal its

structure.

Proposition 3. For all µ ≥ 0,

d(λ⇤ + µ) = inf
w2C

kφ(G) + µ(φ(F )− φ(H))− wkH .

Proposition 4. For all λ, µ ≥ 0,

d(λ) ≥ λkφ(F )− φ(H)k − sup
w2C

kφ(H)− wk, (3)

d(λ⇤ + µ)  µkφ(F )− φ(H)k . (4)

Using standard results of Smola et al. (2007), we can show

that the kernel mean embeddings of the empirical versions

of F , H and G are close to the embeddings of the distribu-

tions themselves.

Lemma 5. Let the kernel k be such that k(x, x)  1 for

all x 2 X . Let δ 2 (0, 1/4]. The following holds with

probability 1 − 4δ (over the sample x1, . . . , xn+m) if n >
2(λ⇤)2 log

(
1
δ

)
,

kφ(F )− φ( bF )kH  3
p
log(1/δ)p

n

kφ(H)− φ( bH)kH  3
p

log(1/δ)p
m

kφ(G)− φ( bG)kH  3
p

log(1/δ)p
n/(2λ⇤)

.

We will call this 1 − 4δ high probability event as Eδ . All

our results hold under this event.

Using Lemma 5 one can show that the C-distance function

and the CS-distance function are close to each other. Of

particular use to us is an upper bound on the CS-distance

function bd(λ) for λ 2 [1,λ⇤], and a general lower bound

on bd(λ)− d(λ).

Lemma 6. Let k(x, x)  1 for all x 2 X . Assume Eδ . For

all λ 2 [1,λ⇤] we have that

bd(λ) 
 
2− 1

λ⇤
+

p
2p
λ⇤

!
λ ·

3
p
log(1/δ)p

min(m,n)
.

Lemma 7. Let k(x, x)  1 for all x 2 X . Assume Eδ . For

all λ ≥ 1, we have

bd(λ) ≥ d(λ)− (2λ− 1) ·
3
p

log(1/δ)p
min(m,n)

.

4. Mixture Proportion Estimation under a

Separability Condition

Blanchard et al. (2010); Scott (2015) observe that without

any assumptions on F,G and H , the mixture proportion

κ⇤ is not identifiable, and postulate an “irreducibility” as-

sumption under which κ⇤ becomes identifiable. The irre-

ducibility assumption essentially states that G cannot be

expressed as a non-trivial mixture of H and some other

distribution. Scott (2015) propose a stronger assumption

than irreducibility under which they provide convergence

rates of the estimator proposed by Blanchard et al. (2010)

to the true mixture proportion κ⇤. We call this condition

as the “anchor set” condition as it is similar to the “anchor

words” condition of Arora et al. (2012) when the domain

X is finite.

Definition 8. A family of subsets S ✓ 2X , and distribu-

tions G,H are said to satisfy the anchor set condition with

margin γ > 0, if there exists a compact set A 2 S such that

A ✓ supp(H) \ supp(G) and H(A) ≥ γ.

We propose another condition which is similar to the an-

chor set condition (and is defined for a class of functions on

X rather than subsets of X ). Under this condition we show

that the C-distance function (and hence the CS-distance

function) reveals the true mixing proportion λ⇤.

Definition 9. A class of functions H ✓ R
X , and distribu-

tions G,H are said to satisfy separability condition with

margin α > 0 and tolerance β, if 9h 2 H, khkH  1 and

EX⇠Gh(X)  inf
x

h(x) + β  EX⇠Hh(X)− α .

We say that a kernel k and distributions G,H satisfy the

separability condition, if the unit norm ball in its RKHS

and distributions G,H satisfy the separability condition.

Given a family of subsets satisfying the anchor set condi-

tion with margin γ, it can be easily seen that the family

of functions given by the indicator functions of the fam-

ily of subsets satisfy the separability condition with margin

α = γ and tolerance β = 0. Hence this represents a natural

extension of the anchor set condition to a function space

setting.

Under separability one can show that λ⇤ is the “departure

point from zero” for the C-distance function.

Theorem 10. Let the kernel k, and distributions G,H sat-

isfy the separability condition with margin α > 0 and tol-
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erance β. Then 8µ > 0

d(λ⇤ + µ) ≥ ↵µ

λ⇤
− β .

Proof. (Sketch) For any inner product h., .i and its norm

k.k over the vector space H, we have that kfk ≥ hf, gi
for all g 2 H with kgk  1. The proof mainly follows by

lower bounding the norm in the definition of d(.), with an

inner product with the witness g of the separability condi-

tion.

Further, one can link the separability condition and the

anchor set condition via universal kernels (like the Gaus-

sian RBF kernel) (Michelli et al., 2006), which are kernels

whose RKHS is dense in the space of all continuous func-

tions over a compact domain.

Theorem 11. Let the kernel k : X ⇥ X ! [0,1) be uni-

versal. Let the distributions G,H be such that they satisfy

the anchor set condition with margin γ > 0 for some family

of subsets of X . Then, for all ✓ > 0, there exists a β > 0
such that the kernel k, and distributions G,H satisfy the

separability condition with margin β✓ and tolerance β.

Proof. (Sketch) As the distributions G,H satisfy the an-

chor set condition, there must exist a continuous non-

negative function that is zero on the support of G and

greater than one on the set A that witnesses the anchor

set condition. Due to universality of the kernel k, there

must exist an element in its RKHS that arbitrarily approx-

imates this function. The normalised version of this func-

tion forms a witness to the separability condition.

The ultimate objective in mixture proportion estimation is

to estimate ⇤ (or equivalently λ⇤). If one has direct access

to d(.) and the kernel k and distributions G,H satisfy the

separability condition with tolerance β = 0, then we have

by Proposition 1 and Theorem 10 that

λ⇤ = inf{λ : d(λ) > 0}.

We do not have direct access to d(.), but we can cal-

culate bd(.). From Lemmas 1 and 7, we have that for

all λ 2 [0,λ⇤], bd(λ) converges to 0 as the sample size

min(m,n) increases. From Lemma 7 we have that for all

λ ≥ 0, bd(λ) ≥ d(λ)− ✏ for any ✏ > 0 if min(m,n) is large

enough. Hence bd(.) is a good surrogate for d(.) and based

on this observation we propose two strategies of estimating

λ⇤ and show that the errors of both these strategies can be

made to approach 0 under the separability condition.

The first estimator is called the value thresholding estima-

tor. For some ⌧ 2 [0,1) it is defined as,

bλV
τ = inf{λ : bd(λ) ≥ ⌧} .

The second estimator is called the gradient thresholding es-

timator. For some ⌫ 2 [0,1) it is defined as

bλG
ν = inf{λ : 9g 2 @ bd(λ), g ≥ ⌫},

where @ bd(λ) is the sub-differential of bd(.) at λ. As bd(.)
is a convex function, the slope of bd(.) is a non-decreasing

function and thus thresholding the gradient is also a viable

strategy for estimating λ⇤.

