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Consider the problem of estimating the γ -level set G∗
γ = {x :f (x) ≥ γ }

of an unknown d-dimensional density function f based on n independent
observations X1, . . . ,Xn from the density. This problem has been addressed
under global error criteria related to the symmetric set difference. However,
in certain applications a spatially uniform mode of convergence is desirable
to ensure that the estimated set is close to the target set everywhere. The
Hausdorff error criterion provides this degree of uniformity and, hence, is
more appropriate in such situations. It is known that the minimax optimal
rate of error convergence for the Hausdorff metric is (n/ logn)−1/(d+2α) for
level sets with boundaries that have a Lipschitz functional form, where the
parameter α characterizes the regularity of the density around the level of
interest. However, the estimators proposed in previous work are nonadaptive
to the density regularity and require knowledge of the parameter α. Further-
more, previously developed estimators achieve the minimax optimal rate for
rather restricted classes of sets (e.g., the boundary fragment and star-shaped
sets) that effectively reduce the set estimation problem to a function estima-
tion problem. This characterization precludes level sets with multiple con-
nected components, which are fundamental to many applications. This paper
presents a fully data-driven procedure that is adaptive to unknown regularity
conditions and achieves near minimax optimal Hausdorff error control for a
class of density level sets with very general shapes and multiple connected
components.

1. Introduction. Level sets provide useful summaries of a function for many
applications including clustering [6, 8, 21], anomaly detection [16, 20, 24], func-
tional neuroimaging [12, 25], bioinformatics [27], digital elevation mapping [19,
26] and environmental monitoring [22]. In practice, however, the function itself
is unknown a priori, and only a finite number of observations related to f are
available. In this paper, we focus on the density level set problem; extensions to
general regression level set estimation should be possible using a similar approach,
but they are beyond the scope of this paper. Let X1, . . . ,Xn be independent, iden-
tically distributed observations drawn from an unknown probability measure P ,
having density f with respect to the Lebesgue measure and defined on the domain
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X ⊆ R
d . Given a desired density level γ , consider the γ -level set of the density f

G∗
γ := {x ∈ X :f (x) ≥ γ }.

The goal of the density level set estimation problem is to generate an estimate Ĝ

of the level set based on the n observations {Xi}ni=1, such that the error between
the estimator Ĝ and the target set G∗

γ , as assessed by some performance measure
which gauges the closeness of the two sets, is small.

Most literature available on level set estimation methods [9, 13–16, 20, 23, 26]
considers error measures related to the symmetric set difference, G1�G2 = (G1 \
G2) ∪ (G2 \ G1). However, level set methods based on a measure of the sym-
metric difference error may produce estimates that veer greatly from the desired
level set at certain places, since the symmetric difference is a global measure of
average closeness between two sets. Some applications may need a more local or
spatially uniform error measure as provided by the Hausdorff metric, for example,
to preserve topological properties of the level set as in clustering [6, 8, 21] or en-
sure robustness to outliers in level set-based anomaly detection [16, 20, 24] and
data ranking [11]. The Hausdorff error metric is defined as follows between two
nonempty sets:

d∞(G1,G2) = max
{

sup
x∈G2

ρ(x,G1), sup
x∈G1

ρ(x,G2)
}
,

where ρ(x,G) = infy∈G ‖x − y‖, the smallest Euclidean distance of a point in G

to the point x. If G1 or G2 is empty, then let d∞(G1,G2) be defined as the largest
distance between any two points in the domain. Control of this error measure pro-
vides a uniform mode of convergence, as it implies control of the deviation of
a single point from the desired set. A symmetric set difference-based estimator
may not provide such a uniform control as it is easy to see that a set estimate can
have a very small measure of symmetric difference error but large Hausdorff er-
ror. Conversely, as long as the set boundary is not space filling and the domain is
bounded, small Hausdorff error implies small symmetric-difference measure.

Existing results pertaining to nonparametric level set estimation using the Haus-
dorff metric [2, 9, 23] focus on rather restrictive classes of level sets (e.g., the
boundary fragment and star-shaped set classes). These restrictions, which effec-
tively reduce the set estimation problem to a boundary function estimation problem
(in rectangular or polar coordinates, resp.), are typically not met in practical ap-
plications. In particular, the characterization of level set estimation as a boundary
function estimation problem requires prior knowledge of a reference coordinate or
interior point (in rectangular or polar coordinates, resp.) and precludes level sets
with multiple connected components. Moreover, the estimation techniques pro-
posed in [2, 9, 23] require precise knowledge of the regularity of the density (quan-
tified by the parameter α, to be defined below) in the vicinity of the desired level
in order to achieve minimax optimal rates of convergence. Such prior knowledge
is unavailable in most practical applications. Recently, a plug-in method based on
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sup-norm density estimation was put forth in [3] that can handle more general
classes than boundary fragments or star-shaped sets. However, sup-norm density
estimation requires the density to satisfy global smoothness assumptions. Also,
the method only deals with a special case of the density regularity condition con-
sidered in this paper (α = 1) and is therefore not adaptive to unknown density
regularity.

