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Abstract

Consider the problem of estimating the γ-level set G∗

γ = {x : f(x) ≥ γ}
of an unknown d-dimensional density function f based on n independent
observations X1, . . . , Xn from the density. This problem has been ad-
dressed under global error criteria related to the symmetric set difference.
However, in certain applications such as anomaly detection and cluster-
ing, a spatially uniform confidence interval is desired to ensure that the
estimated set is close to the target set everywhere. The Hausdorff error
criterion provides this degree of uniformity and hence is more appropriate
in such situations. The minimax optimal rate of Hausdorff error conver-
gence is known to be (n/ log n)−1/(d+2α) for level sets with boundaries that
have a Lipschitz functional form, and where the parameter α characterizes
the regularity of the density around the level of interest. However, previ-
ously developed estimators are non-adaptive to the density regularity and
assume knowledge of α. Moreover, the estimators proposed in previous
work achieve the minimax optimal rate for rather restricted classes of sets
(for example, the boundary fragment and star-shaped sets) that effectively
reduce the set estimation problem to a function estimation problem. This
characterization precludes level sets with multiple connected components,
which are fundamental to many applications. This paper presents a fully
data-driven procedure that is adaptive to unknown local density regular-
ity, and achieves minimax optimal Hausdorff error control for a class of
level sets with very general shapes and multiple connected components.

1 Introduction

Level sets provide useful summaries of a function for many applications includ-
ing clustering [1, 2], anomaly detection [3, 4, 5], functional neuroimaging [6, 7],
bioinformatics [8], digital elevation mapping [9, 10], and environmental moni-
toring [11]. In practice, however, the function itself is unknown a priori and only
a finite number of observations related to f are available. Here we focus on the
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density level set problem; extensions to general regression level set estimation
should be possible using a similar approach. Let X1, . . . , Xn be independent,
identically distributed observations drawn from an unknown probability mea-
sure P , having density f with respect to the Lebesgue measure, and defined on
the domain X ⊆ R

d. Given a desired density level γ, consider the γ-level set of
the density f :

G∗
γ := {x ∈ X : f(x) ≥ γ}

The goal of the density level set estimation problem is to generate an estimate Ĝ
of the level set based on the n observations {Xi}n

i=1, such that the error between

the estimator Ĝ and the target set G∗
γ , as assessed by some performance measure

which gauges the closeness of the two sets, is small.
Most literature available on level set estimation methods [3, 4, 12, 9, 13, 14,

15, 16] considers error measures related to the symmetric set difference,

G1∆G2 = (G1 \ G2) ∪ (G2 \ G1). (1)

Here G1 \ G2 = G1 ∩ Gc
2, where Gc denotes the complement of the set G. For

example, in [3, 13, 14, 16] a probability measure of the symmetric set difference
is considered, and in [12, 9, 16] a probability measure of weighted symmetric set
difference is considered, the weight being proportional to the deviation of the
function from the desired level. Symmetric difference error based performance
measures are global measures of average closeness between two sets and hence
may produce estimates that deviate significantly from the desired level set at
certain places. However, some applications such as anomaly detection and clus-
tering may require a more local or spatially uniform error measure as provided
by the Hausdorff metric, for example, to preserve topological properties of the
level set as in clustering [1, 2, 17], or ensure robustness to outliers in level set
based anomaly detection [3, 4, 5] and data ranking [18]. Controlling a measure
of the symmetric difference error does not provide this kind of control and does
not ensure accurate recovery of the topological features. To see this, consider a
level set with two components as depicted in Figure 1 as an example. The figure
also shows two candidate estimates, one estimate connects the two components
by a “bridge” (resulting in a dumbbell shaped set), while the other preserves
the (non)-connectivity. However, both candidate sets have the same Lebesgue
measure (volume) of symmetric difference, and hence a method that controls
the volume of the symmetric set difference may not favor the one that preserves
topological properties over the other. Thus, a uniform measure of closeness be-
tween sets is necessary in such situations. The Hausdorff error metric is defined
as follows between two non-empty sets:

d∞(G1, G2) = max{ sup
x∈G2

ρ(x, G1), sup
x∈G1

ρ(x, G2)} (2)

where
ρ(x, G) = inf

y∈G
||x − y||, (3)
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Figure 1: (a) The γ-level set G∗
γ of a density function f(x) , (b) Two candidate

set estimates GA and GB with the same volume of symmetric difference error
vol(GA∆G∗

γ) = vol(GB∆G∗
γ), however GA does not preserve the topological

properties (non-connectivity) and has large Hausdorff error d∞(GA, G∗
γ), while

GB preserves non-connectivity and has small Hausdorff error d∞(GB, G∗
γ).
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the smallest Euclidean distance of a point in G to the point x. If G1 or G2 is
empty, then let d∞(G1, G2) be defined as the largest distance between any two
points in the domain. Control of this error measure provides a uniform mode of
convergence as it controls the deviation of even a single point from the desired
set. In the dumbbell shaped set in Figure 1, the Hausdorff error d∞(GA, G∗

γ) is
proportional to the distance between the clusters (i.e., the length of the bridge).
Thus, a set estimate can have very small measure of symmetric set difference but
large Hausdorff error. Conversely, as long as the set boundary is not space-filling,
small Hausdorff error implies small measure of symmetric difference error.

Existing results pertaining to nonparametric level set estimation using the
Hausdorff metric [13, 14, 19] focus on rather restrictive classes of level sets
(for example, the boundary fragment and star-shaped set classes). These re-
strictions, which effectively reduce the set estimation problem to a boundary
function estimation problem (in rectangular or polar coordinates, respectively),
are typically not met in practical applications. In particular, the characteriza-
tion of level set estimation as a boundary function estimation problem requires
prior knowledge of a reference coordinate or interior point (in rectangular or po-
lar coordinates, respectively) and precludes level sets with multiple connected
components. Moreover, the estimation techniques proposed in [13, 14, 19] re-
quire precise knowledge of the local regularity of the density (quantified by the
parameter α, to be defined below) in the vicinity of the desired level in order
to achieve minimax optimal rates of convergence. Such prior knowledge is un-
available in most practical applications. Recently, a plug-in method based on
sup-norm density estimation was put forth in [20] that can handle more general
classes than boundary fragments or star-shaped sets, however sup-norm den-
sity estimation requires the density to behave smoothly everywhere to ensure
that the estimate is close to the true density at all points. Also, the method
only deals with a special case of the density regularity condition considered here
(α = 1), and is therefore not adaptive to unknown density regularity.

In this paper, we propose a plug-in procedure based on a regular histogram
partition that can adaptively achieve minimax optimal rates of Hausdorff er-
ror convergence over a broad class of level sets with very general shapes and
multiple connected components, without assuming a priori knowledge of the
density regularity parameter α. Adaptivity is achieved by a new data-driven
procedure for selecting the histogram resolution. The procedure is reminiscent
of Lepski-type methods [21], however it is specifically designed for the level set
estimation problem and only requires local regularity of the density in the vicin-
ity of the desired level. While the basic approach is illustrated through the use
of histogram-based estimators, extensions to more general partitioning schemes
such as spatially adaptive partitions [22, 23, 24, 25] might be possible. The
theory and method may also provide a useful starting point for future investi-
gations into alternative schemes, such as kernel-based approaches [5], that may
be better suited for higher dimensional settings.

To motivate the importance of Hausdorff accurate level set estimation, let
us briefly discuss its relevance in some applications.
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Clustering - Density levels set estimators are used by many data clustering
procedures [1, 2, 17], and the correct identification of connected level set
components (i.e., clusters) is crucial to their success. The Hausdorff cri-
terion can be used to provide theoretical guarantees regarding clustering
since the connected components of a level set estimate that is ǫ-accurate
in the Hausdorff sense, characterize the true level set clusters (in number,
shapes, and locations), provided the true clusters remain topologically
distinct upon erosion or dilation by an ǫ-ball. The last statement holds
since

d∞(G1, G2) ≤ ǫ =⇒ G1 ⊆ Gǫ
2, G2 ⊆ Gǫ

1,

where Gǫ denotes the set obtained by dilation of set G by an ǫ-ball.

Data Ranking - Hausdorff accurate level set estimation is also relevant for
ranking or ordering data using the notion of data-depth [18]. Density level
sets correspond to likelihood-depth contours and Hausdorff distance offers
a robust measure of accuracy in estimating the data-depth as it is less
susceptible to severe misranking, as compared to symmetric set difference
based measures.

Anomaly detection - A common approach to anomaly detection is to learn
a (high) density level set of the nominal data distribution [3, 4, 5]. Sam-
ples that fall outside the level set, in the low density region, are considered
anomalies. Level set methods based on a symmetric difference error mea-
sure may produce estimates that veer greatly from the desired level set
at certain places and potentially include regions of low density, since the
symmetric difference is a global error measure. Anomalous distributions
concentrated in such places would elude detection. On the other hand,
level set estimators based on the Hausdorff metric are guaranteed to be
uniformly close to the desired level set, and therefore are more robust to
anomalies in such situations.

Semi-supervised learning - Unlabeled data can be used, along with labeled
data, to improve the performance of a supervised learning task in certain
favorable situations. One such situation, commonly called the cluster as-
sumption, is where the regression function is constant or smooth in high
density regions [26, 27]. As discussed in [28], improved error bounds can
be obtained if these decision regions (corresponding to connected com-
ponents of the support set) can be learnt using unlabeled data, followed
by simple averaging or majority vote on each component to predict the
label which requires few labeled examples. Correct identification of the
connected components of the support set is crucial to obtaining improved
error bounds, and hence a uniform control provided by the Hausdorff error
is needed.

Thus, Hausdorff accurate estimation of density level sets is an important prob-
lem with many potential applications. However, in all these applications there
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are other issues, for example, selection of the density levels of interest, that are
beyond the scope of this dissertation.

This paper is organized as follows. Section 2 states our basic assumptions
which allow Hausdorff accurate level set estimation and also presents a mini-
max lower bound on the Hausdorff performance of any level set estimator for the
class of densities under consideration. Section 3 discusses the issue with direct
Hausdorff estimation and provides motivation for an alternate error measure.
In Section 4, we present the proposed histogram-based approach to Hausdorff
accurate level set estimation that can achieve the minimax optimal rate of con-
vergence, given knowledge of the density regularity parameter α. Subsection 4.1
extends the proposed estimator to achieve adaptivity to unknown density reg-
ularity. Subsections 4.2-4.4 present extensions that address simultaneous esti-
mation of multiple level sets, support set estimation, and discontinuity in the
density around the level of interest. Concluding remarks are given in Section 5
and Section 6 contains the proofs.

2 Density assumptions

We assume that the domain of the density f is the unit hypercube in d-
dimensions, i.e. X = [0, 1]d. Extensions to other compact domains are straight-
forward. Furthermore, the density is assumed to be bounded with range [0, fmax],
though knowledge of fmax is not assumed. Controlling the Hausdorff accuracy
of level set estimates requires some smoothness assumptions on the density and
the level set boundary, which are stated below. But before that we introduce
some definitions:

• ǫ-Ball: An ǫ-ball centered at a point x ∈ X is defined as

B(x, ǫ) = {y ∈ X : ||x − y|| ≤ ǫ}.

Here || · || denotes the Euclidean distance.

• Inner ǫ-cover: An inner ǫ-cover of a set G ⊆ X is defined as the union
of all ǫ-balls contained in G. Formally,

Iǫ(G) =
⋃

x:B(x,ǫ)⊆G

B(x, ǫ)

We are now ready to state the assumptions. The most crucial one is the first,
which characterizes the relationship between distances and changes in density,
and the second one is a topological assumption on the level set boundary that
essentially generalizes the notion of Lipschitz functions to closed hypersurfaces.

[A] Local density regularity: The density is α-regular around the γ-level set,
0 < α < ∞ and 0 < γ < fmax, if
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[A1] there exist constants C1, δ1 > 0 such that for all x ∈ X with |f(x) −
γ| ≤ δ1,

|f(x) − γ| ≥ C1ρ(x, ∂G∗
γ)α,

where ∂G∗
γ denotes the boundary of the true level set G∗

γ and ρ(·, ·)
is as defined in (3).

[A2] there exist constants C2, δ2 > 0 and a point x0 ∈ ∂G∗
γ such that for

all x ∈ B(x0, δ2),

|f(x) − γ| ≤ C2ρ(x, ∂G∗
γ)α.

This condition characterizes the behavior of the density around the level γ.
[A1] states that the density cannot be arbitrarily “flat” around the level,
and in fact the deviation of the density from level γ is at least the α-th
power of the distance from the level set boundary. [A2] states that there
exists a fixed neighborhood around some point on the boundary where the
density changes no faster than the α-th power of the distance from the
level set boundary. The latter condition is only required for adaptivity, as
we discuss later. The regularity parameter α determines the rate of error
convergence for level set estimation. Accurate estimation is more difficult
at levels where the density is relatively flat (large α), as intuition would
suggest. It is important to point out that we do not assume knowledge of
α unlike previous investigations into Hausdorff accurate level set estima-
tion [13, 14, 19, 20]. Therefore, here the assumption simply states that
there is a relationship between distance and density level, but the precise
nature of the relationship is unknown. We discuss extensions to address
support set estimation (γ = 0) in Subsection 4.3 and the case α = 0 (which
corresponds to a jump in the density at level γ) in Subsection 4.4.

[B] Level set regularity: There exist constants ǫo > 0 and C3 > 0 such that
for all ǫ ≤ ǫo, Iǫ(G

∗
γ) 6= ∅ and ρ(x, Iǫ(G

∗
γ)) ≤ C3ǫ for all x ∈ ∂G∗

γ .

This assumption states that the level set is not arbitrarily narrow any-
where. It precludes features like cusps and arbitrarily thin ribbons, as
well as isolated connected components of arbitrarily small size. This con-
dition is necessary since arbitrarily small features cannot be detected and
resolved from a finite sample. However, from a practical perspective, if
the assumption fails to hold then it simply means that it is not possible
to theoretically guarantee that such small features will be recovered.