To illustrate some of the ideas above, we plot bd(.) and

rbd(.) for two different true mixing proportions ⇤ and

sample sizes in Figure 2. The data points from the compo-

nent and mixture distribution used for computing the plot

are taken from the waveform dataset.

5. Convergence of Value and Gradient

Thresholding Estimators

We now show that both the value thresholding estimator
bλV
τ and the gradient thresholding estimator bλG

ν converge to

λ⇤ under appropriate conditions.

Theorem 12. Let δ 2 (0, 1
4 ]. Let k(x, x)  1 for all

x 2 X . Let the kernel k, and distributions G,H sat-

isfy the separability condition with tolerance β and mar-

gin ↵ > 0. Let the number of samples be large enough

such that min(m,n) > (12·λ∗)2 log(1/δ)
α2 . Let the thresh-

old ⌧ be such that
3λ∗

p
log(1/δ)(2−1/λ∗+

p
2/λ∗)p

min(m,n)
 ⌧ 

6λ∗
p

log(1/δ)(2−1/λ∗+
p

2/λ∗)p
min(m,n)

. We then have with probabil-

ity 1− 4δ

λ⇤ − bλV
τ  0,

bλV
τ − λ⇤  βλ⇤

↵
+ c ·

p
log(1/δ) · (min(m,n))−1/2,

where c =

✓
6α(λ∗)2(2−1/λ∗+

p
2/λ∗)+2λ∗(3α+6λ∗(2+α+β))

α2

◆
.

Proof. (Sketch) Under event Eδ , Lemma 6 gives an upper

bound on bd(λ) for λ 2 [1,λ⇤], which is denoted by the line

(λ, U(λ)) in Figure 1a. Under event Eδ and the separabil-

ity condition, Lemma 7 and Theorem 10 give a lower bound

on bd(λ) for λ ≥ λ⇤ and is denoted by the line (λ, L(λ)) in

Figure 1a. These two bounds immediately give upper and

lower bounds on the value thresholding estimator bλV
τ for

any ⌧ 2 [0,1). An illustration is provided in Figure 1a

by the horizontal line through (1, ⌧). The points of inter-

section of this line with the feasible values of (λ, bd(λ)) as

in Figure 1a, given by r and s in the figure form lower and

upper bounds respectively for bλV
τ .
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(1, 0)

(λ2, L(λ2))

(λ1, 0)

(λ1, U(λ1))
(λ⇤, U(λ⇤))

(λ2, 0)

(1, τ ) (r, τ ) (s, τ )

λ

d̂(λ)

arctan( α
λ⇤ −

c√
n
)

(1,−β − b√
n
)

(λ∗, 0)

(a) The feasible pairs of (λ, bd(λ)) is shaded in light cyan.

(λ2, 0)

rd̂(λ)

λ

(1, α

λ⇤ −
cp
n
)

(1, ν)
(t, ν)

(u, ν) (λ2,
L(λ2)−U(λ⇤)

λ2−λ⇤ )

(λ1,
U(λ⇤)
λ⇤−λ1

)

(λ1, 0) (λ⇤, 0)(1, 0)

(b) The feasible pairs of (λ,rbd(λ)) is shaded in light cyan.

Figure 1. Illustration of the upper and lower bounds on bd(λ) and rbd(λ), under separability conditions (with margin α and tolerance β)

and event Eδ .

Theorem 13. Let k(x, x)  1 for all x 2 X . Let the kernel

k, and distributions G,H satisfy the separability condition

with tolerance β and margin α > 0. Let ν 2 [ α
4λ∗ ,

3α
4λ∗ ]

and
p

min(m,n) ≥ 36
p

log(1/δ)
α

λ∗ −ν . We then have with prob-

ability 1− 4δ

λ⇤ − bλG
ν  c ·

p
log(1/δ) · (min(m,n))−1/2,

bλG
ν − λ⇤  4βλ⇤

α
+ c0 ·

p
log(1/δ) · (min(m,n))−1/2,

for constants c = (2λ⇤ − 1 +
p
2λ⇤) · 12λ∗

α and c0 =
144(λ∗)2(α+4β)

α2 .

Proof. (Sketch) The upper and lower bounds on bd(λ) given

by Lemmas 7, 6 and Theorem 10 also immediately trans-

late into upper and lower bounds for rbd(λ) (assume dif-

ferentiability of bd(.) for convenience) due to convexity of
bd(.). As shown in Figure 1a, the gradient of bd(.) at some

λ1 < λ⇤ is upper bounded by the slope of the line join-

ing (λ1, 0) and (λ⇤, U(λ⇤)). Similarly, the gradient of bd(.)
at some λ2 > λ⇤ is lower bounded by the slope of the

line joining (λ⇤, U(λ⇤)) and (λ2, L(λ2)). Along with triv-

ial bounds on rbd(λ), these bounds give the set of feasi-

ble values for the ordered pair (λ,rbd(λ)), as illustrated in

Figure 1b. This immediately gives bounds on bλG
ν for any

ν 2 [0,1). An illustration is provided in Figure 1b by the

horizontal line through (1, ν). The points of intersection of

this line with the feasible values of (λ,rbd(λ)) as in Fig-

ure 1b, given by t and u in the figure form lower and upper

bounds respectively for bλG
ν .

Remark: Both the value and gradient thresholding esti-

mates converge to λ⇤ with rates O(m− 1
2 ), if the kernel sat-

isfies the separability condition with a tolerance β = 0.

In the event of the kernel only satisfying the separability

condition with tolerance β > 0, the estimates converge to

within an additive factor of βλ∗

α . As shown in Theorem 11,

with a universal kernel the ratio β
α can be made arbitrarily

low, and hence both the estimates actually converge to λ⇤,

but a specific rate is not possible, due to the dependence of

the constants on α and β, without further assumptions on

G and H .

6. The Gradient Thresholding Algorithm

As can be seen in Theorems 12 and 13, the value and gra-

dient thresholding estimators both converge to λ⇤ at a rate

of O(m− 1
2 ), in the scenario where we know the optimal

threshold. In practice, one needs to set the threshold heuris-

tically, and we observe that the estimate bλV
τ is much more

sensitive to the threshold τ , than the gradient thresholding

estimate bλG
ν is to the threshold ν. This agrees with our in-

tuition of the asymptotic behavior of bd(λ) and rbd(λ) – the

curve of bd(λ) vs λ is close to a hinge, whereas the curve

of rbd(λ) vs λ is close to a step function. This can also

be seen in Figure 2b. Hence, our estimator of choice is the

gradient thresholding estimator and we give an algorithm

for implementing it in this section.

Due to the convexity of bd(.), the slope rbd(.) is an increas-

ing function, and thus the gradient thresholding estimator
bλG
ν can be computed efficiently via binary search. The de-

tails of the computation are given in Algorithm 1.