In this paper, we propose a plug-in procedure based on a regular histogram par-
tition that can adaptively achieve minimax optimal rates of Hausdorff error con-
vergence over a broad class of level sets with very general shapes and multiple
connected components, without assuming a priori knowledge of the density reg-
ularity parameter α. Adaptivity is achieved by a new data-driven procedure for
selecting the histogram resolution. The procedure bears some similarity to Lepski-
type methods [10], as further discussed in Section 3.2. However, our procedure is
specifically designed for the level set estimation problem and only requires local
regularity of the density in the vicinity of the desired level. A shorter version of
this paper appeared in [17]; however, it relies on more stringent assumptions on
the class of level sets under consideration. In this paper, we generalize the class of
level sets to allow for spatial variations in the density regularity along the level set
boundary, and we also discuss extensions to support set estimation and disconti-
nuity in the density at all points around the level of interest.

The paper is organized as follows. Section 2 states our basic assumptions which
allow Hausdorff accurate level set estimation and presents a minimax lower bound
on the Hausdorff performance of any level set estimator for the class of densities
under consideration. In Section 3, we present the proposed histogram-based ap-
proach to Hausdorff accurate level set estimation. In Section 3.1, we show that the
proposed estimator can achieve the minimax optimal rate of convergence given
knowledge of the density regularity parameter α, and Section 3.2 extends the es-
timator to achieve adaptivity to unknown density regularity. We also comment on
extensions that address discontinuity in the density at the level of interest and sup-
port set estimation. Concluding remarks are given in Section 4 and the Appendices
contain proofs of the main results.

2. Density assumptions. We assume that the domain of the density f is the
unit hypercube in d dimensions, that is, X = [0,1]d . Extensions to other compact
domains are straightforward. Furthermore, the density is assumed to be bounded
with range [0, fmax], though we do not assume knowledge of fmax. Controlling the
Hausdorff accuracy of level set estimates requires some smoothness assumptions
on the density and the level set boundary, which are stated below. Before that, we
introduce the following definitions:

• ε-ball: An ε-ball centered at a point x ∈ X is defined as

B(x, ε) = {y ∈ X :‖x − y‖ ≤ ε}.
Here ‖ · ‖ denotes the Euclidean distance.
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• Inner ε-cover: An inner ε-cover of a set G ⊆ X is defined as the union of all
ε-balls contained in G. Formally,

Iε(G) = ⋃
x : B(x,ε)⊆G

B(x, ε).

We are now ready to state the assumptions. The first one characterizes the relation-
ship between distances and changes in density, and the second one is a topological
assumption on the level set boundary that essentially generalizes the notion of Lip-
schitz functions to closed hypersurfaces.

[A] Local density regularity. The density is α-regular around the γ -level set, 0 <

α < ∞ and 0 < γ < fmax, if:
[A1] there exist constants C1, δ1 > 0 such that for all x ∈ X with |f (x) −

γ | ≤ δ1,

|f (x) − γ | ≥ C1ρ(x, ∂G∗
γ )α,

where ∂G∗
γ denotes the boundary of the true level set G∗

γ .
[A2] there exist constants C2, δ2 > 0 and x0 ∈ ∂G∗

γ such that for all x ∈
B(x0, δ2),

|f (x) − γ | ≤ C2ρ(x, ∂G∗
γ )α.

This condition characterizes the behavior of the density around the level γ .
Assumption [A1] states that the density cannot be arbitrarily “flat” around the
level, and changes as at least the αth power of the distance from the level
set boundary. Assumption [A2] states that there exists a fixed neighborhood
around some point on the boundary where the density changes no faster than
the αth power of the distance from the level set boundary. The latter condition
is only required for adaptivity, as we discuss later. The regularity parameter α

determines the rate of error convergence for level set estimation. Accurate es-
timation is more difficult at levels where the density is relatively flat (large α),
as intuition would suggest. It is important to point out that in this paper we do
not assume knowledge of α, unlike previous investigations into Hausdorff ac-
curate level set estimation [2, 3, 9, 23]. Therefore, here the assumption simply
states that there is a relationship between distance and density level, but the
precise nature of the relationship is unknown. In Section 3, we briefly discuss
extensions to address the case α = 0 which corresponds to discontinuity in the
density at all points around the level set boundary and the case γ = 0 which
corresponds to support set estimation.

[B] Level set regularity. There exist constants εo > 0 and C3 > 0 such that for all
ε ≤ εo, Iε(G

∗
γ ) 
= ∅, and for all x ∈ ∂G∗

γ , ρ(x, Iε(G
∗
γ )) ≤ C3ε. This assump-

tion implies that the level set is not arbitrarily narrow anywhere. It precludes
space-filling boundaries and features like cusps, arbitrarily thin ribbons and
isolated connected components of arbitrarily small size. This condition is nec-
essary since arbitrarily small features cannot be detected and resolved from
a finite sample.
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For a fixed set of positive numbers C1, C2, C3, ε0, δ1, δ2, fmax, γ < fmax, d and α,
we consider the following classes of densities.