For a fixed set of positive numbers C1, C2, C3, ǫ0, δ1, δ2, fmax, γ < fmax, d
and α, we consider the following classes of densities:

Definition 1. Let F∗
1 (α) denote the class of densities satisfying assumptions

[A1,B].

Definition 2. Let F∗
2 (α) denote the class of densities satisfying assumptions

[A1,A2,B].
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The dependence on other parameters is omitted as these do not influence
the minimax optimal rate of convergence (except the dimension d). We present
a method that provides minimax optimal rates of convergence for the class
F∗

1 (α), given knowledge of the density regularity parameter α. We also extend
the method to achieve adaptivity to α for the class F∗

2 (α), while preserving the
minimax optimal performance.

Assumption [A] is similar to the one employed in [14, 19], except that the
upper bound assumption on the density deviation in [14, 19] holds provided that
the set {x : |f(x)−γ| ≤ δ1} is non-empty. This implies that the densities either
jump across the level γ at any point on the level set boundary (that is, the
deviation is greater than δ1) or change exactly as the αth power of the distance
from the boundary. Our formulation allows for densities with regularities that
vary spatially along the level set boundary - it requires that the density changes
no slower than the αth power of the distance from the boundary, except in a fixed
neighborhood of one point where the density changes exactly as the αth power
of the distance from the boundary. While the formulation in [14, 19] requires
the upper bound on the density deviation to hold for at least one point on the
boundary, our assumption [A2] requires the upper bound to hold for a fixed
neighborhood about at least one point on the boundary. This is necessary for
adaptivity since a procedure cannot sense the regularity as characterized by α if
the regularity only holds in an arbitrarily small region. Assumption [B] basically
implies that the boundary looks locally like a Lipschitz function and allows for
level sets with multiple connected components and arbitrary locations. Thus,
these restrictions are quite mild and less restrictive than those considered in the
previous literature on Hausdorff level set estimation. In fact [B] is satisfied by
a Lipschitz boundary fragment or star-shaped set as considered in [13, 14, 19]
as the following lemma states.

Lemma 1. Consider the γ level set G∗
γ of a density f ∈ FSL(α), where FSL(α)

denotes the class of α-regular densities with Lipschitz star-shaped level sets as
defined in [14]. Then G∗

γ satisfies the level set regularity assumption [B].

The proof is given in Section 6.1. Thus, the classes under consideration
here are more general, except for the exclusion of densities for which the upper
bound on the local density regularity assumption [A2] only holds in a region of
arbitrarily small Lebesgue measure.

Tsybakov establishes a minimax lower bound of (n/ logn)−1/(d+2α) in The-
orem 4 of [14] for the class of star-shaped sets with Lipschitz boundaries, which
as per Lemma 1 also satisfy assumption [B]. His proof uses Fano’s lemma to
derive the lower bound for a discrete subset of densities from this class. It is easy
to see that the discrete subset of densities used in his construction also satisfy
our form of assumption [A]. Hence, the same minimax lower bound holds for
the classes F∗

1 (α),F∗
2 (α) under consideration as well and we have the following

proposition. Proof of the proposition is given in Section 6.2. Here E denotes
expectation with respect to the random data sample.
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Proposition 1. There exists c > 0 such that, for large enough n,

inf
Gn

sup
f∈F∗

1 (α)

E[d∞(Gn, G∗
γ)] ≥ inf

Gn

sup
f∈F∗

2 (α)

E[d∞(Gn, G∗
γ)] ≥ c

(
n

log n

)− 1
d+2α

.

The inf is taken over all set estimators Gn based on the n observations.

3 Motivating an Error Measure for Hausdorff

control

Direct Hausdorff accurate set estimation is challenging as there exists no nat-
ural empirical measure that can be used to gauge the Hausdorff error of a set
estimate. In this section, we investigate how Hausdorff control can be obtained
indirectly using an alternate error measure that is based on density deviation
error rather than distance deviation. While the first alternate error measure
we introduce is easily motivated and arises naturally, it requires the density to
have some smoothness everywhere, whereas only local smoothness in the vicin-
ity of the level set is required for accurate level set estimation. Based on these
insights, we propose our final alternate measure. If we focus on candidate set
estimates based on a regular histogram, minimizing this final alternate error
measure leads to a simple plug-in level set estimator that is the focus of this
paper. However, we introduce the general error measure since it offers the po-
tential to extend the proposed technique to more general estimators based on
spatially adapted partitions or kernel based methods.

The density regularity condition [A] suggests that control over the deviation
of any point in the estimate from the true level set boundary ρ(x, ∂G∗

γ) can
be obtained by controlling the deviation from the desired density level. In
other words, a change in density level reflects change in distance. Moreover,
in order to obtain a sense of distance from an estimate of density variation
based on a small sample, the level set boundary cannot vary too irregularly.
Specifically, the boundary should not have arbitrarily small features (e.g., cusps)
that cannot be reliably detected from a small sample. Such features are ruled-
out by assumption [B]. Thus, under regularity conditions on the function and
level set boundary, the deviation of the density function from the desired level
can be used as a surrogate for the Hausdorff error. Consider the following error
measure:

E(G) = max{ sup
x∈G∗

γ\G

(f(x) − γ), sup
x∈G\G∗

γ

(γ − f(x))} (4)

= sup
x∈X

(γ − f(x))[1x∈G − 1x 6∈G] (5)

where 1 denotes the indicator function and by convention supx∈∅ g(x) = 0 for
any non-negative function g(·). The error measure E(G) has a natural empirical

counterpart, Ê(G), obtained by simply replacing f(x) by a density estimator
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f̂(x). Notice that the set Ĝ minimizing the empirical error corresponds to a

plug-in level set estimator, that is Ĝ = {x : f̂(x) ≥ γ} 1. Also

E(Ĝ) = max{ sup
x∈G∗

γ\Ĝ

(f(x) − γ), sup
x∈Ĝ\G∗

γ

(γ − f(x))} ≤ sup
x∈Ĝ∆G∗

γ

|f(x) − f̂(x)|.

The last step follows since a point x ∈ Ĝ∆G∗
γ is erroneously included or excluded

from the level set estimate, and hence for x ∈ Ĝ \ G∗
γ , γ − f(x) ≤ |f(x) − f̂(x)|

and for x ∈ G∗
γ \ Ĝ, f(x)− γ ≤ |f(x)− f̂(x)|. Using this error measure, we have

the following Hausdorff control.

Proposition 2. If the sup norm error between f̂(x) and the true density f(x)

converges in probability to zero and Ĝ denotes the corresponding plug-in level set
estimate, then under assumptions [A] and [B], there exists a constant C > 0
such that for large enough n, with high probability

d∞(Ĝ, G∗
γ) ≤ C E(Ĝ)1/α ≤ C



 sup
x∈Ĝ∆G∗

γ

|f(x) − f̂(x)|




1/α

≤ C

(
sup
x∈X

|f(x) − f̂(x)|
)1/α

.

The proof is given in Section 6.3. This result shows that the sup-norm error
of a density estimate gives an upper bound on the Hausdorff error of a plug-in
level set estimate, which agrees with Cuevas’ result [20] for α = 1. However,
arbitrarily rough and complicated behavior of the density away from the level
of interest can cause a large sup-norm density error, whereas the Hausdorff
accuracy of a level set estimate should only depends on the accuracy of the den-
sity estimate around the level of interest. Therefore, we follow Vapnik’s maxim:
When solving a given problem, try to avoid solving a more general problem as an
intermediate step [29], and instead of solving the harder intermediate problem
of sup-norm density estimation (which requires some smoothness of the density
at all points), we approach the set estimation problem directly.

We now consider a modified version of the error measure introduced above.
Let Π denote a partition of [0, 1]d and let G be any set defined in terms of this
partition (i.e., the union of any collection of cells of the partition). We will
consider a hierarchy of partitions with increasing complexity and the sets G,
defined in terms of the partitions, form candidate representations of the γ level
set of the density f . The partition could, for example, correspond to a decision
tree or regular histogram. Define the error of G as

Eγ(G) = sup
A∈Π(G)

(γ − f̄(A))[1A⊆G − 1A*G].

1Actually the set Ĝ is not unique since the points x with f̂(x) = γ may or may not be
included in the estimate.
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Here Π(G) denotes the partition associated with set G and f̄(A)=P (A)/µ(A)
denotes average of the density function on the cell A, where P is the unknown
probability measure and µ is the Lebesgue measure. Note the analogy between
this error and that defined in (4). We would like to point out that even though
this error depends on the class of candidate sets being considered, it can be
used to establish control over the Hausdorff error which is independent of the
candidate class. This performance measure evaluates a set based on the maxi-
mum deviation of the average density in a cell of the partition from the γ level.
Note that

(
γ − f̄(A)

)
[1A⊆G − 1A*G] > 0 whenever a cell with average density

f̄(A) < γ is included in the set G or a cell with f̄(A) > γ is excluded. A

natural empirical error, Ê(G), is obtained by replacing f̄(A) with its empirical
counterpart.

Êγ(G) = max
A∈Π(G)

(
γ − f̂(A)

)
[1A⊆G − 1A*G]

Here f̂(A) = P̂ (A)
µ(A) , where P̂ (A) = 1

n

∑n
i=1 1{Xi∈A} denotes the empirical prob-

ability of an observation occurring in A. Among all sets that are based on the
same partition, the one minimizing the empirical error Êγ is a natural candidate:

ĜΠo = arg min
G:Π(G)=Πo

Êγ(G) (6)

This rule selects the set that includes all cells with empirical density f̂(A) > γ

and excludes all cells with f̂(A) < γ, hence it is essentially a plug-in level set
estimator. We focus on sets based on a uniform histogram partition and estab-
lish that minimizing the empirical error Êγ(G), along with appropriate choice
of the histogram resolution, is sufficient for Hausdorff control. The appropriate
histogram resolution depends only on the local regularity of the density around
the level of interest. Furthermore, we show that the histogram resolution can
be chosen adaptively in a purely data-driven way without assuming knowledge
of the local density regularity. The performance of the regular histogram-based
level set estimator is shown to be minimax optimal for the class of densities
F∗

1 (α) (assuming knowledge of the local density regularity parameter α) and
F∗

2 (α) (using an adaptive procedure, to be defined later).
Remark 1: In practice, estimators based on spatially adapted partitions can
provide better performance since they can adapt to the spatial variations in
density regularity to yield better estimate of the boundary where the density
changes sharply, though the overall Hausdorff error is dominated by the accuracy
achievable in estimating the boundary where the density changes slowly. Thus,
it is of interest to develop spatially adapted estimators. While, in the context of
histogram based set estimators, only an appropriate choice of the resolution is
needed, spatially adapted estimators require a more sophisticated procedure for
selecting the appropriate partition. We do not address this aspect here, however
the set up described above can serve as a useful starting point.
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4 Hausdorff accurate Level Set Estimation using

Histograms

Let Aj denote the collection of cells in a regular partition of [0, 1]d into hyper-
cubes of dyadic sidelength 2−j, where j is a non-negative integer. The level set
estimate at this resolution is given as

Ĝj =
⋃

A∈Aj :f̂(A)≥γ

A (7)

Here f̂(A) = P̂ (A)/µ(A), where P̂ (A) = 1
n

∑n
i=1 1{Xi∈A} denotes the empirical

probability of an observation occurring in A and µ is the Lebesgue measure.
The appropriate resolution for accurate level set estimation depends on the

local density regularity, as characterized by α, near the level of interest. If
the density varies sharply (small α) near the level of interest, then accurate
estimation is easier and a fine resolution suffices. Identifying the level set is
more difficult if the density is very flat (large α) and hence a lower resolution
(more averaging) is required. Our first result shows that, if the local density
regularity parameter α is known, then the correct resolution j can be chosen (as
in [14, 19]), and the corresponding estimator achieves near minimax optimal rate
over the class of densities given by F∗

1 (α). Notice that even though the proposed
method is a plug-in level set estimator based on a histogram density estimate,
the histogram resolution is chosen to specifically target the level set problem and
is not optimized for density estimation. Thus, we do not require that the density
exhibits some smoothness everywhere. We introduce the notation an ≍ bn to
denote that an = O(bn) and bn = O(an).

Theorem 1. Assume that the local density regularity α is known. Pick res-

olution j ≡ j(n) such that 2−j ≍sn(n/ log n)−
1

(d+2α) , where sn is a monotone
diverging sequence. Then

sup
f∈F∗

1 (α)

E[d∞(Ĝj , G
∗
γ)] ≤ Csn

(
n

log n

)− 1
d+2α

for all n, where C ≡ C(C1, C3, ǫo, fmax, δ1, d, α) > 0 is a constant.

The proof is given in Section 6.4 and relies on two key facts. First, the density
regularity assumption [A1] implies that the distance of any point in the level set
estimate is controlled by its deviation from the level of interest γ. This implies
that, with high probability, only the cells near the boundary are erroneously
included or excluded in the level set estimate. Second, the level set boundary
does not have very narrow features that cannot be detected by a finite sample
and is locally Lipschitz as per assumption [B]. Using these facts, it follows that
the Hausdorff error scales as the histogram sidelength.

Theorem 1 provides an upper bound on the Hausdorff error of our estimate.
If sn is slowly diverging, for example if sn = (log n)ǫ where ǫ > 0, this up-
per bound agrees with the minimax lower bound of Proposition 1 up to a
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(log n)ǫ factor. Hence the proposed estimator can achieve near minimax op-
timal rates, given knowledge of the density regularity. We would like to point
out that if the parameter δ1 characterizing assumption [A] and the density
bound fmax are also known, then the appropriate resolution can be chosen as
j = ⌊log2

(
c−1(n/ log n)1/(d+2α)

)
⌋, where the constant c ≡ c(δ1, fmax). With

this choice, the optimal sidelength scales as 2−j ≍ (n/ log n)−1/(d+2α), and the

estimator Ĝj exactly achieves the minimax optimal rate.