Algorithm 1 maintains upper and lower bounds (λleft and

λright) on the gradient thresholding estimator,1 estimates the

slope at the current point λcurr and adjusts the upper and

1We assume an initial upper bound of 10 for convenience, as

we don’t gain much by searching over higher values. bλG
ν = 10

corresponds to a mixture proportion estimate of bκ = 0.9.
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Algorithm 1 Kernel mean based gradient thresholder

1: Input: x1,x2, . . . ,xn drawn from mixture F and

xn+1, . . . ,xn+m drawn from component H
2: Parameters: k : X ⇥ X ! [0,1), ⌫ 2 [0,1)

3: Output: bλG
⌫

4: Constants: ✏ = 0.04,λUB = 10
5: λleft = 1,λright = λUB

6: Ki,j = k(xi,xj) for 1  i, j  n+m
7: while λright − λleft ≥ ✏

8: λcurr =
λright+λleft

2
9: λ1 = λcurr − ✏/4

10: u1 = λ1

n ([1>
n ,0

>
m]) + 1−λ1

m ([0>
n ,1

>
m])

11: d1 = bd(λ1)
2 = min

v2∆n+m

(u1 − v)>K(u1 − v)

12: λ2 = λcurr + ✏/4
13: u2 = λ2

n ([1>
n ,0

>
m]) + 1−λ2

m ([0>
n ,1

>
m])

14: d2 = bd(λ2)
2 = min

v2∆n+m

(u2 − v)>K(u2 − v)

15: s =
p
d2−

p
d1

λ2−λ1

16: if s > ⌫:

17: λright = λcurr

18: else:

19: λleft = λcurr

20: return λcurr

lower bounds based on the computed slope. The slope at

the current point λcurr is estimated numerically by comput-

ing the value of bd(.) at λcurr±
✏
4 (lines 9 to 15). We compute

the value of bd(λ) for some given λ using the general pur-

pose convex programming solver CVXOPT. 2

We employ the following simple strategy for model selec-

tion (choosing the kernel k and threshold ⌫). Given a set

of kernels, we choose the kernel for which the empirical

RKHS distance between the distributions F and H , given

by kφ( bF ) − φ( bH)kH is maximized. This corresponds to

choosing a kernel for which the “roof” of the step-like func-

tion rbd(.) is highest. We follow two different strategies for

setting the gradient threshold ⌫. One strategy is motivated

by Lemma 6, where we can see that the slope of bd(λ) for

λ 2 [1,λ⇤] is O(1/
p

min(m,n)) and based on this we set

⌫ = 1/
p

min(m,n). The other strategy is based on em-

pirical observation, and is set as a convex combination of

the initial slope of bd at λ = 1 and the final slope at λ = 1
which is equal to the RKHS distance between the distribu-

tions F and H , given by kφ( bF )−φ( bH)kH. We call the re-

sulting two algorithms as “KM1” and “KM2” respectively

in our experiments.3

2The accuracy parameter ✏ must be set large enough so that

the optimization error in computing bd(λcurr ±
✏

4
) is small when

compared to bd(λcurr +
✏

4
)− bd(λcurr −

✏

4
).

3In KM2, ⌫ = 0.8 ∗ init slope + 0.2 ∗ final slope

7. Other Methods for Mixture Proportion

Estimation

Blanchard et al. (2010) propose an estimator based on the

following equality, which holds under an irreducibility con-

dition (which is a strictly weaker requirement than the an-

chor set condition), ⇤ = infS2Θ,H(S)>0
F (S)
H(S) , where Θ

is the set of measurable sets in X . The estimator proposed

replaces the exact terms F (S) and H(S) in the above ratio

with the empirical quantities bF (S) and bH(S) and includes

VC-inequality based correction terms in the numerator and

denominator and restricts Θ to a sequence of VC classes.

Blanchard et al. (2010) show that the proposed estimator

converges to the true proportion under the irreducibility

condition and also show that the convergence can be ar-

bitrarily slow. Note that the requirement of taking infimum

over VC classes makes a direct implementation of this es-

timator computationally infeasible.

Scott (2015) show that the estimator of Blanchard et al.

(2010) converges to the true proportion at the rate of

1/
p
min(m,n) under the anchor set condition, and also

make the observation that the infimum over the sequence

of VC classes can be replaced by an infimum over just the

collection of base sets (e.g. the set of all open balls). Com-

putationally, this observation reduces the complexity of a

direct implementation of the estimator to O(Nd) where

N = m + n is the number of data points, and d is the

data dimension. But the estimator still remains intractable

for even datasets with moderately large number of features.

Sanderson & Scott (2014); Scott (2015) propose algorithms

based on the estimator of Blanchard et al. (2010), which

treats samples from F and samples from H as positive and

negative classes, builds a conditional probability estimator

and computes the estimate of ⇤ from the constructed ROC

(receiver operating characteristic) curve. These algorithms

return the correct answer when the conditional probability

function learned is exact, but the effect of error in this step

is not clearly understood. This method is referred to as

“ROC” in our experimental section.

Elkan & Noto (2008) propose another method for estimat-

ing ⇤ by constructing a conditional probability estimator

which treats samples from F and samples from H as posi-

tive and negative classes. Even in the limit of infinite data,

it is known that this estimator gives the right answer only

if the supports of G and H are completely distinct. This

method is referred to as “EN” in our experiments.

du Plessis & Sugiyama (2014) propose a method for esti-

mating ⇤ based on Pearson divergence minimization. It

can be seen as similar in spirit to the method of Elkan &

Noto (2008), and thus has the same shortcoming of being

exact only when the supports of G and H are disjoint, even

in the limit of infinite data. The main difference between
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Table 1. Dataset statistics
Dataset # of samples Pos. frac. Dim.

waveform 3343 0.492 21

mushroom 8124 0.517 117

pageblocks 5473 0.897 10

shuttle 58000 0.785 9

spambase 4601 0.394 57

digits 13966 0.511 784

the two is that this method does not require the estimation

of a conditional probability model as an intermediate ob-

ject, and computes the mixture proportion directly.

Recently, Jain et al. (2016) have proposed another method

for the estimation of mixture proportion which is based

on maximizing the “likelihood” of the mixture proportion.

The algorithm suggested by them computes a likelihood

associated with each possible value of κ⇤, and returns the

smallest value for which the likelihood drops significantly.

In a sense, it is similar to our gradient thresholding algo-

rithm, which also computes a distance associated to each

possible value of λ⇤, and returns the smallest value for

which the distance increases faster than a threshold. Their

algorithm also requires a conditional probability model dis-

tinguishing F and H to be learned. It also has no guaran-

tees of convergence to the true estimate κ⇤. This method is

referred to as “alphamax” in our experiments.

Menon et al. (2015); Liu & Tao (2015) and Scott et al.

(2013b) propose to estimate the mixture proportion κ⇤,

based on the observation that, if the distributions F and

H satisfy the anchor set condition, then κ⇤ can be directly

related to the maximum value of the conditional probabil-

ity given by maxx η(x), where η is the conditional proba-

bility function in the binary classification problem treating

samples from F as positive and samples from H negative.

Thus one can get an estimate of κ⇤ from an estimate of the

conditional probability bη through maxx bη(x). This method

clearly requires estimating a conditional probability model,

and is also less robust to errors in estimating the conditional

probability due to the form of the estimator.