Remark 2: A dyadic sidelength is not necessary for Theorem 1 to hold, how-
ever the adaptive procedure described next is based on a search over dyadic
resolutions. Thus, to present a unified analysis, we consider a dyadic sidelength
here too.

4.1 Adaptivity to unknown density regularity

In this section we present a procedure that automatically selects the appropriate
resolution in a purely data-driven way without assuming prior knowledge of α.
The proposed procedure is a complexity regularization approach that is remi-
niscent of Lepski-type methods for function estimation [21], which are spatially
adaptive bandwidth selectors. In Lepski methods, the appropriate bandwidth
at a point is determined as the largest bandwidth for which the estimate does
not deviate significantly from estimates generated at finer resolutions. Our pro-
cedure is similar in spirit, however it is tailored specifically for the level set
problem and hence the chosen resolution at any point depends only on the local
regularity of the density around the level of interest.

The histogram resolution search is focused on regular partitions of dyadic
sidelength 2−j, j ∈ {0, 1, . . . , J}. The choice of J will be specified below. Since
the selected resolution needs to be adapted to the local regularity of the density
around the level of interest, we introduce the following vernier:

Vγ,j = min
A∈Aj

max
A′∈Aj′∩A

|γ − f̄(A′)|.

Here f̄(A) = P (A)/µ(A), j′ = ⌊j + log2 sn⌋, where sn is a slowly diverging
monotone sequence, for example log n, log log n, etc., and Aj′ ∩ A denotes the

collection of subcells with sidelength 2−j′ ∈ [2−j/sn, 2−j+1/sn) within the cell
A. Observe that the vernier value is determined by a cell A ∈ Aj that intersects
the boundary ∂G∗

γ . By evaluating the deviation in average density from level γ
within subcells of A, the vernier indicates whether or not the density in cell A is
uniformly close to γ. Thus, the vernier is sensitive to the local density regularity
in the vicinity of the desired level and leads to selection of the appropriate
resolution adapted to the unknown density regularity parameter α, as we will
show in Theorem 2.

Since Vγ,j requires knowledge of the unknown probability measure, we must
work with the empirical version, defined analogously as:

V̂γ,j = min
A∈Aj

max
A′∈Aj′∩A

|γ − f̂(A′)|.

13



The empirical vernier V̂γ,j is balanced by a penalty term:

Ψj′ := max
A∈Aj′

√

8
log(2j′(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j′(d+1)16/δ)

nµ(A)

)

where 0 < δ < 1 is a confidence parameter, and µ(A) = 2−j′d. Notice that
the penalty is computable from the given observations. The precise form of
Ψ is chosen to bound the deviation of true and empirical vernier with high
probability (refer to Corollary 3 for a formal proof). The final level set estimate
is given by

Ĝ = Ĝĵ (8)

where
ĵ = arg min

0≤j≤J

{
V̂γ,j + Ψj′

}
(9)

Observe that the value of the vernier decreases with increasing resolution as
better approximations to the true level are available. On the other hand, the
penalty is designed to increase with resolution to penalize high complexity esti-
mates that might overfit the given sample of data. Thus, the above procedure
chooses the appropriate resolution automatically by balancing these two terms.
The following theorem characterizes the performance of the proposed complexity
penalized procedure.

Theorem 2. Pick J ≡ J(n) such that 2−J ≍ sn(n/ logn)−
1
d , where sn is a

monotone diverging sequence. Let ĵ denote the resolution chosen by the com-
plexity penalized method as given by (9), and Ĝ denote the final estimate of (8).
Then with probability at least 1 − 2/n, for all densities in the class F∗

2 (α),

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

for n large enough (so that sn > c(C3, ǫo, d)), where c1, c2 > 0 are constants. In
addition,

sup
f∈F∗

2 (α)

E[d∞(Ĝ, G∗
γ)] ≤ Cs2

n

(
n

log n

)− 1
d+2α

for all n, where C ≡ C(C1, C2, C3, ǫo, fmax, δ1, δ2, d, α) > 0 is a constant.

The proof is given in Section 6.5. Observe that the maximum resolution 2J ≍
s−1

n (n/ logn)
1
d can be easily chosen, based only on n, and allows the optimal

resolution for any α to lie in the search space. By appropriate choice of sn, for
example sn = (log n)ǫ/2 with ǫ a small number > 0, the bound of Theorem 2
matches the minimax lower bound of Proposition 1, except for an additional
(log n)ǫ factor. Hence our method adaptively achieves near minimax optimal
rates of convergence for the class F∗

2 (α).

Remark 3: To prove the results of Theorems 1 and 2, we do not need to assume
an exact form for sn except that it is a monotone diverging sequence. However,
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sn needs to be slowly diverging for the derived rates to be near minimax opti-
mal.

Remark 4: It should be noted that there is a price of adaptivity. To obtain a
rate that is very close to the minimax optimal rate, we desire sn to increase very
slowly with n. However, the slower sn grows, the more the number of samples
required to meet the condition sn > c(C3, ǫo, d) and obtain a useful (non-trivial)
bound.

Remark 5: We would like to point out that even though we state the conver-
gence results in expectation, the proofs also establish high probability confidence
bounds.

4.2 Multiple level set estimation

The proposed framework can easily be extended to simultaneous estimation of
level sets at multiple levels Γ = {γk}K

k=1 (K < ∞). Assuming the density
regularity condition [A] holds with parameter αk for the γk level, we have the
following corollary that is a direct consequence of Theorem 2.

Corollary 1. Pick J = J(n) such that 2−J ≍ sn(n/ logn)−1/d, where sn is a

monotone diverging sequence. Let Ĝγk
denote the estimate generated using the

complexity penalized procedure of (8) for level γk. Then

max
1≤k≤K

sup
f∈F∗

2 (αk)

E[d∞(Ĝγk
, G∗

γk
)] ≤ Cs2

n

(
n

log n

)−1/(d+2maxk αk)

for all n, here C ≡ C(C1, C2, C3, ǫo, fmax, δ1, δ2, d, {αk}K
k=1) > 0.

Notice that, while the estimate Ĝγk
at each level is adaptive to the local density

regularity as determined by αk, the overall convergence rate is determined by
the level where the density is most flat (largest αk).

Another issue that comes up in multiple level set estimation is nestedness.
If the density levels of interest Γ are sorted, γ1 ≤ γ2 ≤ . . . ≤ γK , then the
true level sets will be nested G∗

γ1
⊇ G∗

γ2
⊇ . . . ⊇ G∗

γK
. However, the estimates

{Ĝγk
}K

k=1 may not be nested as the resolution at each level is determined by the
local density regularity (αk). For some applications, for example hierarchical
clustering, nested estimates may be desirable. We can enforce this by choosing
the same resolution, corresponding to the largest αk, at all levels. Since the
largest αk corresponds to smallest vernier Vγk,j (see Lemma 5), nested level set
estimates can be generated by selecting the resolution according to

ĵ = arg min
0≤j≤J

{
min

1≤k≤K
V̂γk,j + Ψj′

}
.

This does not change the rate of convergence, however if the density is flat at
one level of interest, this forces large Hausdorff error at all levels, even if the
density at those levels is well-behaved (varies sharply near the level of interest).
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4.3 Support set estimation

In the earlier analysis, we assumed that the level of interest γ > 0. The case
γ = 0 corresponds to estimating the support set of the density function, which
is defined as

G∗
0 := {x : f(x) > 0}.

In the context of symmetric difference error, it is known [30, 14, 31] that support
set estimation is easier than level set estimation (except for the case α = 0 when
the density exhibits a discontinuity around the level of interest). We show that
the same holds for Hausdorff error and the minimax rate of convergence is given
as (n/ logn)−1/(d+α) which is faster than the rate of (n/ log n)−1/(d+2α) for level
set estimation. For support set estimation the density regularity assumption [A]
holds only for points lying in the support of the density, that is [A1, A2] hold
only for x ∈ G∗

0.
First, we establish the minimax lower bound. We actually establish the

bound for the class of densities FBF (α, ζ) that satisfy the local density regular-
ity [A1, A2] for all x ∈ G∗

0 and whose support sets G∗
0 are Hölder-ζ boundary

fragments. The case ζ = 1 corresponds to the class of Lipschitz boundary frag-
ments which satisfy assumption [B] (this can be shown along the lines of the
proof of Lemma 1). Thus, FBF (α, 1) is a subclass of the classes F∗

1 (α),F∗
2 (α)

under consideration, and hence a lower bound for FBF (α, 1) yields a correspond-
ing lower bound for these classes.

Proposition 3. There exists c > 0 such that

inf
Gn

sup
f∈FBF (α,ζ)

E[d∞(Gn, G∗
0)] ≥ c

(
n

log n

)− ζ
d−1+ζ(α+1)

.

for n large enough. This implies that

inf
Gn

sup
f∈F∗

1 (α)

E[d∞(Gn, G∗
0)] ≥ inf

Gn

sup
f∈F∗

2 (α)

E[d∞(Gn, G∗
0)] ≥ c

(
n

log n

)− 1
d+α

for n large enough. The inf is taken over all possible set estimators Gn based
on the n observations.

The proof is given in Section 6.6 and requires a construction similar to the
minimax lower bound derived in [14] for level set estimation.

Next, we establish that with knowledge of the local density regularity, the
following histogram based plug-in level set estimator

Ĝ0,j =
⋃

A∈Aj :f̂(A)>0

A (10)

achieves this minimax lower bound of Proposition 3 for support set estimation
using an appropriate choice of the histogram resolution. This requires a mod-
ified theoretical analysis using the Craig-Bernstein inequality [32] rather than
the relative VC inequalities used in the proofs of Theorems 1, 2 for level set
estimation. The proof is sketched in Section 6.7.
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Theorem 3. Assume that the local density regularity α is known. Pick the res-

olution j such that 2−j ≍ sn(n/ logn)−
1

(d+α) , where sn is a monotone diverging
sequence. Then

sup
f∈F∗

1 (α)

E[d∞(Ĝ0,j , G
∗
0)] ≤ Csn

(
n

log n

)− 1
d+α

for all n, where C ≡ C(C1, C3, ǫo, fmax, δ1, d, α) > 0 is a constant.

Achieving adaptivity for support set estimation requires modification of the
vernier procedure. This is because to judge the local density regularity near
the level of interest, the adaptivity procedure needs to focus on the cells that
are close to the boundary. The vernier can achieve this for level γ > 0 under
assumption [A] which implies that the density has no flat parts near the level of
interest. However, for support set estimation, the density is flat (zero) outside
the support set. Hence, observe that the vernier output is not determined
by a cell intersecting the boundary and it fails to focus on the cells that are
close to the boundary. One direction to rectify this is to force the vernier to
investigate only those subcells which have a certain positive average density.
However, if the support set boundary is too close to the cell boundary this can
still cause the vernier to yield a small value even when the cell is large. To avoid
such alignment artifacts, the vernier can be defined in terms of multiple shifted
regular partitions, but we do not pursue this further.

4.4 Addressing jumps in the density at the level of interest

The case α = 0 implies that the density jumps across the level of interest
at all points around the level set boundary. In the non-adaptive setting, the
histogram-based plug-in level set estimator of (7) achieves the minimax Haus-
dorff performance. To see this, the theoretical analysis needs to be modified a
bit and is discussed in Section 6.8. The adaptive estimator can also be extended
to handle the complete range 0 ≤ α < ∞ by a slight modification of the vernier.
Notice that the current form of the vernier may fail to select an appropriate
resolution in the jump case; for example, if the density is piecewise constant
on either side of the jump, the vernier output is the same irrespective of the
resolution. A slight modification of the vernier as follows

Vγ,j = 2−j′/2 min
A∈Aj

max
A′∈Aj′∩A

|γ − f̄(A′)|,

makes the vernier sensitive to the resolution even for the jump case, and biases
a vernier minimizer towards finer resolutions. A fine resolution is needed for the
jump case to approximate the density well (notice that a fine resolution implies
less averaging, however the resulting instability in the estimate can be tolerated
as there is a jump in the density). While it is clear why the modification
is needed, the exact form of the modifying factor 2−j′/2 arises from technical
considerations and is somewhat non-intuitive. Hence, we omitted the jump case
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in our earlier analysis to keep the presentation simple. Since the penalty is
designed to control the deviation of empirical and true vernier, it also needs to
be scaled accordingly:

Ψj′ := 2−j′/2 max
A∈Aj′

√

8
log(2j′(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j′(d+1)16/δ)

nµ(A)

)

This ensures that balancing the vernier and penalty leads to the appropriate
resolution for the whole range of the regularity parameter, 0 ≤ α < ∞. A proof
sketch is given in Section 6.8.

5 Concluding Remarks

In this paper, we developed a Hausdorff accurate level set estimation method
that is adaptive to unknown density regularity and achieves nearly minimax
optimal rates of error convergence over a more general class of level sets than
considered in previous literature. The vernier provides the key to achieve adap-
tivity while requiring only local regularity of the density in the vicinity of the
desired level. The complexity regularization approach based on the vernier is
similar in spirit to so-called Lepski methods (for example, [21]) for function esti-
mation which are spatially adaptive bandwidth selectors, but the vernier focuses
on cells close to the desired level and thus is optimally designed for the level
set problem. However, Lepski methods involve sequential testing, whereas our
procedure needs the vernier to be evaluated at all resolutions to determine the
appropriate resolution. It is of interest to develop a sequential procedure based
on the vernier that will only require local density regularity, but will be faster
to implement.

We also discussed extensions of the proposed estimator to address simultane-
ous multiple level set estimation, support set estimation and discontinuity in the
density around the level of interest. We provided some pointers to address adap-
tivity for support set estimation, however we have not solved this completely
yet. While we consider level sets with locally Lipschitz boundaries, extensions
to additional boundary smoothness (for example, Hölder regularity > 1) may
be possible in the proposed framework using techniques such as wedgelets [33]
or curvelets [34]. The earlier work on Hausdorff accurate level set estimation
[13, 14, 19] does address higher smoothness of the boundary, but that follows as
a straightforward consequence of assuming a functional form for the boundary.
Also, we only addressed the density level set problem, extensions to general
regression level set estimation should be possible using a similar approach.

Finally, we discuss and motivate estimators based on spatially adapted par-
titions that can offer improved performance in practice under spatial variations
in the density regularity. It is well known that spatially adaptive partitions
such as recursive dyadic partitions (RDPs) [22, 23, 24, 25] may provide sig-
nificant improvements over non-adaptive partitions like histograms for many
set learning problems involving a weighted symmetric difference error measure,
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including classification [25], minimum volume set estimation [4] and level set
estimation [9]. In fact, for many function classes, estimators based on adap-
tive, non-uniform partitions can achieve minimax optimal rates that cannot
be achieved by estimators based on non-adaptive partitions. However, the re-
sults of this paper establish that this is not the case for the Hausdorff metric.
This is a consequence of the fact that symmetric difference based errors are
global, whereas the Hausdorff error is sensitive to local errors and depends on
the worst case error at any point. Having non-uniform cells adapted to the
regularity along the boundary can lead to faster convergence rates under global
measures, whereas the Hausdorff error being dominated by the worst case er-
ror is not expected to benefit from adaptivity of the partition. While spatially
adaptive, non-uniform partitions do not provide an improvement in convergence
rates under the Hausdorff error metric, if the density regularity varies smoothly
along the level set boundary or if the connected components of a level set have
different density regularities, non-uniform partitions are capable of adapting to
the local smoothness around each component and this may generate better esti-
mates in practice. This might be possible by developing a tree-based approach
based on the vernier or a modified Lepski method, and is the subject of current
research.

6 Proofs

6.1 Proof of Lemma 1

We proceed by recalling the definition of FSL(α) as defined in [14]. The class
corresponds to densities bounded above by fmax, satisfying a slightly modified
form of the local density regularity assumption [A]:

[A”] Local density regularity: The density is α-regular around the γ-level set,
0 < α < ∞ and γ < fmax, if there exist constants C2 > C1 > 0 and δ1 > 0
such that

C1ρ(x, ∂G∗
γ)α ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α

for all x ∈ X with |f(x)− γ| ≤ δ1, where ∂G∗
γ is the boundary of the true

level set G∗
γ , and the set {x : |f(x) − γ| ≤ δ1} is non-empty.

and the densities have γ level sets of the form

G∗
γ = {(r, φ); φ ∈ [0, π)d−2 × [0, 2π), 0 ≤ r ≤ g(φ) ≤ R},

where (r, φ) denote the polar/hyperspherical coordinates and R > 0 is a con-
stant. g is a periodic Lipschitz function that satisfies g(φ) ≥ h, where h > 0 is
a constant, and

|g(φ) − g(θ)| ≤ L||φ − θ||1, ∀ φ, θ ∈ [0, π)d−2 × [0, 2π).

Here L > 0 is the Lipschitz constant, and || · ||1 denotes the ℓ1 norm.
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We set R = 1/2 in the definition of the star-shaped set so that the domain
is a subset of [−1/2, 1/2]d. With this domain, we now show that the level set
G∗

γ of a density f ∈ FSL(α) satisfies [B]. The same result holds for star-shaped

sets defined on the shifted domain [0, 1]d.
We first present a sketch of the main ideas, and then provide a detailed

proof. Consider the γ-level set G∗
γ of a density f ∈ FSL(α). To see that it

satisfies [B], divide the star-shaped set G∗
γ into sectors of width ≍ ǫ so that

each sector contains at least one ǫ-ball and the inner cover Iǫ(G
∗
γ) touches the

boundary at some point(s) in each sector. Now one can argue that, in each
sector, all other points on the boundary are O(ǫ) from the inner cover since the
boundary is Lipschitz. Since this is true for each sector, we have ∀x ∈ ∂G∗

γ ,
ρ(x, Iǫ(G

∗
γ)) = O(ǫ). Hence, the result follows. We now present the proof in

detail.
To see that G∗

γ satisfies [B], fix ǫo ≤ h/3. Then for all ǫ ≤ ǫo, B(0, ǫ) ⊆ G∗
γ

(since g(φ) ≥ h > ǫo), and hence Iǫ(G
∗
γ) 6= ∅. We also need to show that

∃C3 > 0 such that for all x ∈ ∂G∗
γ , ρ(x, Iǫ(G)) ≤ C3ǫ. For this, divide G∗

γ into

Md−1 sectors indexed by m = (m1, m2, . . . , md−1) ∈ {1, . . . , M}d−1

Sm =
{

(r, φ) : 0 ≤ r ≤ g(φ),
2π(md−1 − 1)

M
≤ φd−1 <

2πmd−1

M
π(mi − 1)

M
≤ φi <

πmi

M
i = 1, . . . , d − 2

}
,

where φ = (φ1, φ2, . . . , φd−1). Let

M =

⌊
π

2 sin−1 ǫ
h−ǫo

⌋

This choice of M implies that:

(i) There exists an ǫ-ball within Sm ∩ B(0, h) for every m ∈ {1, . . . , M}d−1,
and hence within each sector Sm. This follows because the minimum
angular width of a sector with radius h required to fit an ǫ-ball within is

2 sin−1 ǫ

h − ǫ
≤ 2 sin−1 ǫ

h − ǫo
≤ π

M
.

(ii) The angular-width of the sectors scales as O(ǫ).

π

M
<

π
π

2 sin−1 ǫ
h−ǫo

− 1
=

1
1

2 sin−1 ǫ
h−ǫo

− 1
π

≤ 3 sin−1 ǫ

h − ǫo

≤ 6
ǫ

h − ǫo
≤ 9

h
ǫ

The second inequality follows since

1

π
≤ 1

6 sin−1 ǫ
h−ǫo
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since ǫ
h−ǫo

≤ ǫo

h−ǫo
≤ 1

2 by choice of ǫo ≤ h/3. The third inequality is true

since sin−1(z/2) ≤ z for 0 ≤ z ≤ π/2. The last step follows by choice of
ǫo ≤ h/3.

Now from (i) above, each sector contains at least one ǫ-ball. Consider any
m ∈ {1, . . . , M}d−1. We claim that there exists a point xm ∈ ∂G∗

γ ∩ Sm,

xm = (g(θ), θ) for some θ ∈ [0, π)d−2 × [0, 2π), such that ρ(xm, Iǫ(G
∗
γ)) =

0. Suppose not. Then one can slide the ǫ-ball within the sector towards the
periphery and never touch the boundary, implying that the set G∗

γ is unbounded.
This is a contradiction by the definition of the class FSL(α). So now we have,
∀y ∈ ∂G∗

γ ∩ Sm, y = (g(φ), φ)

ρ(y, Iǫ(G
∗
γ)) ≤ ρ(y, xm) = ||y − xm||

Now recall that if y = (y1, . . . , yd) ≡ (r, φ1, . . . , φd−1) = (g(φ), φ), then the
relation between the Cartesian and hypershperical coordinates is given as:

y1 = r cosφ1

y2 = r sin φ1 cosφ2

y3 = r sin φ1 sinφ2 cosφ3

...

yd−1 = r sin φ1 . . . sin φd−2 cosφd−1

yd = r sin φ1 . . . sin φd−2 sin φd−1

Now since ||y−x|| =
∑d

i=1(yi−xi)
2, using the above transformation and simple

algebra, we can show that:

||y − xm||2 = ||(g(φ), φ) − (g(θ), θ)||2

= (g(φ) − g(θ))2 + 4g(φ)g(θ)

d−1∑

i=1

sinφ1 . . . sinφi−1 sin θ1 . . .

. . . sin θi−1 sin2 φi − θi

2

≤ (g(φ) − g(θ))2 + 4g(φ)g(θ)
d−1∑

i=1

sin2 φi − θi

2

Using this, we have ∀y ∈ ∂G∗
γ ∩ Sm

ρ(y, Iǫ(G
∗
γ)) ≤

√√√√(g(φ) − g(θ))2 + 4g(φ)g(θ)
d−1∑

i=1

sin2 φi − θi

2

≤ |g(φ) − g(θ)| + 2
√

g(φ)g(θ)

d−1∑

i=1

∣∣∣∣ sin
φi − θi

2

∣∣∣∣
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≤ L||φ − θ||1 +
d−1∑

i=1

|φi − θi|
2

= (L + 1/2)
d−1∑

i=1

|φi − θi|

≤ (L + 1/2)d
π

M

≤ 9d(L + 1/2)

h
ǫ := C3ǫ

where the third step follows by using the Lipschitz condition on g(·), g(·) ≤ R =
1/2 and since | sin(z)| ≤ |z|. The fifth step follows since x, y ∈ Sm and hence
|φi − θi| ≤ π/M for i = 1, . . . , d − 2 and |φd−1 − θd−1| ≤ 2π/M . The sixth step
invokes (ii) above.

Therefore, we have for all y ∈ ∂G∗
γ ∩ Sm ρ(y, Iǫ(G

∗
γ)) ≤ C3ǫ. And since the

result is true for any sector, condition [B] is satisfied by any level set G∗
γ with

density f ∈ FSL(α).

�

6.2 Proof of Proposition 1

Notice that since F∗
2 (α) ⊂ F∗

1 (α), we have

inf
Ĝn

sup
f∈F∗

1 (α)

E[d∞(Ĝn, G∗
γ)] ≥ inf

Ĝn

sup
f∈F∗

2 (α)

E[d∞(Ĝn, G∗
γ)]

Therefore, it suffices to establish a lower bound for the class of densities given
by F∗

2 (α).
We consider the class of densities FSL(α) with star-shaped levels sets having

Lipschitz boundaries, as defined in [14]. Lemma 1 establishes that all densities
in FSL(α) satisfy assumption [B]. Further, since the discrete set of densities
FD

SL(α) ⊂ FSL(α) used to derive the lower bound using Fano’s lemma in [14],
satisfy the local density regularity as stated in assumption [A] 2, we have

inf
Ĝn

sup
f∈F∗

2 (α)

E[d∞(Ĝn, G∗
γ)] ≥ inf

Ĝn

sup
f∈FD

SL(α)

E[d∞(Ĝn, G∗
γ)] ≥ c

(
n

log n

)− 1
d+2α

,

for n large enough. The last step follows from proof of Theorem 4 in [14].

�

2All densities in FSL(α) satisfy a weaker former of assumption [A] that only requires
density regularity to hold at (at least) one point along the boundary. However, for the discrete
set of densities considered in the construction of the lower bound, density regularity holds in
an open neighborhood around at least one point of the boundary, and hence these satisfy
assumption [A].
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6.3 Proof of Proposition 2

Observe that assumption [B] implies that G∗
γ is not empty since G∗

γ ⊇ Iǫ(G
∗
γ) 6=

∅ for ǫ ≤ ǫo. Hence for large enough n, with high probability, the plug-in level
set estimate Ĝ is also non-empty since the sup norm error between f̂(x) and
f(x) converges in probability to zero. Now recall that for non-empty sets

d∞(Ĝ, G∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝ), sup
x∈Ĝ

ρ(x, G∗
γ)}.

We now derive upper bounds on the two terms that control the Hausdorff error.
First, observe that if Ĝ∆G∗

γ 6= ∅, then for all points x ∈ Ĝ∆G∗
γ (that is,

points that are incorrectly included or excluded from the level set estimate),

|f(x) − γ| ≤ |f(x) − f̂(x)| and hence regularity condition [A1] holds at x since

the sup norm error between f̂(x) and f(x) converges in probability to zero and

hence for large enough n, with high probability, |f(x)− f̂(x)| ≤ δ1. So we have:

sup
x∈Ĝ∆G∗

γ

ρ(x, ∂G∗
γ) ≤ sup

x∈Ĝ∆G∗

γ

( |f(x) − γ|
C1

)1/α

≤
(
E(Ĝ)

C1

)1/α

=: ǫ. (11)

The last inequality follows since ∀x ∈ Ĝ∆G∗
γ , |f(x) − γ| ≤ E(Ĝ). Also, notice

that we define ǫ equal to this upper bound. This result implies that all points
whose distance to the boundary ∂G∗

γ is greater than ǫ cannot lie in Ĝ∆G∗
γ

and hence are correctly included or excluded from the level set estimate. Let
I2ǫ ≡ I2ǫ(G

∗
γ). This implies that all points within I2ǫ that are greater than ǫ

away from the boundary lie in Ĝ ∩ G∗
γ since they lie in I2ǫ ⊆ G∗

γ . Hence,

sup
x∈I2ǫ

ρ(x, Ĝ ∩ G∗
γ) ≤ ǫ. (12)

Using Eqs. (11) and (12), we now bound the two terms of the Hausdorff error.
To bound the second term of the Hausdorff error, consider two cases:

(i) If Ĝ \ G∗
γ = ∅, then Ĝ ⊆ G∗

γ . Hence

sup
x∈Ĝ

ρ(x, G∗
γ) = 0.

(ii) If Ĝ \ G∗
γ 6= ∅, then Ĝ∆G∗

γ 6= ∅. Hence using (11), we get:

sup
x∈Ĝ

ρ(x, G∗
γ) = sup

x∈Ĝ\G∗

γ

ρ(x, G∗
γ) = sup

x∈Ĝ\G∗

γ

ρ(x, ∂G∗
γ)

≤ sup
x∈Ĝ∆G∗

γ

ρ(x, ∂G∗
γ) ≤

(
E(Ĝ)

C1

)1/α

.
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Therefore, for either case

sup
x∈Ĝ

ρ(x, G∗
γ) ≤

(
E(Ĝ)

C1

)1/α

. (13)

To bound the first term of the Hausdorff error, again consider two cases:

(i) If G∗
γ \ Ĝ = ∅, then G∗

γ ⊆ Ĝ. Hence

sup
x∈G∗

γ

ρ(x, Ĝ) = 0.