8. Experiments

We ran our algorithm with 6 standard binary classification

datasets4 taken from the UCI machine learning repository,

the details of which are given below in Table 1.5

4shuttle, pageblocks, digits are originally mul-
ticlass datasets, they are used as binary datasets by either grouping
or ignoring classes.

5In our experiments, we project the data points from the
digits and mushroom datasets onto a 50-dimensional space
given by PCA.

From each binary dataset containing positive and nega-

tive labelled data points, we derived 6 different pairs of

mixture and component distributions (F and H respec-

tively) as follows. We chose a fraction of the positive data

points to be part of the component distribution, the pos-

itive data points not chosen and the negative data points

constitute the mixture distribution. The fraction of positive

data points chosen to belong to the component distribution

was one of {0.25, 0.5, 0.75} giving 3 different pairs of dis-

tributions. The positive and negative labels were flipped

and the above procedure was repeated to get 3 more pairs

of distributions. From each such distribution we drew a

total of either 400,800,1600 or 3200 samples and ran the

two variants of our kernel mean based gradient threshold-

ing algorithm given by “KM1” and “KM2”. Our candidate

kernels were five Gaussian RBF kernels, with the kernel

width taking values uniformly in the log space between

a tenth of the median pairwise distance and ten times the

median distance, and among these kernels the kernel for

which kφ( bF ) − φ( bH)k is highest is chosen. We also ran

the “alphamax”, “EN” and “ROC” algorithms for compar-

ison.6 The above was repeated 5 times with different ran-

dom seeds, and the average error |bκ − κ⇤| was computed.

The results are plotted in Figure 3 and the actual error val-

ues used in the plots is given in the supplementary material

Section H. Note that points in all plots are an average of 30

error terms arising from the 6 distributions for each dataset,

and 5 different sets of samples for each distribution arising

due to different random seeds.

It can be seen from the plots in Figure 3, that our algo-

rithms (KM1 and KM2) perform comparably to or better

than other algorithms for all datasets except mushroom.

9. Conclusion

Mixture proportion estimation is an interesting and impor-

tant problem that arises naturally in many ‘weakly super-

vised learning’ settings. In this paper, we give an efficient

kernel mean embedding based method for this problem,

and show convergence of the algorithm to the true mixture

proportion under certain conditions. We also demonstrate

the effectiveness of our algorithm in practice by running it

on several benchmark datasets.
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(a) n+m = 3200,κ∗ = 0.43,λ∗ = 1.75 (b) n+m = 3200,κ∗ = 0.2,λ∗ = 1.25

(c) n+m = 800,κ∗ = 0.43,λ∗ = 1.75 (d) n+m = 800,κ∗ = 0.2,λ∗ = 1.25

Figure 2. bd(.) and rbd(.) are plotted for two different sample sizes and true positive proportions.

Figure 3. The average error made by the KM, alphamax, ROC and EN algorithms in predicting the mixture proportion κ
∗ for various

datasets as a function of the total number of samples from the mixture and component.
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Supplementary Material

A. Proof of Propositions 1, 2, 3 and 4

Proposition.

d(λ) = 0, 8λ 2 [0,λ⇤],

bd(λ) = 0, 8λ 2 [0, 1].

Proof. The second equality is obvious and follows from convexity of CS and that both φ( bF ) and φ( bH) are in CS .

The first statement is due to the following. Let λ 2 [0,λ⇤], then we have that,

d(λ) = inf
w2C

kλφ(F ) + (1− λ)φ(H)− wkH

= inf
w2C

∥∥∥∥
λ

λ⇤
(λ⇤φ(F ) + (1− λ⇤)φ(H)) +

✓
1−

λ

λ⇤

◆
φ(H)− w

∥∥∥∥
H

= inf
w2C

∥∥∥∥
λ

λ⇤
(φ(G)) +

✓
1−

λ

λ⇤

◆
φ(H)− w

∥∥∥∥
H

= 0 .

Proposition. d(.) and bd(.) are non-decreasing convex functions.

Proof. Let 0 < λ1 < λ2. Let ✏ > 0. Let w1, w2 2 C be such that

d(λ1) ≥ k(λ1)φ(F ) + (1− λ1)φ(H)− w1kH − ✏,

d(λ2) ≥ k(λ2)φ(F ) + (1− λ2)φ(H)− w2kH − ✏ .

By definition of d(.) such w1, w2 exist for all ✏ > 0.

Let γ 2 [0, 1], λγ = (1− γ)λ1 + γλ2 and wγ = (1− γ)w1 + γw2. We then have that

d(λγ)  k(λγ)φ(F ) + (1− λγ)φ(H)− wγkH

= k((1− γ)λ1 + γλ2)φ(F ) + (1− (1− γ)λ1 − γλ2)φ(H)− wγkH

= k((1− γ)λ1 + γλ2)φ(F ) + ((1− γ)(1− λ1) + γ(1− λ2))φ(H)− wγkH

= k(1− γ) (λ1φ(F ) + (1− λ1)φ(H)− w1) + γ (λ2φ(F ) + (1− λ2)φ(H)− w2)k

 (1− γ) k(λ1φ(F ) + (1− λ1)φ(H)− w1)k+ γ k(λ2φ(F ) + (1− λ2)φ(H)− w2)k

 (1− γ)(d(λ1) + ✏) + γ(d(λ2) + ✏)

= (1− γ)d(λ1) + γd(λ2) + ✏ .

As the above holds for all ✏ > 0 and d(λγ) is independent of ✏, we have

d(λγ) = d((1− γ)λ1 + γλ2)  (1− γ)d(λ1) + γd(λ2).

Thus we have that d(.) is convex.

As C is convex and φ(H),φ(F ) 2 C, we have that d(λ) = 0 for λ 2 [0,λ⇤], and hence rd(λ) = 0 for λ 2 [0,λ⇤]. By

convexity, we then have that for all λ ≥ 0, all elements of the sub-differential @d(λ) are non-negative and hence d(.) is a

non-decreasing function.

By very similar arguments, we can also show that bd(.) is convex and non-decreasing.
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Proposition. For all µ ≥ 0

d(λ⇤ + µ) = inf
w2C

kφ(G) + µ(φ(F )− φ(H))− wkH.

Proof.

d(λ⇤ + µ) = inf
w2C

k(λ⇤ + µ)φ(F ) + (1− λ⇤ − µ)φ(H)− wkH

= inf
w2C

kλ⇤φ(F ) + (1− λ⇤)φ(H) + µ(φ(F )− φ(H))− wkH

= inf
w2C

kφ(λ⇤F + (1− λ⇤)H) + µ(φ(F )− φ(H))− wkH .

Proposition. For all λ, µ ≥ 0,

d(λ) ≥ λkφ(F )− φ(H)k − sup
w2C

kφ(H)− wk, (5)

d(λ⇤ + µ)  µkφ(F )− φ(H)k, . (6)

Proof. The proof of the first inequality above follows from applying triangle inequality to d(.) from Equation (1).