(ii) If G∗
γ \ Ĝ 6= ∅, then we proceed by recalling assumption [B] which states

that the boundary points of G∗
γ are not too far from the inner cover and

using (12) to control the distance of the inner cover from Ĝ.

sup
x∈G∗

γ

ρ(x, Ĝ) ≤ sup
x∈G∗

γ

ρ(x, Ĝ ∩ G∗
γ)

= max{ sup
x∈I2ǫ

ρ(x, Ĝ ∩ G∗
γ), sup

x∈G∗

γ\I2ǫ

ρ(x, Ĝ ∩ G∗
γ)}

≤ max{ǫ, sup
x∈G∗

γ\I2ǫ

ρ(x, Ĝ ∩ G∗
γ)}.

The last step follows from (12). Now consider any x ∈ G∗
γ \ I2ǫ. Then

using triangle inequality, ∀y ∈ ∂G∗
γ and ∀z ∈ I2ǫ,

ρ(x, Ĝ ∩ G∗
γ) ≤ ρ(x, y) + ρ(y, z) + ρ(z, Ĝ ∩ G∗

γ)

≤ ρ(x, y) + ρ(y, z) + sup
z′∈I2ǫ

ρ(z′, Ĝ ∩ G∗
γ)

≤ ρ(x, y) + ρ(y, z) + ǫ.

The last step follows from (12). This implies that ∀y ∈ ∂G∗
γ ,

ρ(x, Ĝ ∩ G∗
γ) ≤ ρ(x, y) + inf

z∈I2ǫ

ρ(y, z) + ǫ

= ρ(x, y) + ρ(y, I2ǫ) + ǫ

≤ ρ(x, y) + sup
y′∈∂G∗

γ

ρ(y′, I2ǫ) + ǫ

≤ ρ(x, y) + 2C3ǫ + ǫ.

Here the last step invokes assumption [B]. This in turn implies that

ρ(x, Ĝ ∩ G∗
γ) ≤ inf

y∈∂G∗

γ

ρ(x, y) + (2C3 + 1)ǫ ≤ 2ǫ + (2C3 + 1)ǫ

The second step is true for x ∈ G∗
γ \ I2ǫ, because if it was not true then

∀y ∈ ∂G∗
γ , ρ(x, y) > 2ǫ and hence there exists a closed 2ǫ-ball around x

that is in G∗
γ . This contradicts the fact that x 6∈ I2ǫ.
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Therefore, we have:

sup
x∈G∗

γ\I2ǫ

ρ(x, Ĝ ∩ G∗
γ) ≤ (2C3 + 3)ǫ.

And going back to the start of case (ii) we get:

sup
x∈G∗

γ

ρ(x, Ĝ) ≤ (2C3 + 3)ǫ.

So for either case

sup
x∈G∗

γ

ρ(x, Ĝ) ≤ (2C3 + 3)ǫ = (2C3 + 3)

(
E(Ĝ)

C1

)1/α

. (14)

Putting together the bounds from Eqs. (13), (14) for the two terms of the
Hausdorff error, we get: For large enough n, with high probability

d∞(Ĝ, G∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝ), sup
x∈Ĝ

ρ(x, G∗
γ)} ≤ (2C3 + 3)

(
E(Ĝ)

C1

)1/α

.

This concludes the proof.

�

6.4 Proof of Theorem 1

Before proceeding to the proof of Theorem 1, we establish three lemmas that
will be used in this proof, as well as the proof of Theorem 2. The first lemma
bounds the deviation of true and empirical density averages. The choice of
penalty used to achieve adaptivity is motivated by this relation.

Lemma 2. Consider 0 < δ < 1. With probability at least 1 − δ, the following
is true for all j ≥ 0:

max
A∈Aj

|f̄(A) − f̂(A)| ≤ Ψj.

Proof. The proof relies on a pair of VC inequalities (See [35] Chapter 3) that
bound the relative deviation of true and empirical probabilities. For the collec-
tion Aj with cardinality bounded by 2jd, the relative VC inequalities state that
for any ǫ > 0

P

(
sup

A∈Aj

P (A) − P̂ (A)√
P (A)

> ǫ

)
≤ 4 · 2jde−nǫ2/4

and

P



 sup
A∈Aj

P̂ (A) − P (A)√
P̂ (A)

> ǫ



 ≤ 4 · 2jde−nǫ2/4.
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Also observe that

P̂ (A) ≤ P (A) + ǫ

√
P̂ (A) =⇒ P̂ (A) ≤ 2 max(P (A), 2ǫ2) (15)

and
P (A) ≤ P̂ (A) + ǫ

√
P (A) =⇒ P (A) ≤ 2 max(P̂ (A), 2ǫ2). (16)

To see the first statement, consider two cases:

1) P̂ (A) ≤ 4ǫ2. The statement is obvious.

2) P̂ (A) > 4ǫ2. This gives a bound on ǫ, which implies

P̂ (A) ≤ P (A) + P̂ (A)/2 =⇒ P̂ (A) ≤ 2P (A).

The second statement follows similarly.
Using the second statement and the relative VC inequalities for the collection

Aj , we have: With probability > 1 − 8 · 2jde−nǫ2/4, ∀A ∈ Aj both

P (A) − P̂ (A) ≤ ǫ
√

P (A) ≤ ǫ

√
2 max(P̂ (A), 2ǫ2)

and

P̂ (A) − P (A) ≤ ǫ

√
P̂ (A) ≤ ǫ

√
2 max(P̂ (A), 2ǫ2).

In other words, with probability > 1 − 8 · 2jde−nǫ2/4, ∀A ∈ Aj

|P (A) − P̂ (A)| ≤ ǫ

√
2 max(P̂ (A), 2ǫ2).

Setting ǫ =
√

4 log(2jd8/δj)/n, we have with probability > 1 − δj , ∀A ∈ Aj

|P (A) − P̂ (A)| ≤
√

8
log(2jd8/δj)

n
max

(
P̂ (A), 8

log(2jd8/δj)

n

)

Setting δj = δ2−(j+1) and applying union bound, we have with probability
> 1 − δ, for all resolutions j ≥ 0 and all cells A ∈ Aj

|P (A) − P̂ (A)| ≤
√

8
log(2j(d+1)16/δ)

n
max

(
P̂ (A), 8

log(2j(d+1)16/δ)

n

)

The result follows by dividing both sides by µ(A).

The next lemma states how the density deviation bound or penalty Ψj scales
with resolution j and number of observations n. It essentially reflects the fact
that at finer resolutions, the amount of data per cell decreases leading to larger
estimation error.
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Lemma 3. There exist constants c3, c4 ≡ c4(fmax, d) > 0 such that if j ≡ j(n)
satisfies 2j = O((n/ log n)1/d), then for all n, with probability at least 1 − 1/n,

c3

√
2jd

log n

n
≤ Ψj ≤ c4

√
2jd

log n

n
.

Proof. Recall the definition of Ψj

Ψj := max
A∈Aj

√

8
log(2j(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j(d+1)16/δ)

nµ(A)

)

We first derive the lower bound. Observe that since the total empirical proba-
bility mass is 1, we have

1 =
∑

A∈Aj

P̂ (A) ≤ max
A∈Aj

P̂ (A) × |Aj | = max
A∈Aj

P̂ (A)

µ(A)
= max

A∈Aj

f̂(A).

Use this along with δ = 1/n, j ≥ 0 and µ(A) = 2−jd to get:

Ψj ≥
√

2jd8
log 16n

n
.

To get an upper bound, using (15) from the proof of Lemma 2, we have with

probability > 1 − 8 · 2jde−nǫ2/4, for all A ∈ Aj

P̂ (A) ≤ 2 max(P (A), 2ǫ2).

Setting ǫ =
√

4 log(2jd8/δj)/n, we have with probability > 1−δj, for all A ∈ Aj

P̂ (A) ≤ 2 max

(
P (A), 8

log(2jd8/δj)

n

)

Dividing by µ(A) = 2−jd, using the density bound fmax, we have with proba-
bility > 1 − δj , for all A ∈ Aj

f̂(A) ≤ 2 max

(
fmax, 2

jd8
log(2jd8/δj)

n

)
.

Setting δj = δ2−(j+1) and applying union bound, we have with probability
> 1 − δ, for all resolutions j ≥ 0

max
A∈Aj

f̂(A) ≤ 2 max

(
fmax, 2

jd8
log(2j(d+1)16/δ)

n

)
.

This implies

Ψj ≤
√

2jd8
log(2j(d+1)16/δ)

n
· 2 max

(
fmax, 2jd8

log(2j(d+1)16/δ)

n

)
.
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Using δ = 1/n and 2j = O((n/ log n)1/d), we get:

Ψj ≤ c4(fmax, d)

√
2jd

log n

n
.

We now analyze the performance of the plug-in histogram-based level set
estimator proposed in (7), and establish the following lemma that bounds its
Hausdorff error. The first term denotes the estimation error while the second
term that is proportional to the sidelength of a cell (2−j) reflects the approx-
imation error. We would like to point out that some arguments in the proofs
hold for sn large enough. This implies that some of the constants in our proofs
will depend on {si}∞i=1, the exact form that the sequence sn takes (but not on
n). However, we omit this dependence for simplicity.

Lemma 4. Consider densities satisfying assumptions [A1] and [B]. If j ≡
j(n) is such that 2j = O(s−1

n (n/ logn)1/d), where sn is a monotone diverging
sequence, and n ≥ n0(fmax, d, δ1, ǫo, C1, α), then with probability at least 1−3/n

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 3, 8

√
dǫ−1

o )

[(
Ψj

C1

)1/α

+
√

d2−j

]
.

Proof. The proof follows along the lines of the proof of Proposition 2. Let
J0 = ⌈log2 4

√
d/ǫo⌉, where ǫo is as defined in assumption [B]. Also define

ǫj :=

[(
Ψj

C1

)1/α

+
√

d2−j

]
.

Consider two cases:

I. j < J0.
For this case, since the domain X = [0, 1]d, we use the trivial bound

d∞(Ĝj , G
∗
γ) ≤

√
d ≤ 2J0(

√
d2−j) ≤ 8

√
dǫ−1

o ǫj .

The last step follows by choice of J0 and since Ψj , C1 > 0.

II. j ≥ J0.
Observe that assumption [B] implies that G∗

γ is not empty since G∗
γ ⊇

Iǫ(G
∗
γ) 6= ∅ for ǫ ≤ ǫo. We will show that for large enough n, with high

probability, Ĝj ∩ G∗
γ 6= ∅ for j ≥ J0 and hence Ĝj is not empty. Thus the

Hausdorff error is given as

d∞(Ĝj , G
∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝj), sup
x∈Ĝj

ρ(x, G∗
γ)}, (17)

and we need bounds on the two terms in the right hand side.
To prove that Ĝj is not empty and obtain bounds on the two terms in the
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Hausdorff error, we establish a proposition and corollary. In the following
analysis, if G = ∅, then we define supx∈G g(x) = 0 for any function g(·).
The proposition establishes that for large enough n, with high probability,
all points whose distance to the boundary ∂G∗

γ is greater than ǫj are
correctly excluded or included in the level set estimate.

Proposition 4. If j ≡ j(n) is such that 2j = O(s−1
n (n/ logn)1/d), and

n ≥ n1(fmax, d, δ1), then with probability at least 1 − 2/n,

sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤

(
Ψj

C1

)1/α

+
√

d2−j = ǫj .

Proof. If Ĝj∆G∗
γ = ∅, then supx∈Ĝj∆G∗

γ
ρ(x, ∂G∗

γ) = 0 by definition, and

the result of Proposition 4 holds. If Ĝj∆G∗
γ 6= ∅, consider x ∈ Ĝj∆G∗

γ .
Let Ax ∈ Aj denote the cell containing x at resolution j. Consider two
cases:

(i) Ax ∩ ∂G∗
γ 6= ∅. This implies that

ρ(x, ∂G∗
γ) ≤

√
d2−j.

(ii) Ax ∩ ∂G∗
γ = ∅. Since x ∈ Ĝj∆G∗

γ , it is erroneously included or

excluded from the level set estimate Ĝj . Therefore, if f̄(Ax) ≥ γ,

then f̂(Ax) < γ otherwise if f̄(Ax) < γ, then f̂(Ax) ≥ γ. This im-

plies that |γ − f̄(Ax)| ≤ |f̄(Ax) − f̂(Ax)|. Using Lemma 2, we get
|γ − f̄(Ax)| ≤ Ψj with probability at least 1 − δ.

Now let x1 be any point in Ax such that |γ − f(x1)| ≤ |γ − f̄(Ax)|
(Notice that at least one such point must exist in Ax since this cell
does not intersect the boundary). As argued above, |γ− f̄(Ax)| ≤ Ψj

with probability at least 1 − 1/n (for δ = 1/n). Using Lemma 3, for
resolutions satisfying 2j = O(s−1

n (n/ logn)1/d), and for large enough
n ≥ n1(fmax, d, δ1), Ψj ≤ δ1 and hence |γ − f(x1)| ≤ δ1, with proba-
bility at least 1− 1/n. Thus, the density regularity assumption [A1]
holds at x1 with probability > 1 − 2/n and we have

ρ(x1, ∂G∗
γ) ≤

( |γ − f(x1)|
C1

)1/α

≤
( |γ − f̄(Ax)|

C1

)1/α

≤
(

Ψj

C1

)1/α

.

Since x, x1 ∈ Ax,

ρ(x, ∂G∗
γ) ≤ ρ(x1, ∂G∗

γ) +
√

d2−j ≤
(

Ψj

C1

)1/α

+
√

d2−j.
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So for both cases, if j ≡ j(n) is such that 2j = O(s−1
n (n/ log n)1/d), and

n ≥ n1(fmax, d, δ1), then with probability at least 1 − 2/n, ∀x ∈ Ĝj∆G∗
γ

ρ(x, ∂G∗
γ) ≤

(
Ψj

C1

)1/α

+
√

d2−j = ǫj .

Based on Proposition 4, the following corollary argues that for large enough
n and j ≥ J0 = ⌈log2 4

√
d/ǫo⌉, with high probability, all points within the

inner cover I2ǫj (G
∗
γ) that are at a distance greater than ǫj are correctly

included in the level set estimate, and hence lie in Ĝj ∩ G∗
γ . This also

implies that Ĝj is not empty.

Corollary 2. Recall assumption [B] and denote the inner cover of G∗
γ

with 2ǫj-balls, I2ǫj (G
∗
γ) ≡ I2ǫj for simplicity. For any n ≥ n0 ≡ n0(fmax, d,

δ1, ǫo, C1, α), if j ≡ j(n) is such that 2j = O(s−1
n (n/ logn)1/d) and j ≥ J0,

then, with probability at least 1 − 3/n,

Ĝj 6= ∅ and sup
x∈I2ǫj

ρ(x, Ĝj ∩ G∗
γ) ≤ ǫj .

Proof. Observe that for j ≥ J0, 2
√

d2−j ≤ 2
√

d2−J0 ≤ ǫo/2. By Lemma 3,
for resolutions satisfying 2j = O(s−1

n (n/ log n)1/d), and for large enough
n ≥ n2(ǫo, fmax, C1, α), 2(Ψj/C1)

1/α ≤ ǫo/2, with probability at least
1− 1/n. Therefore for resolutions satisfying 2j = O(s−1

n (n/ log n)1/d) and
j ≥ J0, and for n ≥ n2, with probability at least 1 − 1/n, 2ǫj ≤ ǫo and
hence I2ǫj 6= ∅.
Now consider any 2ǫj-ball in I2ǫj . Then the distance of all points in the
interior of the concentric ǫj-ball from the boundary of I2ǫj , and hence
from the boundary of G∗

γ is greater than ǫj . As per Proposition 4 for
n ≥ n0 = max(n1, n2), with probability > 1−3/n, none of these points can

lie in Ĝj∆G∗
γ , and hence must lie in Ĝj ∩G∗

γ since they are in I2ǫj ⊆ G∗
γ .

Thus, Ĝj 6= ∅ and for all x ∈ I2ǫj ,

ρ(x, Ĝj ∩ G∗
γ) ≤ ǫj .

We now resume the proof of Lemma 4. Assume the conclusions of Propo-
sition 4 and Corollary 2 hold. Thus all the following statements hold for
resolutions satisfying 2j = O(s−1

n (n/ log n)1/d), j ≥ J0 and n ≥ n0 ≡
n0(fmax, d, δ1, ǫo, C1, α), with probability at least 1 − 3/n. Since G∗

γ and

Ĝj are non-empty sets, we now bound the two terms that contribute to
the Hausdorff error:

sup
x∈G∗

γ

ρ(x, Ĝj) and sup
x∈Ĝj

ρ(x, G∗
γ)

30



To bound the second term, observe that

sup
x∈Ĝj

ρ(x, G∗
γ) = sup

x∈Ĝj\G∗

γ

ρ(x, G∗
γ) = sup

x∈Ĝj\G∗

γ

ρ(x, ∂G∗
γ)

≤ sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤ ǫj ,

where the last step follows from Proposition 4. Thus,

sup
x∈Ĝj

ρ(x, G∗
γ) ≤ ǫj . (18)

To bound the first term, we recall assumption [B] which states that the
boundary points of G∗

γ are O(ǫj) from the inner cover I2ǫj (G
∗
γ), and using

Corollary 2 to bound the distance of the inner cover from Ĝj .

sup
x∈G∗

γ

ρ(x, Ĝj) ≤ sup
x∈G∗

γ

ρ(x, Ĝj ∩ G∗
γ)

= max{ sup
x∈I2ǫj

ρ(x, Ĝj ∩ G∗
γ), sup

x∈G∗

γ\I2ǫj

ρ(x, Ĝj ∩ G∗
γ)}

≤ max{ǫj , sup
x∈G∗

γ\I2ǫj

ρ(x, Ĝj ∩ G∗
γ)},

where the last step follows using Corollary 2.
Now consider any x ∈ G∗

γ \I2ǫj . By the triangle inequality, ∀y ∈ ∂G∗
γ and

∀z ∈ I2ǫj ,

ρ(x, Ĝj ∩ G∗
γ) ≤ ρ(x, y) + ρ(y, z) + ρ(z, Ĝj ∩ G∗

γ)

≤ ρ(x, y) + ρ(y, z) + sup
z′∈I2ǫj

ρ(z′, Ĝj ∩ G∗
γ)

≤ ρ(x, y) + ρ(y, z) + ǫj,

where the last step follows using Corollary 2. This implies that ∀y ∈ ∂G∗
γ ,

ρ(x, Ĝj ∩ G∗
γ) ≤ ρ(x, y) + inf

z∈I2ǫj

ρ(y, z) + ǫj

= ρ(x, y) + ρ(y, I2ǫj ) + ǫj

≤ ρ(x, y) + sup
y′∈∂G∗

γ

ρ(y′, I2ǫj ) + ǫj

≤ ρ(x, y) + 2C3ǫj + ǫj,

where the last step invokes assumption [B]. This in turn implies that

ρ(x, Ĝj ∩ G∗
γ) ≤ inf

y∈∂G∗

γ

ρ(x, y) + (2C3 + 1)ǫj ≤ 2ǫj + (2C3 + 1)ǫj.
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The second step is true for x ∈ G∗
γ \ I2ǫj , because if it was not true then

∀y ∈ ∂G∗
γ , ρ(x, y) > 2ǫj and hence there exists a closed 2ǫj-ball around x

that is in G∗
γ . This contradicts the fact that x 6∈ I2ǫj . Therefore, we have:

sup
x∈G∗

γ\I2ǫj

ρ(x, Ĝj ∩ G∗
γ) ≤ (2C3 + 3)ǫj

And going back to (19), we get:

sup
x∈G∗

γ

ρ(x, Ĝj) ≤ (2C3 + 3)ǫj . (19)

From Eqs. (18) and (19), we have that for all densities satisfying assump-
tions [A1, B], if j ≡ j(n) is such that 2j = O(s−1

n (n/ log n)1/d), j ≥ J0,
and n ≥ n0 ≡ n0(fmax, d, δ1, ǫo, C1, α), then with probability > 1 − 3/n,

d∞(Ĝj , G
∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝj), sup
x∈Ĝj

ρ(x, G∗
γ)} ≤ (2C3 + 3)ǫj.

And addressing both Case I (j < J0) and Case II (j ≥ J0), we finally have
that for all densities satisfying assumptions [A1, B], if j ≡ j(n) is such that
2j = O(s−1

n (n/ log n)1/d), and n ≥ n0 ≡ n0(fmax, d, δ1, ǫo, C1, α), then with
probability > 1 − 3/n,

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 3, 8

√
dǫ−1

o )ǫj .

We now establish the result of Theorem 1. Since the regularity parameter α

is known, the appropriate resolution can be chosen as 2−j ≍ sn(n/ logn)−
1

(d+2α) .
Let Ω denote the event such that the bounds of Lemma 3 (with δ = 1/n) and
Lemma 4 hold. Then for n ≥ n0, P (Ω̄) ≤ 4/n where Ω̄ denotes the complement
of Ω. For n < n0, we can use the trivial inequality P (Ω̄) ≤ 1. So we have, for
all n

P (Ω̄) ≤ max(4, n0)
1

n
=: C′ 1

n

Here C′ ≡ C′(fmax, d, δ1, ǫo, C1, α).
So ∀f ∈ F∗

1 (α), we have: (Explanation for each step is provided after the
equations.)

E[d∞(Ĝj , G
∗
γ)] = P (Ω)E[d∞(Ĝj , G

∗
γ)|Ω] + P (Ω̄)E[d∞(Ĝj , G

∗
γ)|Ω̄]

≤ E[d∞(Ĝj , G
∗
γ)|Ω] + P (Ω̄)

√
d

≤ max(2C3 + 3, 8
√

dǫ−1
o )

[(
Ψj

C1

)1/α

+
√

d2−j

]
+ C′

√
d

n

≤ C max

{(
2jd log n

n

) 1
2α

, 2−j ,
1

n

}
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≤ C max

{
s−d/2α

n

(
n

log n

)− 1
d+2α

, sn

(
n

log n

)− 1
d+2α

,
1

n

}

≤ Csn

(
n

log n

)− 1
d+2α

.

Here C ≡ C(C1, C3, ǫo, fmax, δ1, d, α). The second step follows by observing the

trivial bounds P (Ω) ≤ 1 and since the domain X = [0, 1]d, E[d∞(Ĝj , G
∗
γ)|Ω̄] ≤√

d. The third step follows from Lemma 4 and the fourth one using Lemma 3.

The fifth step follows since the chosen resolution 2−j ≍ sn(n/ log n)−
1

(d+2α) .

�

6.5 Proof of Theorem 2

To analyze the resolution chosen by the complexity penalized procedure of (9)
based on the vernier, we first establish two results regarding the vernier. Using
Lemma 2, we have the following corollary that bounds the deviation of true and
empirical vernier.

Corollary 3. Consider 0 < δ < 1. With probability at least 1 − δ with respect
to the draw of the data, the following is true for all j ≥ 0:

|Vγ,j − V̂γ,j| ≤ Ψj′ .

Proof. Let A0 ∈ Aj denote the cell achieving the min defining Vγ,j and A1 ∈ Aj

denote the cell achieving the min defining V̂γ,j. Also let A′
00 and A′

10 denote
the subcells at resolution j′ within A0 and A1, respectively, that have maximum
average density deviation from γ. Similarly, let A′

01 and A′
11 denote the subcells

at resolution j′ within A0 and A1, respectively, that have maximum empirical
density deviation from γ. Then we have: (Explanation for the steps are given
after the equations.)

Vγ,j − V̂γ,j = |γ − f̄(A′
00)| − |γ − f̂(A′

11)|
≤ |γ − f̄(A′

10)| − |γ − f̂(A′
11)|

≤ |f̄(A′
10) − f̂(A′

11)|
= max{f̄(A′

10) − f̂(A′
11), f̂(A′

11) − f̄(A′
10)}

≤ max{f̄(A′
10) − f̂(A′

10), f̂(A′
11) − f̄(A′

11)}
≤ max

A∈Aj′

|f̄(A) − f̂(A)|

≤ Ψj′

The first inequality invokes definition of A0, the third inequality invokes defini-
tions of the subcells A′

10, A′
11, and the last one follows from Lemma 2. Similarly,

V̂γ,j − Vγ,j = |γ − f̂(A′
11)| − |γ − f̄(A′

00)|
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≤ |γ − f̂(A′
01)| − |γ − f̄(A′

00)|
≤ |f̄(A′

00) − f̂(A′
01)|

Here the first inequality invokes definition of A1. The rest follows as above,
considering cell A0 instead of A1.

The second result establishes that the vernier is sensitive to the resolution
and density regularity.

Lemma 5. Consider densities satisfying assumptions [A] and [B]. Recall that
j′ = ⌊j+log2 sn⌋, where sn is a monotone diverging sequence. There exists C ≡
C(C2, fmax, δ2, α)> 0 such that if n is large enough so that sn > 8 max(3ǫ−1

o , 28,
12C3)

√
d, then for all j ≥ 0,

min(δ1, C1)2
−j′α ≤ Vγ,j ≤ C(

√
d2−j)α.

Proof. We first establish the upper bound. Recall assumption [A] and consider
the cell A0 ∈ Aj that contains the point x0. Then A0 ∩ ∂G∗

γ 6= ∅. Let A′
0

denote the subcell at resolution j′ within A0 that has maximum average density
deviation from γ. Consider two cases:

(i) If the resolution is high enough so that
√

d2−j ≤ δ2, then the density
regularity assumption [A2] holds ∀x ∈ A0 since A0 ⊂ B(x0, δ2), the δ2-
ball around x0. The same holds also for the subcell A′

0. Hence

|γ − f̄(A′
0)| ≤ C2(

√
d2−j)α

(ii) If the resolution is not high enough and
√

d2−j > δ2, the following trivial
bound holds:

|γ − f̄(A′
0)| ≤ fmax ≤ fmax

δα
2

(
√

d2−j)α

The last step holds since
√

d2−j > δ2.

Hence we can say for all j ≥ 0 there exists A0 ∈ Aj such that

max
A′∈Aj′∩A0

|γ − f̄(A′)| = |γ − f̄(A′
0)| ≤ max

(
C2,

fmax

δα
2

)
(
√

d2−j)α

This yields the upper bound on the vernier:

Vγ,j ≤ max

(
C2,

fmax

δα
2

)
(
√

d2−j)α := C(
√

d2−j)α

where C ≡ C(C2, fmax, δ2, α).
For the lower bound, consider any cell A ∈ Aj . We will show that the

level set regularity assumption [B] implies that for large enough n (so that the
sidelength 2−j′ is small enough), the boundary does not intersect all subcells at

34



resolution j′ within the cell A at resolution j. And in fact, there exists at least
one subcell A′

1 ∈ A ∩Aj′ such that ∀x ∈ A′
1,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

We establish this statement formally later on, but for now assume that it holds.
The local density regularity condition [A] now gives that for all x ∈ A′

1, |γ −
f(x)| ≥ min(δ1, C12

−j′α) ≥ min(δ1, C1)2
−j′α. So we have

max
A′∈A∩Aj′

|γ − f̄(A′)| ≥ |γ − f̄(A′
1)| ≥ min(δ1, C1)2

−j′α.

Since this is true for any A ∈ Aj , in particular, this is true for the cell achieving
the min defining Vγ,j. Hence, the lower bound on the vernier Vγ,j follows.