The proof of the second inequality above follows from Proposition 3 by setting h = φ(G).

B. Proof of Lemma 5

Lemma. Let the kernel k be such that k(x, x)  1 for all x 2 X . Let δ 2 (0, 1/4]. We have that, the following holds with

probability 1− 4δ (over the sample x1, . . . , xn+m) if n > 2(λ⇤)2 log
(
1
δ

)
.

kφ(F )− φ( bF )kH  3
p
log(1/δ)p

n
,

kφ(H)− φ( bH)kH  3
p
log(1/δ)p

m
,

kφ(G)− φ( bG)kH  3
p
log(1/δ)p
n/(2λ⇤)

.

The proof for the first two statements is a direct application of Theorem 2 of Smola et al. (Smola et al., 2007), along with

bounds on the Rademacher complexity. The proof of the third statement also uses Hoeffding’s inequality to show that out

of the n samples drawn from F , at least n/(2λ⇤) samples are drawn from G.

Lemma 14. Let the kernel k be such that k(x, x)  1 for all x 2 X . Then we have the following

1. For all h 2 H such that khkH  1 we have that supx2X |h(x)|  1.

2. For all distributions P over X , the Rademacher complexity of H is bounded above as follows:

Rn(H, P ) =
1

n
Ex1,...,xn⇠PEσ1,...,σn

"
sup

h:khkH1

∣∣∣∣∣

nX

i=1

σih(xi)

∣∣∣∣∣

#
 1p

n
.

Proof. The first item simply follows from Cauchy-Schwarz and the reproducing property of H

|h(x)| = |hh, k(x, .)i|  khkHkk(x, .)kH  1 .

The second item is also a standard result and follows from the reproducing property and Jensen’s inequality.

1

n
Eσ1,...,σn

"
sup

h:khkH1

∣∣∣∣∣

nX

i=1

σih(xi)

∣∣∣∣∣

#
=

1

n
Eσ1,...,σn

"
sup

h:khkH1

∣∣∣∣∣h
nX

i=1

σik(xi, .), hi
∣∣∣∣∣

#
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=
1

n
Eσ1,...,σn

"∥∥∥∥∥

nX

i=1

σik(xi, .)

∥∥∥∥∥

#

 1

n

vuuutEσ1,...,σn

2
4
∥∥∥∥∥

nX

i=1

σik(xi, .)

∥∥∥∥∥

2
3
5

=
1

n

vuutEσ1,...,σn

"
nX

i=1

k(xi, xi)

#

 1p
n
.

Theorem 15. (Smola et al., 2007) Let δ 2 (0, 1/4]. Let all h 2 H with khkH  1 be such that supx2X |h(x)|  R. Let bP
be the empirical distribution induced by n i.i.d. samples from a distribution. Then with probability at least 1− δ

kφ(P )− φ( bP )k  2Rn(H, P ) +R

s
log
(
1
δ

)

n
.

Lemma 16. Let δ 2 (0, 1/4]. Let n > 2(λ⇤)2 log
(
1
δ

)
. Then with at least probability 1 − δ the following holds. At least

n
2λ∗ of the n samples x1, . . . , xn drawn from F (which is a mixture of G and H) are drawn from G.

Proof. For all 1  i  n let

zi =

(
1 if xi is drawn from G

0 otherwise
.

From the definition of F , we have that zi are i.i.d. Bernoulli random variables with a bias of 1
λ∗ . Therefore by Hoeffding’s

inequality we have that,

Pr

 
nX

i=1

zi >
n

2λ⇤

!
= Pr

 
1

n

nX

i=1

zi −
1

λ⇤
>

−1

2λ⇤

!

= 1− Pr

 
1

n

nX

i=1

zi −
1

λ⇤
 −1

2λ⇤

!

≥ 1− e
−

2n
(2λ∗)2 ≥ 1− δ .

Proof. (Proof of Lemma 5) From Theorem 15 and Lemma 14, we have that with probability 1− δ

kφ(F )− φ( bF )kH  2
1p
n
+

s
log
(
1
δ

)

n
.

We also have that with probability 1− δ

kφ(H)− φ( bH)kH  2
1p
m

+

s
log
(
1
δ

)

m
.

Let n0 be the number of samples in x1, . . . , xn drawn from G. From Lemma 16, we have that with probability 1 − δ the

n0 ≥ n
2λ∗ .
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We also have that with probability 1− δ

kφ(G)− φ( bG)kH  2
1p
n0

+

s
log
(
1
δ

)

n0
.

Putting the above four 1− δ probability events together completes the proof.

C. Proofs of Lemmas 6 and 7

Lemma. Let k(x, x)  1 for all x 2 X . Assume Eδ . For all λ 2 [1,λ⇤] we have that

bd(λ) 
 
2− 1

λ⇤
+

p
2p
λ⇤

!
λ · 3

p
log(1/δ)p

min(m,n)

Proof. For any λ 2 [1,λ⇤], let wλ = λ
λ∗φ( bG) + (1− λ

λ∗ )φ( bH) 2 CS .

bd(λ) = inf
w2CS

kλφ( bF ) + (1− λ)φ( bH)− wkH

 inf
w2CS

kλφ(F ) + (1− λ)φ(H)− wkH + (2λ− 1) · 3
p
log(1/δ)p

min(m,n)

= inf
w2CS

kφ(G) + (λ− λ⇤)(φ(F )− φ(H))− wkH + (2λ− 1) · 3
p

log(1/δ)p
min(m,n)

= inf
w2CS

∥∥∥∥φ(G) +
λ− λ⇤

λ⇤
(φ(G)− φ(H))− w

∥∥∥∥
H

+ (2λ− 1) · 3
p

log(1/δ)p
min(m,n)


∥∥∥∥φ(G) +

λ− λ⇤

λ⇤
(φ(G)− φ(H))− wλ

∥∥∥∥
H

+ (2λ− 1) · 3
p
log(1/δ)p

min(m,n)

=

∥∥∥∥
λ

λ⇤
(φ(G)− φ( bG)) +

✓
1− λ

λ⇤

◆
(φ(H)− φ( bH))

∥∥∥∥
H

+ (2λ− 1) · 3
p

log(1/δ)p
min(m,n)

 λ

λ⇤
k(φ(G)− φ( bG))kH +

✓
1− λ

λ⇤

◆
k(φ(H)− φ( bH))kH + (2λ− 1) · 3

p
log(1/δ)p

min(m,n)

 λ

λ⇤

3
p
log(1/δ)p
n/(2λ⇤)

+

✓
1− λ

λ⇤

◆
3
p
log(1/δ)p

m
+ (2λ− 1) · 3

p
log(1/δ)p

min(m,n)

 λ

λ⇤

p
2λ⇤

3
p
log(1/δ)p

min(m,n)
+

✓
1− λ

λ⇤

◆
3
p

log(1/δ)p
min(m,n)

+ (2λ− 1) · 3
p
log(1/δ)p

min(m,n)

=

 p
2p
λ⇤

λ+ 1− λ

λ⇤
+ 2λ− 1

!
3
p

log(1/δ)p
min(m,n)

=

 
2− 1

λ⇤
+

p
2p
λ⇤

!
λ · 3

p
log(1/δ)p

min(m,n)
.