We now formally prove that the level set regularity assumption [B] implies
that for large enough n (so that sn > 8 max(3ǫ−1

o , 28, 12C3)
√

d), ∃A′
1 ∈ A∩Aj′

such that ∀x ∈ A′
1,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

Observe that if we consider any cell at resolution j′′ := j′ − 2 that does not
intersect the boundary ∂G∗

γ , then it contains a cell at resolution j′ that is

greater than 2−j′ away from the boundary. Thus, it suffices to show that for
large enough n (so that sn > 8 max(3ǫ−1

o , 28, 12C3)
√

d), ∃A′′∈ A ∩ Aj′′ such
that A′′∩∂G∗

γ = ∅. We prove the last statement by contradiction. Suppose that

for sn > 8 max(3ǫ−1
o , 28, 12C3)

√
d, all subcells in A at resolution j′′ intersect the

boundary ∂G∗
γ . Let ǫ = 3

√
d2−j′′ . Then,

ǫ = 3
√

d2−j′′ = 12
√

d2−j′ <
24

√
d

sn
2−j ≤ 24

√
d

sn
≤ ǫo,

where the last step follows since sn ≥ 24
√

dǫ−1
o . By choice of ǫ, every closed

ǫ-ball in A must contain an entire subcell at resolution j′′ and in fact must con-
tain an open neighborhood around that subcell. Since the boundary intersects
all subcells at resolution j′′, this implies that every closed ǫ-ball in A contains a
boundary point and in fact contains an open neighborhood around that bound-
ary point. Thus, (i) every closed ǫ-ball in A contains points not in G∗

γ , and
hence cannot lie in Iǫ(G

∗
γ). Also, observe that since all subcells in A at resolu-

tion j′′ intersect the boundary of G∗
γ , (ii) there exists a boundary point x1 that

is within
√

d2−j′′ of the center of cell A. From (i) and (ii) it follows that,

ρ(x1, Iǫ(G
∗
γ)) ≥ 2−j

2
−
√

d2−j′′ − 2ǫ =
2−j

2
− 28

√
d2−j′

> 2−j

(
1

2
− 56

√
d

sn

)
>

2−j

4
,

where the last step follows since sn > 224
√

d. However, assumption [B] implies
that for ǫ ≤ ǫo,

ρ(x1, Iǫ(G
∗
γ)) ≤ C3ǫ = 3C3

√
d2−j′′ = 12C3

√
d2−j′ ≤ 24C3

√
d2−j

sn
≤ 2−j

4
,
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where the last step follows since sn > 96C3

√
d, and we have a contradiction.

This completes the proof of Lemma 5.

We are now ready to prove Theorem 2. To analyze the resolution ĵ chosen by
(9), we first derive upper bounds on Vγ,ĵ and Ψĵ′ , that effectively characterize
the approximation error and estimation error, respectively. Thus, a bound on
the vernier Vγ,ĵ will imply that the chosen resolution ĵ cannot be too coarse
and a bound on the penalty will imply that the chosen resolution is not too fine.
Using Corollary 3 and (9), we have the following oracle inequality that holds
with probability at least 1 − δ:

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ = min
0≤j≤J

{
V̂γ,j + Ψj′

}
≤ min

0≤j≤J
{Vγ,j + 2Ψj′} .

Lemma 5 provides an upper bound on the vernier Vγ,j, and Lemma 3 provides
an upper bound on the penalty Ψj′ . We now plug these bounds into the oracle
inequality. Here C may denote a different constant from line to line.

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ ≤ C min
0≤j≤J

{
2−jα +

√
2j′d

log n

n

}

≤ C min
0≤j≤J

{
max

(
2−jα,

√
2jdsd

n

log n

n

)}

≤ Cs
dα

d+2α
n

(
n

log n

)− α
d+2α

.

Here C ≡ C(C2, fmax, δ2, d, α). The second step uses the definition of j′, and
the last step follows by balancing the two terms for optimal resolution j∗ given

by 2−j∗ ≍ s
d

d+2α
n (n/ logn)

− 1
d+2α . This establishes the desired bounds on Vγ,ĵ

and Ψĵ′ .

Now, using Lemma 5 and the definition of j′, we have the following upper
bound on the sidelength: For sn > 8 max(3ǫ−1

o , 28, 12C3)
√

d,

2−ĵ ≤ sn2−ĵ′ ≤ sn

( Vγ,ĵ

min(δ1, C1)

) 1
α

≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

,

where c2 ≡ c2(C1, C2, fmax, δ1, δ2, d, α) > 0. Also notice that since 2J ≍ s−1
n

(n/ logn)1/d, we have 2j′ ≤ 2J′ ≤ sn2J ≍ (n/ log n)1/d, and thus j′ satisfies the
condition of Lemma 3. Therefore, using Lemma 3, we get a lower bound on the
sidelength: With probability at least 1 − 2/n,

2−ĵ >
sn

2
2−ĵ′ ≥ sn

2

(
Ψ2

ĵ′

c2
3

n

log n

)− 1
d

≥ c1sn

(
s

2dα
d+2α
n

(
n

log n

)− 2α
d+2α n

log n

)−1/d

= c1sns
−2α

d+2α
n

(
n

log n

) −1
d+2α

= c1s
d

d+2α
n

(
n

log n

) −1
d+2α

,
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where c1 ≡ c1(C2, fmax, δ2, d, α) > 0. So we have for sn > 8 max(3ǫ−1
o , 28,

12C3)
√

d, with probability at least 1 − 2/n,

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

, (20)

where c1 ≡ c1(C2, fmax, δ2, d, α) > 0 and c2 ≡ c2(C1, C2, fmax, δ1, δ2, d, α) > 0.
Hence the automatically chosen resolution behaves as desired.

Now we can invoke Lemma 4 to derive the rate of convergence for the Haus-
dorff error. Consider large enough n ≥ n1(C3, ǫo, d) so that sn > 8 max(3ǫ−1

o , 28,
12C3)

√
d. Also, recall that the condition of Lemma 4 requires that n ≥ n0(fmax,

d, δ1, ǫo, C1, α). Pick n ≥ max(n0, n1) and let Ω denote the event such that the
bounds of Lemma 3, Lemma 4, and the upper and lower bounds on the cho-
sen sidelength in (20) hold with δ = 1/n. Then, we have P (Ω̄) ≤ 6/n. For
n < max(n0, n1), we can use the trivial inequality P (Ω̄) ≤ 1. So we have, for
all n

P (Ω̄) ≤ max(6, max(n0, n1))
1

n
=: C

1

n
,

where C ≡ C(C1, C3, ǫo, fmax, δ1, d, α).
So ∀f ∈ F∗

2 (α), we have: (Here C may denote a different constant from line
to line. Explanation for each step is provided after the equations.)

E[d∞(Ĝ, G∗
γ)] = P (Ω)E[d∞(Ĝ, G∗

γ)|Ω] + P (Ω̄)E[d∞(Ĝ, G∗
γ)|Ω̄]

≤ E[d∞(Ĝ, G∗
γ)|Ω] + P (Ω̄)

√
d

≤ C

[(
Ψĵ

C1

)1/α

+
√

d2−ĵ +

√
d

n

]

≤ C max

{(
2ĵd log n

n

) 1
2α

, 2−ĵ,
1

n

}

≤ C max

{
s

−d2/2α
d+2α

n

(
n

log n

)− 1
d+2α

, sns
d

d+2α
n

(
n

log n

)− 1
d+2α

,
1

n

}

≤ Csns
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ Cs2
n

(
n

log n

)− 1
d+2α

.

Here C ≡ C(C1, C2, C3, ǫo, fmax, δ1, δ2, d, α). The second step follows by observ-

ing the trivial bounds P (Ω) ≤ 1 and since the domain X = [0, 1]d, E[d∞(Ĝ, G∗
γ)|Ω̄]

≤
√

d. The third step follows from Lemma 4 and the fourth one from Lemma

3. The fifth step follows using the upper and lower bounds established on 2−ĵ

in (20).

�
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6.6 Proof of Proposition 3

We proceed by formally defining the class FBF (α, ζ). The class corresponds to
densities bounded above by fmax, satisfying the local density regularity assump-
tions [A1,A2] for points within the support set, and the densities have support
sets that are Hölder-ζ boundary fragments. That is,

G∗
0 = {(x̃, xd); x̃ ∈ [0, 1]d−1, 0 ≤ xd ≤ g(x̃)},

where the function g satisfies h ≤ g(x̃) ≤ 1−h, where 0 < h < 1/2 is a constant,
and g is Hölder-ζ smooth. That is, g has continuous partial derivatives of up to
order [ζ], where [ζ] denotes the maximal integer that is < ζ, and ∃δ > 0 such
that

∀z̃, x̃ ∈ [0, 1]d−1 : ||z̃ − x̃|| ≤ δ ⇒ |g(z̃) − TPx̃(z̃, [ζ])| ≤ L‖z − x‖α

where L, ζ > 0, TPx̃(·, [ζ]) denotes the degree [ζ] Taylor polynomial approxima-
tion of g expanded around x̃, and || · || denotes Euclidean norm.

The proof is motivated by the minimax lower bound proof of Theorem 1 in
[14], however the construction is slightly different for support set estimation.
For the sake of completeness, we present the entire proof here. We will use the
following theorem from [36].

Theorem 4 (Main Theorem of Risk Minimization (Kullback divergence ver-
sion)). Let Θ be a class of models. Associated with each model θ ∈ Θ we have
a probability measure Pθ. Let M ≥ 2 be an integer and let d(·, ·) : Θ × Θ → R

be a semidistance. Suppose we have {θ0, . . . , θM} ∈ Θ such that

1. d(θj , θk) ≥ 2s > 0, ∀0≤j,k≤M ,

2. Pθj ≪ Pθ0 , ∀j=1,...,M ,

3. 1
M

∑M
j=1 KL(Pθj‖Pθ0) ≤ κ log M,

where 0 < κ < 1/8. The following bound holds.

inf
θ̂n

sup
θ∈Θ

Pθ

(
d(θ̂, θ) ≥ s

)
≥

√
M

1 +
√

M

(
1 − 2κ − 2

√
κ

log M

)
> 0,

where the infimum is taken with respect to the collection of all possible estimators
of θ, and KL denotes the Kullback-Leibler divergence.

The following corollary follows immediately from the theorem using Markov’s
inequality.

Corollary 4. Under the assumptions of Theorem 4 we have

inf
θ̂n

sup
θ∈Θ

E[d(θ̂, θ)] ≥ s

√
M

1 +
√

M

(
1 − 2κ − 2

√
κ

log M

)
> cs,

for some c ≡ c(κ, M) > 0.
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We now construct the model class Θ ≡ F of densities that is a subset of
densities from the class FBF (α, ζ). Thus, Corollary 4 would give a minimax
lower bound for the class FBF (α, ζ). Consider {f0, . . . , fM} ∈ F as follows. Let
x = (x̃, xd) ∈ [0, 1]d, where x̃ ∈ [0, 1]d−1 and xd ∈ [0, 1]. Also let

m =

⌈
c0

(
n

log n

) 1
ζ(α+1)+d−1

⌉
,

where c0 > 0 is a constant to be specified later. Define

x̃j̃ =
j̃ − 1/2

m
, Bj̃ =

{
x : x̃ ∈

(
x̃j̃ −

1

2m
, x̃j̃ +

1

2m

)}

and

ηj̃(x̃) =
L

mζ
K(m(x̃ − x̃j̃)),

where j̃ ∈ {1, . . . , m}d−1 and K > 0 is a Hölder-ζ function with constant 1, and
supp(K) = (−1/2, 1/2)d−1. Now define

f0(x) = g0(x) and fj̃(x) = g0(x) + g1,j̃(x) + g2(x),

where

g0(x) =






0 xd > 1/2, x̃ ∈ [0, 1]d−1

C1+C2

2

(
1
2 − xd

)α
1/2 − δ2 < xd ≤ 1/2, x̃ ∈ [0, 1]d−1

1−
C1+C2

2

δ
α+1
2
α+1

1/2−δ2
xd ≤ 1/2 − δ2, x̃ ∈ [0, 1]d−1

g1,j̃(x) =






−C1+C2

2

(
1
2 − xd

)α 1
2 − ηj̃(x̃) < xd ≤ 1

2 , x̃ ∈ Bj̃

−C1+C2

2

(
1
2 − xd

)α
+ 1

2 − 3
2ηj̃(x̃) < xd ≤ 1

2 − ηj̃(x̃),
C1+C2

2

(
1
2 − ηj̃(x̃) − xd

)α

x̃ ∈ Bj̃

0 elsewhere

and

g2(x) =

{
C′(α,L,K,C1,C2)

1/2−δ2
m−(ζ(α+1)+d−1) xd ≤ 1/2 − δ2, x̃ ∈ [0, 1]d−1

0 elsewhere

where C′(α, L, K, C1, C2) = C1+C2

2

(
1 − 1

2α+1

)
Lα+1

α+1 ‖K‖α+1
α+1. See Figure 2.

Thus, M = md−1. Observe that f0, . . . , fM are valid densities since
∫

g0 = 1,∫
g1,j̃ +

∫
g2 = 0 and f0, . . . , fM ≥ 0 provided δ2 is small enough but fixed

and n is large enough but fixed. Moreover, observe that provided δ1 is small
enough but fixed, the densities satisfy assumptions [A1, A2] for all points
within the support. The exact requirements on δ1, δ2 and n can be specified but
are cumbersome and of no interest to the results. The corresponding support
sets are given as:

G∗
0 = {x : 0 ≤ xd < 1/2}

G∗
j̃

= {x : 0 ≤ xd < 1/2 − ηj̃(x̃)}
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Figure 2: Densities used in the lower bound construction for Hausdorff accurate
support set estimation.

Observe that the support sets are Hölder-ζ boundary fragments. Thus, F ⊂
FBF (α, ζ).

Now, we show that F satisfies the assumptions of Theorem 4 for d ≡ d∞.

1. For all j̃ 6= k̃,

d∞(G∗
j̃
, G∗

k̃
) = max(max

x̃
ηj̃(x̃), max

x̃
ηk̃(x̃)) = L max

x̃
K(x̃)m−ζ =: 2s > 0,

and also for all j̃

d∞(G∗
j̃
, G∗

0) = max
x̃

ηj̃(x̃) = L max
x̃

K(x̃)m−ζ =: 2s > 0.

2. Clearly, Pj̃ ≪ P0, ∀j̃ by construction.

3. We now evaluate the KL divergence.

KL(Pj̃‖P0) = Ej̃

[
n∑

i=1

log
fj̃(Xi)

f0(Xi)

]
= n

∫

[0,1]d
log

fj̃(x)

f0(x)
fj̃(x)dx

The last integral consists of three terms considering where fj̃(x) > 0 that
we evaluate next.

I = n

∫

[0,1]d−1

∫ 1
2−δ2

0

log
g0(x) + g2(x)

g0(x)
(g0(x) + g2(x)) dxddx̃

= n log

(
1 +

C′m−(ζ(α+1)+d−1)

1 − C1+C2

2
hα+1

α+1

)
C′m−(ζ(α+1)+d−1)

≤ nC′C′′m−2(ζ(α+1)+d−1)

= C′C′′(2c0)
−2(ζ(α+1)+d−1) (log n)2

n
≤ κ log M
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where the inequality follows from log(1 + x) ≤ x and defining C′′ =
C′

1−
C1+C2

2
hα+1

α+1

. In the last step, 0 < κ < 1/8 by appropriate choice of

c0.

II = n

∫

[0,1]d−1\Bj̃

∫ 1/2

1/2−δ2

log
g0(x)

g0(x)
g0(x)dxddx̃ = 0

III = n

∫

Bj̃

∫ 1
2−ηj̃(x̃)

1
2−

3
2ηj̃(x̃)

log
g0(x) + g1(x)

g0(x)
(g0(x) + g1(x)) dxddx̃

= n

∫

Bj̃

∫ 1
2−ηj̃(x̃)

1
2−

3
2ηj̃(x̃)

log

(
1 −

ηj̃(x̃)
1
2 − xd

)α

·

C1 + C2

2

(
1

2
− ηj̃(x̃) − xd

)α

dxddx̃

≤ 0

Finally, we get

1

M

M∑

j=1

KL(Pj̃‖P0) ≤ κ log M.

Thus, all the conditions of Theorem 4 are satisfied and Corollary 4 implies the
desired lower bound since s := L maxx̃ K(x̃)m−ζ/2.

�

6.7 Proof sketch of Theorem 3

We derive an upper bound on the Hausdorff error of the estimator proposed
in (10) for support set estimation (γ = 0). We follow the proof of Theorem 1,
except that instead of Lemma 2 based on the VC inequalities, we will use the
following lemma that is based on the Craig-Bernstein inequality [32].

Lemma 6. With probability at least 1 − 1/n, the following is true for all j ≥ 0
and all A ∈ Aj

f̄(A) ≤ 2f̂(A) + Ψ0
j

Similarly, with probability at least 1 − 1/n, the following is true for all j ≥ 0
and all A ∈ Aj

f̂(A) ≤ 2f̄(A) + Ψ0
j

Proof. The proof hinges on the following concentration inequality due to Craig
[32]:
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Proposition 5 (Craig93). Let {Ui}n
i=1 be independent random variables satis-

fying the Bernstein moment condition

E[|Ui − E[Ui]|k] = var(Ui)
k!

2
hk−2,

for some h > 0 and all k ≥ 2. Then

P

(
1

n
(Ui − E[Ui]) ≥

τ

nǫ
+

nǫ var( 1
nUi)

2(1 − c)

)
≤ e−τ

for 0 < ǫh ≤ c < 1 and τ > 0.

First let Ui = −1Xi∈A. Then E[Ui] = −P (A). Since |Ui − E[Ui]| ≤ 1, the
Bernstein moment condition is satisfied as follows.

E[|Ui − E[Ui]|k] = E[|Ui − E[Ui]|k−2|Ui − E[Ui]|2] ≤ E[|Ui − E[Ui]|2]

= var(Ui) ≤ var(Ui)
k!

2
hk−2

for h = 1 and all k ≥ 2. Therefore, we have with probability > 1 − e−τ ,

−P̂ (A) + P (A) ≤ τ

nǫ
+

nǫ var( 1
nUi)

2(1 − c)
≤ τ

nǫ
+

ǫ var(Ui)

2(1 − c)

≤ τ

nǫ
+

ǫP (A)

2(1 − c)

The last step follows since var(Ui) ≤ E[|Ui|2] ≤ E[|Ui|] = P (A). Setting ǫ =
c = 1/2, we have with probability > 1 − 2jde−τ , for all A ∈ Aj

P (A) ≤ 2P̂ (A) +
4τ

n

Now let τ = log 2jd

δj
, δj = δ2−(j+1) and apply union bound to get with proba-

bility > 1 − δ, for all resolutions j ≥ 0 and all A ∈ Aj

P (A) ≤ 2P̂ (A) +
4 log 2j(d+1)2

δ

n
.

The first result follows by dividing by µ(A) = 2−jd and setting δ = 1/n.
To get the second result, let Ui = 1Xi∈A and proceed as before. We get with

probability > 1 − δ, for all resolutions j ≥ 0 and all A ∈ Aj

P̂ (A) ≤ 3

2
P (A) +

2 log 2j(d+1)2
δ

n
≤ 2P (A) +

4 log 2j(d+1)2
δ

n
.
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Analogous to Lemma 3, there exist constants c5, c6 > 0, such that for reso-
lutions satisfying 2j = O((n/ log n)1/d),

c5
2jd log n

n
≤ Ψ0

j ≤ c6
2jd log n

n
. (21)

Also, the following analogue of Proposition 4 holds.

Proposition 6. For any n ≥ n1(d, C1), if j ≡ j(n) is such that 2j = O(s−1
n

(n/ logn)1/d), then, with probability at least 1 − 1/n

sup
x∈Ĝ0,j∆G∗

0

ρ(x, ∂G∗
0) ≤

(
Ψ0

j

C1

)1/α

+
√

d2−j = ǫj .

Proof. Proof follows along the lines of the proof of Proposition 4. If Ĝ0,j∆G∗
0 =

∅, then supx∈Ĝ0,j∆G∗

0
ρ(x, ∂G∗

0) = 0 < ǫj by definition. If Ĝ0,j∆G∗
0 6= ∅, con-

sider x ∈ Ĝ0,j∆G∗
0. Let Ax ∈ Aj denote the cell containing x at resolution j.

Consider two cases:

(i) Ax ∩ ∂G∗
0 6= ∅. This implies that

ρ(x, ∂G∗
0) ≤

√
d2−j .

(ii) Ax ∩ ∂G∗
0 = ∅. Since x ∈ Ĝ0,j∆G∗

0, it is erroneously excluded from the

support set estimate Ĝ0,j . Therefore, f̄(Ax) > 0 and f̂(Ax) = 0. (Notice

that if f̄(Ax) = 0, then f̂(Ax) = 0 as no data points lie in Ax, hence
a cell cannot be erroneously included in the support set estimate.) Since

f̄(Ax) > 0 and Ax∩∂G∗
0 = ∅, Ax ⊂ G∗

0. Using Lemma 6, since f̂(Ax) = 0,
we get f̄(Ax) ≤ Ψ0

j with probability at least 1 − 1/n.

Now let x1 be any point in Ax such that 0 < f(x1) ≤ f̄(Ax) (Notice that
at least one such point must exist in Ax since this cell does not intersect
the boundary). As argued above, f̄(Ax) ≤ Ψ0

j with probability at least

1 − 1/n. From (21), for resolutions satisfying 2j = O(s−1
n (n/ log n)1/d),

and for large enough n ≥ n1(d, δ1), Ψ0
j ≤ δ1 and hence f(x1) ≤ δ1, with

probability at least 1 − 1/n. Also, x1 ∈ Ax ⊂ G∗
0. Thus, the density

regularity assumption [A1] holds at x1 with probability > 1−1/n and we
have

ρ(x1, ∂G∗
0) ≤

(
f(x1)

C1

)1/α

≤
(

f̄(Ax)

C1

)1/α

≤
(

Ψ0
j

C1

)1/α

.

Since x, x1 ∈ Ax,

ρ(x, ∂G∗
0) ≤ ρ(x1, ∂G∗

0) +
√

d2−j ≤
(

Ψ0
j

C1

)1/α

+
√

d2−j.

43



Rest of the proof of Theorem 3 follows as for Theorem 1. Since Ψ0
j behaves es-

sentially as the square of Ψj, we get a bound that scales as sn(n/ logn)−1/(d+α).

�

6.8 Proof sketch for α ≥ 0

First consider the non-adaptive setting when α is known to be zero. In this
case the plug-in histogram estimator of (7), along with a choice of resolution
j such that 2−j ≍ sn(n/ log n)−1/d, achieves minimax optimal performance for
the class of densities given by F∗

1 (0). This follows along the lines of the proof
of Theorem 1 except that for the case α = 0, the following result analogous to
Proposition 4 holds.

Proposition 7. For any n ≥ n1(fmax, d, C1), if j ≡ j(n) is such that 2j =
O(s−1

n (n/ log n)1/d), then, with probability at least 1 − 2/n,

sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤

√
d2−j =: ǫj .

Proof. If α = 0, then ∀x ∈ X , |γ − f(x)| ≥ min(C1, δ1). Consider any cell A
that does not intersect the boundary. Then |γ − f̄(A)| ≥ min(C1, δ1) ≥ Ψj ≥
|f̄(A) − f̂(A)|. The second step holds, with probability at least 1 − 1/n for
n ≥ n1(fmax, d, C1, δ1) and resolutions satisfying 2j = O(s−1

n (n/ log n)1/d), us-
ing Lemma 3. And the third step follows with probability at least 1−1/n using

Lemma 2 (with δ = 1/n). Since |γ − f̄(A)| ≥ |f̄(A)− f̂(A)|, for resolutions sat-
isfying 2j = O(s−1

n (n/ log n)1/d) and n ≥ n1 (fmax, d, C1, δ1), with probability
at least 1− 2/n, all cells A that do not intersect the boundary are correctly in-
cluded or excluded from the level set estimate. Hence, supx∈G∗

γ∆Ĝj
ρ(x, ∂G∗

γ) ≤
√

d2−j .

This yields a corresponding Hausdorff error bound (analogous to Lemma 4) of

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 3, 8

√
dǫ−1

o )
[
2
√

d2−j
]
. (22)

Thus, the result follows as 2−j ≍ sn(n/ log n)−1/d.
Next, we prove that adaptivity can be achieved, and hence Theorem 2 holds,

for the whole range α ≥ 0 using the modified vernier and penalty proposed in
Section 4.4. First, notice that Corollary 3 still holds for the modified vernier
and modified penalty since Vγ,j, V̂γ,j as well as Ψj′ are all scaled by the same

factor of 2−j′/2. And we have the following analogue of Lemma 5 using the
modified vernier:

Lemma 7. Consider densities satisfying assumption [A] for α ≥ 0 and as-
sumption [B]. Recall that j′ = ⌊j + log2 sn⌋, where sn is a diverging sequence.
There exists C ≡ C(C2, fmax, δ1) > 0 such that for n large enough (so that
sn > 8 max(3ǫ−1

o , 28, 12C3)
√

d), then for all j ≥ 0

min(δ1, C1)2
−j′α2−j′/2 ≤ Vγ,j ≤ C(

√
d2−j)α2−j′/2.
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Following the proof of Theorem 2, we derive upper bounds on Vγ,ĵ and Ψĵ′ using
the oracle inequality. Since both the modified vernier and penalty are scaled
by the same factor, the two terms in the oracle inequality are still balanced for

the same optimal resolution j∗ given by 2−j∗ ≍ s
d

d+2α
n (n/ log n)−

1
d+2α . Hence

we get:

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ ≤ C2−j∗
′

/22−j∗α ≤ Cs−1/2
n s

d(α+1/2)
d+2α

n

(
n

log n

)− (α+1/2)
d+2α

.

Using this upper bound on Vγ,ĵ and Ψĵ′ , we derive upper and lower bounds

on the chosen resolution ĵ as in the proof of Theorem 2. Using Lemma 7, we
have the following upper bound on the sidelength: For sn > 8 max(3ǫ−1

o , 28,
12C3)

√
d,

2−ĵ ≤ sn

( Vγ,ĵ

min(δ1, C1)

)1/(α+1/2)

≤ c2s
2α

2α+1
n s

d
d+2α
n

(
n

log n

)− 1
d+2α

≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

.

And using Lemma 3 for the modified penalty, we have:

c32
−j′/2

√
2j′d

log n

n
≤ Ψj′ .

This provides a lower bound on the sidelength:

2−ĵ >
sn

2

(
Ψ2

ĵ′

4c2
3

n

log n

)− 1
(d−1)

≥ c1sn



s−1
n s

2d(α+1/2)
d+2α

n

(
n

log n

)− 2(α+1/2)
d+2α n

log n




− 1

(d−1)

= c1sns
1

(d−1)
n s

−2d(α+1/2)
(d−1)(d+2α)
n

(
n

log n

) −1
d+2α

= c1s
d

d+2α
n

(
n

log n

) −1
d+2α

.

So as before we have for sn > 8 max(3ǫ−1
o , 28, 12C3)

√
d, with probability at

least 1 − 2/n,

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

,

where c1 ≡ c1(C2, fmax, δ1, d, α) > 0 and c2 ≡ c2(C1, C2, fmax, δ1, d, α) > 0.
Hence the automatically chosen resolution behaves as desired for α ≥ 0.

To arrive at the result of Theorem 2 for α ≥ 0, follow the same arguments as
before but using Lemma 4 to bound the Hausdorff error for α > 0, and (22) to
bound the Hausdorff error for α = 0. Thus, Theorem 2 holds and the proposed
method is adaptive for all α ≥ 0 (including the jump case), using the modified
vernier and penalty.

�
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