Lemma. Let k(x, x)  1 for all x 2 X . Assume Eδ . For all λ ≥ 1, we have

bd(λ) ≥ d(λ)− (2λ− 1) · 3
p

log(1/δ)p
min(m,n)

.

Proof.

bd(λ) = inf
w2CS

kλφ( bF ) + (1− λ)φ( bH)− wkH
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≥ inf
w2CS

kλφ(F ) + (1− λ)φ(H)− wkH − λkφ( bF )− φ(F )kH − (λ− 1)kφ(H)− φ( bH)kH

≥ d(λ)− λ · 3
p

log(1/δ)p
n

− (λ− 1) · 3
p

log(1/δ)p
m

≥ d(λ)− (2λ− 1) · 3
p

log(1/δ)p
min(m,n)

.

D. Proof of Theorem 10

Theorem. Let the kernel k, and distributions G,H satisfy the separability condition with margin ↵ > 0 and tolerance β.

Then ∀µ > 0

d(λ⇤ + µ) ≥ ↵µ

λ⇤
− β .

Proof. Let g 2 H be the witness to the separability condition – (i.e.) kgkH  1 and EX⇠Gg(X)  infx g(x) + β 
EX⇠Hg(X) + ↵. Let ∆X denote the set of all probability distributions over X . One can show that

d(λ⇤ + µ) = inf
w2C

kφ(G) + µ(φ(F )− φ(H))− wkH

= inf
P2∆X

kφ(G) +
µ

λ⇤
(φ(G)− φ(H))− φ(P )kH

= inf
P2∆X

sup
h2H:khk1

D
φ(P ) +

µ

λ⇤
(φ(H)− φ(G))− φ(G), h

E

= inf
P2∆X

sup
h2H:khk1

EP [h(X)]−EG[h(X)] +
µ

λ⇤
(EH [h(X)]−EG[h(X)])

≥ inf
P2∆X

EP [g(X)] +
µ

λ⇤
EH [g(X)]−

⇣
1 +

µ

λ⇤

⌘
EG[g(X)])

≥ inf
x

g(x) +
µ

λ⇤
(↵)− (inf

x
g(x) + β)

=
↵µ

λ⇤
− β .

E. Proof of Theorem 11

Theorem. Let the kernel k : X ⇥X ! [0,1) be universal. Let the distributions G,H be such that they satisfy the anchor

set condition with margin γ > 0 for some family of subsets of X . Then, for all ✓ > 0, there exists a β > 0 such that the

kernel k, and distributions G,H satisfy the separability condition with margin β✓ and tolerance β, i.e.

EX⇠Gh(X)  inf
x

h(x) + β  EX⇠Hh(X)− β✓

Proof. Fix some ✓ > 0. Let A ✓ X be the witness to the anchor set condition, i.e., A is a compact set such that

A ✓ supp(H) \ supp(G) and H(A) ≥ γ. A is a compact (and hence closed) set that is disjoint from supp(G) (which is a

closed, compact set), hence there exists a continuous function f : X ! R such that,

f(x) ≥ 0, ∀x ∈ X ,

f(x) = 0, ∀x ∈ supp(G),

f(x) ≥ 1, ∀x ∈ A.

By universality of the kernel k, we have that

∀✏ > 0, ∃h✏ ∈ H, s.t. sup
x2X

|f(x)− h✏(x)|  ✏.
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We then have the following:

EGh✏(X)  ✏, (7)

inf
x2X

h✏(x)  ✏, (8)

inf
x2X

h✏(x) ≥ −✏, (9)

inf
x2A

h✏(x) ≥ 1− ✏, (10)

EHh✏(X) ≥ (−✏)(1−H(A)) + (1− ✏)H(A)

≥ γ − ✏. (11)

From Equations (7), (8), (9) and (11), we have that

EGh✏(X)  ✏  inf
x

h✏(x) + 2✏  3✏  EHh✏(X)− (γ − 4✏).

Let h✏ = h✏/kh✏kH be the normalized version of h✏. We then have that

EGh✏(X)  inf
x

h✏(x) +
2✏

kh✏kH
 EHh✏(X)− γ − 4✏

kh✏kH
.

Setting ✏ = γ
2✓+4 and β = 2γ

(2✓+4)khγ/(2θ+4)kH
we get that there exists h 2 H such that khkH  1 and

EGh(X)  inf
x

h(x) + β  EHh(X)− β✓.

F. Proof of Theorem 12

Theorem. Let δ 2 (0, 1
4 ]. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability

condition with tolerance β and margin ↵ > 0. Let the number of samples be large enough such that min(m,n) >
(12·λ∗)2 log(1/δ)

↵2 . Let the threshold ⌧ be such that
3λ∗

p
log(1/δ)(2−1/λ∗+

p
2/λ∗)p

min(m,n)
 ⌧  6λ∗

p
log(1/δ)(2−1/λ∗+

p
2/λ∗)p

min(m,n)
. We

then have with probability 1− 4δ

λ⇤ − bλV
⌧  0,

bλV
⌧ − λ⇤  βλ⇤

↵
+ c ·

p
log(1/δ) · (min(m,n))−1/2,

for constant c =

✓
6↵(λ∗)2(2−1/λ∗+

p
2/λ∗)+2λ∗(3↵+6λ∗(2+↵+β))

↵2

◆
.

Lemma 17. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with

margin ↵ and tolerance β. Assume Eδ . Then

bd(λ) 
 
2− 1

λ⇤
+

p
2p
λ⇤

!
λ · 3

p
log(1/δ)p

min(m,n)
, 8λ 2 [1,λ⇤],

bd(λ) ≥ (λ− λ⇤)↵

λ⇤
− β − (2λ− 1) · 3

p
log(1/δ)p

min(m,n)
, 8λ 2 [λ⇤,1) .

Proof. The proof follows from Lemmas 7, 6 and Theorem 10. The upper bound forms the line (λ, U(λ)) and the lower

bound forms the line (λ, L(λ)) in Figure 1a.

Lemma 18. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with

margin ↵ and tolerance β. Assume Eδ . We then have

bλV
⌧ ≥ min

 
λ⇤,

⌧
p
min(m,n)

3
p

log(1/δ)(2− 1/λ⇤ +
p
2/λ⇤)

!
, (12)
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bλV
τ  λ⇤ · (τ + β + ↵)

p
min(m,n) + 3

p
log(1/δ)

α
p

min(m,n)− 6λ⇤
p
log(1/δ)

. (13)

Proof. As bd is a continuous function, we have that bd(bλV
τ ) = τ . If bλV

τ  λ⇤, we have from Lemma 17 that

τ 
 
2−

1

λ⇤
+

√
2√
λ⇤

!
bλV
τ · 3

p
log(1/δ)p

min(m,n)
,

and hence

bλV
τ ≥ min

 
λ⇤,

τ
p

min(m,n)

3
p
log(1/δ)(2− 1/λ⇤ +

p
2/λ⇤)

!
.

If bλV
τ ≥ λ⇤, we have

τ ≥ (bλV
τ − λ⇤)↵

λ⇤
− β − (2bλV

τ − 1) · 3
p
log(1/δ)p

min(m,n)
,

= bλV
τ

 
↵

λ⇤
−

6
p

log(1/δ)p
min(m,n)

!
− α− β −

3
p
log(1/δ)p

min(m,n)
.

Rearranging terms, we have that if bλV
τ ≥ λ⇤, then

bλV
τ 

τ + ↵+ β +
3
√

log(1/δ)√
min(m,n)

α
λ∗ − 6

√
log(1/δ)√

min(m,n)

.

And thus

bλV
τ  max

 
λ⇤,λ⇤ · (τ + β + ↵)

p
min(m,n) + 3

p
log(1/δ)

α
p

min(m,n)− 6λ⇤
p
log(1/δ)

!

= λ⇤ · (τ + β + ↵)
p

min(m,n) + 3
p
log(1/δ)

α
p
min(m,n)− 6λ⇤

p
log(1/δ)

.

Proof. (Proof of Theorem 12)

As min(m,n) > (12·λ∗)2 log(1/δ)
α2 > 2(λ⇤)2 log(1/δ), we have that Eδ is 1− 4δ probability event. Assume Eδ .

As τ ≥ 3λ∗
√

log(1/δ)(2−1/λ∗+
√

2/λ∗)√
min(m,n)

, we have from Equation (12)

bλV
τ ≥ λ⇤ .

From Equation (13), we have

bλV
τ  λ⇤ · (τ + ↵+ β)

p
min(m,n) + 3

p
log(1/δ)

↵
p
min(m,n)− 6λ⇤

p
log(1/δ)

= λ⇤

 
τ + β + ↵

↵
+

(3 + 6λ∗(τ+α+β)
α )

p
log(1/δ)

α
p
min(m,n)− 6λ⇤

p
log(1/δ)

!

 λ⇤

✓
1 +

β

↵

◆
+

τλ
⇤

α
+

2λ⇤(3 + 6λ∗(τ+α+β)
α )

p
log(1/δ)

α
p

min(m,n)
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 λ
⇤

✓
1 +

β

α

◆
+

6(λ⇤)2
p

log(1/δ)(2− 1/λ⇤ +
p
2/λ⇤)

α
p

min(m,n)
+

2λ⇤(3α+ 6λ⇤(τ + α+ β))
p

log(1/δ)

α2
p
min(m,n)

 λ⇤

✓
1 +

β

α

◆
+

 
6α(λ⇤)2(2− 1/λ⇤ +

p
2/λ⇤) + 2λ⇤(3α+ 6λ⇤(2 + α+ β))

α2

!
·
p
log(1/δ) · (min(m,n))−1/2 .

The third line above follows, because min(m,n) > (12·λ∗)2 log(1/δ)
α2 . The last two lines follow, because τ 

6λ∗
√

log(1/δ)(2−1/λ∗+
√

2/λ∗)√
min(m,n)

, which in turn is upper bounded by 2 under the conditions on min(m,n).

G. Proof of Theorem 13

Theorem. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with

tolerance β and margin α > 0. Let ν 2 [ α
4λ∗ ,

3α
4λ∗ ] and

p
min(m,n) ≥ 36

√
log(1/δ)
α

λ∗ −ν
. We then have with probability 1−4δ,

λ⇤ − bλG
ν  c ·

p
log(1/δ) · (min(m,n))−1/2,

bλG
ν − λ⇤  4βλ⇤

α
+ c0 ·

p
log(1/δ) · (min(m,n))−1/2,

for constants c = (2λ⇤ − 1 +
√
2λ⇤) · 12λ∗

α
and c0 = 144(λ∗)2(α+4β)

α2 .

Lemma 19. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with

margin α and tolerance β. Assume Eδ . We then have

sup{g 2 ∂ bd(λ)}  1

λ⇤ − λ
· (2λ⇤ − 1 +

√
2λ⇤) · 3

p
log(1/δ)p

min(m,n)
, ∀λ ∈ [1, λ⇤],

inf{g ∈ ∂ bd(λ)} ≥
 

α

λ⇤
− β

λ− λ⇤
− 6λ

λ− λ⇤
· 3
p

log(1/δ)p
min(m,n)

!
, ∀λ ∈ [λ⇤,∞) .

Proof. As bd(.) is convex, we have that for all λ ∈ [1, λ⇤], and all g ∈ ∂ bd(λ)

g ≤
bd(λ⇤)− bd(λ)

λ⇤ − λ

≤
bd(λ⇤)

λ⇤ − λ
.

Applying Lemma 6 to bd(λ⇤), we get ∀λ ∈ [1, λ⇤]

sup{g ∈ ∂ bd(λ)} ≤ 1

λ⇤ − λ
· (2λ⇤ − 1 +

√
2λ⇤) · 3

p
log(1/δ)p

min(m,n)
.

Once again by convexity of bd(.), we have that for all λ ≥ λ⇤ and all g ∈ ∂ bd(λ)

g ≥
bd(λ)− bd(λ⇤)

λ− λ⇤
.

Applying Lemma 7 and Theorem 10 to bd(λ) and Lemma 6 to bd(λ⇤), we get ∀λ ∈ [λ⇤,∞)

inf{g ∈ ∂ bd(λ)} ≥
 

α

λ⇤
− β

λ− λ⇤
− 2λ+ 2λ⇤ − 2 +

√
2λ⇤

λ− λ⇤
· 3
p

log(1/δ)p
min(m,n)

!
.
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Lemma 20. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with

margin α and tolerance β. Assume Eδ . We then have

bλG
ν ≥ λ⇤ − (2λ⇤ − 1 +

√
2λ⇤) · 3

p
log(1/δ)

ν
p
min(m,n)

, (14)

bλG
ν ≤ λ⇤ ·

α+β
λ∗ − ν

α
λ∗ − ν − 18

√
log(1/δ)√

min(m,n)

. (15)

Proof. By definition of the gradient thresholding estimator bλG
ν we have

inf{g ∈ ∂ bd(bλG
ν )} ≤ ν ≤ sup{g ∈ ∂ bd(bλG

ν )} .

Firstly, note that bλG
ν ≥ 1, because ν ≥ α

4λ∗ > 0. By Lemma 19 we have that if bλG
ν ∈ [1,λ⇤] then

ν ≤ sup{g ∈ ∂ bd(bλG
ν )} ≤

1

λ⇤ − bλG
ν

· (2λ⇤ − 1 +
√
2λ⇤) · 3

p
log(1/δ)p

min(m,n)
. (16)

Once again by Lemma 19, we have that if bλG
ν > λ⇤ then

ν ≥ inf{g ∈ ∂ bd(bλG
ν )} ≥

 
α

λ⇤
−

β

bλG
ν − λ⇤

−
6bλG

ν

bλG
ν − λ⇤

· 3
p
log(1/δ)p

min(m,n)

!
. (17)

Rearranging Equation (16), we get that if bλG
ν ∈ [1,λ⇤] then

bλG
ν ≥ λ⇤ − (2λ⇤ − 1 +

√
2λ⇤) · 3

p
log(1/δ)

ν
p
min(m,n)

.

Hence

bλG
ν ≥ min

 
λ⇤,λ⇤ − (2λ⇤ − 1 +

√
2λ⇤) · 3

p
log(1/δ)

ν
p
min(m,n)

!
= λ⇤ − (2λ⇤ − 1 +

√
2λ⇤) · 3

p
log(1/δ)

ν
p
min(m,n)

.

Rearranging Equation (17), we get that if bλG
ν > λ⇤, then

α

λ⇤
− ν ≤

 
6bλG

ν

bλG
ν − λ⇤

· 3
p
log(1/δ)p

min(m,n)
+

β

bλG
ν − λ⇤

!

⇣
bλG
ν − λ⇤

⌘⇣ α

λ⇤
− ν

⌘
≤

⇣
6bλG

ν

⌘
· 3
p
log(1/δ)p

min(m,n)
+ β

⇣
bλG
ν

⌘ α

λ⇤
− ν −

18
p
log(1/δ)p

min(m,n)

!
≤ λ⇤

⇣ α

λ⇤
− ν

⌘
+ β

bλG
ν ≤

λ⇤
⇣

α+β
λ∗ − ν

⌘

α
λ∗ − ν − 18

√
log(1/δ)√

min(m,n)

.

Thus we have

bλG
ν ≤ max

0
BB@λ⇤,

λ⇤
⇣

α+β
λ∗ − ν

⌘

α
λ∗ − ν − 18

√
log(1/δ)√

min(m,n)

1
CCA =

λ⇤
⇣

α+β
λ∗ − ν

⌘

α
λ∗ − ν − 18

√
log(1/δ)√

min(m,n)

.
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Proof. (Proof of Theorem 13)

As ( α
λ∗ − ⌫)

p
min(m,n) ≥ 36

p
log(1/δ), we have that

min(m,n) ≥ (36λ⇤)2 log(1/δ)

α2
≥ 2(λ⇤)2 log(1/δ),

and hence Eδ is a 1− 4δ probability event. Assume Eδ .

Equation (14) immediately gives

λ
⇤ − bλG

ν  (2λ⇤ − 1 +
p
2λ⇤) · 3

⌫
·
p
log(1/δ) · (min(m,n))−1/2

 (2λ⇤ − 1 +
p
2λ⇤) · 12λ

⇤

α
·
p
log(1/δ) · (min(m,n)−1/2 .

The second inequality above is due to ⌫ ≥ α
4λ∗ .

Let ω = α+β−νλ∗

α−νλ∗  1 + 4β
α . Equation (15) gives

bλG
ν  λ

⇤ ·
α+β
λ∗ − ⌫

α
λ∗ − ⌫ − 18

p
log(1/δ)p

min(m,n)

= λ
⇤ ·

ω

✓
α
λ∗ − ⌫ − 18

p
log(1/δ)p

min(m,n)

◆
+ ω

✓
18
p

log(1/δ)p
min(m,n)

◆

α
λ∗ − ⌫ − 18

p
log(1/δ)p

min(m,n)

= ωλ⇤ +
18ωλ⇤

p
log(1/δ)

( α
λ∗ − ν)

p
min(m,n)− 18

p
log(1/δ)

 ωλ⇤ +
36ωλ⇤

p
log(1/δ)

( α
λ∗ − ν)

p
min(m,n)

 λ⇤ +
4βλ⇤

α
+

36(1 + 4β
α )λ⇤

p
log(1/δ)

( α
4λ∗ )

p
min(m,n)

 λ⇤ +
4βλ⇤

α
+

144(λ⇤)2(α+ 4β)

α2
·
p
log(1/δ) · (min(m,n))−1/2 .

The second inequality above is due to ( α
λ∗ − ν)

p
min(m,n) ≥ 36

p
log(1/δ). The third inequality above is due to

ν  3α
4λ∗ .

H. Experimental Results in Table Format
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KM1 KM2 alphamax ROC EN

waveform(400) 0.042 0.032 0.089⇤ 0.117⇤ 0.127⇤

waveform(800) 0.034 0.027 0.06⇤ 0.072 ⇤ 0.112⇤

waveform(1600) 0.021 0.017 0.048⇤ 0.051⇤ 0.115⇤

waveform(3200) 0.015 0.012 0.079⇤ 0.045⇤ 0.102⇤

mushroom(400) 0.193⇤ 0.123⇤ 0.084 0.148⇤ 0.125

mushroom(800) 0.096⇤ 0.129⇤ 0.041 0.074⇤ 0.066⇤

mushroom(1600) 0.042 0.096⇤ 0.039 0.053⇤ 0.055⇤

mushroom(3200) 0.039⇤ 0.067⇤ 0.023 0.024 0.035⇤

pageblocks(400) 0.098 0.16 0.218 0.193⇤ 0.078

pageblocks(800) 0.038 0.088⇤ 0.203⇤ 0.139⇤ 0.081⇤

pageblocks(1600) 0.034 0.056⇤ 0.083⇤ 0.091⇤ 0.055⇤

pageblocks(3200) 0.02 0.033⇤ 0.166⇤ 0.084⇤ 0.047⇤

shuttle(400) 0.072 0.129 0.122 0.107⇤ 0.062

shuttle(800) 0.065 0.091 0.054 0.057 0.046

shuttle(1600) 0.035 0.03 0.03 0.049⇤ 0.027

shuttle(3200) 0.023⇤ 0.014 0.02 0.041⇤ 0.025⇤

spambase(400) 0.086 0.111 0.097 0.229⇤ 0.186⇤

spambase(800) 0.079 0.067 0.096⇤ 0.166⇤ 0.171⇤

spambase(1600) 0.059 0.043 0.07⇤ 0.092⇤ 0.139⇤

spambase(3200) 0.032 0.028 0.063⇤ 0.067⇤ 0.129⇤

digits(400) 0.24⇤ 0.091 0.115 0.186⇤ 0.136

digits(800) 0.127⇤ 0.071 0.073 0.113⇤ 0.114⇤

digits(1600) 0.083⇤ 0.034 0.03 0.071⇤ 0.111⇤

digits(3200) 0.055⇤ 0.025 0.031 0.046⇤ 0.085⇤

Table 2. Average absolute error incurred in predicting the mixture proportion κ
∗. The first column gives the dataset and the total number

of samples used (mixture and component) in parantheses. The best performing algorithm for each dataset and sample size is highlighted

in bold. Algorithms whose performances have been identified as significantly inferior to the best algorithm, by the Wilcoxon signed rank

test (at significance level p = 0.05), are marked with a star.