DEFINITION 1. F ∗
1 (α) denotes the class of densities satisfying assumptions

[A1] and [B].

DEFINITION 2. F ∗
2 (α) denotes the class of densities satisfying assumptions

[A1], [A2] and [B].

The dependence on other parameters is omitted as these do not influence the
minimax optimal rate of convergence (except for the dimension d). In the paper, we
present a method that provides minimax optimal rates of convergence for the class
F ∗

1 (α), given knowledge of the density regularity parameter α. We also extend
the method to achieve adaptivity to α for the class F ∗

2 (α), while preserving the
minimax optimal performance.

Assumption [A] is similar to the one employed in [2, 23], except that the upper
bound assumption on the density deviation in [2, 23] holds provided that the set
{x : |f (x)−γ | ≤ δ1} is nonempty. This implies that the densities either jump across
the level γ at any point on the level set boundary (i.e., the deviation is greater
than δ1) or change exactly as the αth power of the distance from the boundary. Our
formulation allows for densities with regularities that vary spatially along the level
set boundary—it requires that the density changes no slower than the αth power of
the distance from the boundary, except in a fixed neighborhood of one point where
the density changes exactly as the αth power of the distance from the boundary.
While the formulation in [2, 23] requires the upper bound on the density devia-
tion to hold for at least one point on the boundary, our assumption [A2] requires
the upper bound to hold for a fixed neighborhood around at least one point on
the boundary. This is necessary for adaptivity since a procedure cannot sense the
regularity as characterized by α if the regularity only holds in an arbitrarily small
region. Assumption [B] implies that the boundary looks locally like a Lipschitz
function and allows for level sets with multiple connected components and arbi-
trary locations. Thus, these restrictions are quite mild and less restrictive than those
considered in the previous literature on Hausdorff accurate level set estimation. In
fact, assumption [B] is satisfied by a Lipschitz boundary fragment or star-shaped
set as considered in [2, 9, 23], as the following lemma states; please refer to [18]
for a formal proof.

LEMMA 1. Consider the γ level set G∗
γ of a density f ∈ FSL(α), where

FSL(α) denotes the class of α-regular densities with Lipschitz star-shaped level
sets as defined in [23]. Then, G∗

γ satisfies the level set regularity assumption [B].

In Theorem 4 of [23], Tsybakov establishes a minimax lower bound of
(n/ logn)−1/(d+2α) for the class of Lipschitz star-shaped sets, which, per Lemma 1,
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also satisfy assumption [B]. His proof uses Fano’s lemma to derive the lower bound
for a discrete subset of densities from this class. It is easy to see that the discrete
subset of densities used in his construction also satisfy our form of assumption [A].
Hence, the same minimax lower bound holds for the classes F ∗

1 (α) and F ∗
2 (α) un-

der consideration as well, and we have the following proposition. Here E denotes
expectation with respect to the random data sample.

PROPOSITION 1. There exists c > 0 such that, for large enough n,

inf
Gn

sup
f ∈F ∗

1 (α)

E[d∞(Gn,G
∗
γ )] ≥ inf

Gn

sup
f ∈F ∗

2 (α)

E[d∞(Gn,G
∗
γ )] ≥ c

(
n

logn

)−1/(d+2α)

.

The inf is taken over all set estimators Gn based on the n observations.

3. Hausdorff accurate level set estimation using histograms. Direct Haus-
dorff estimation is challenging as there exists no natural empirical measure that
can be used to gauge the Hausdorff error of an estimate. However, the density reg-
ularity assumption [A] suggests that Hausdorff control over the level set estimate
can be obtained indirectly by controlling the density deviation error rather than the
distance deviation. Thus, we propose a plug-in level set estimator that is based on
an empirical density estimator, the regular histogram.

Let Aj denote the collection of cells in a regular partition of [0,1]d into hy-
percubes of dyadic sidelength 2−j , where j is a nonnegative integer. The level set
estimate at this resolution is given as

Ĝj = ⋃
A∈Aj : f̂ (A)≥γ

A.(1)

Here f̂ (A) = P̂ (A)/μ(A), where P̂ (A) = 1
n

∑n
i=1 1{Xi∈A} denotes the empirical

probability of an observation occurring in A, and μ is the Lebesgue measure.

3.1. A priori knowledge of local density regularity. The appropriate resolution
for accurate level set estimation depends on the density regularity, as characterized
by α, near the level of interest. If the density varies sharply near the level of interest
(small α), then accurate estimation is easier and a fine resolution suffices. Identi-
fying the level set is more difficult if the density is very flat (large α) and, hence,
a lower resolution (more averaging) is required. Our first result shows that if the
local density regularity parameter α is known, then the correct resolution for Haus-
dorff accurate level set estimation can be chosen (as in [2, 23]), and the correspond-
ing estimator of (1) achieves near minimax optimal rate over the class of densities
given by F ∗

1 (α). Notice that even though the proposed method is a plug-in level
set estimator based on a histogram density estimate, the histogram resolution is
chosen to specifically target the level set problem and is not optimized for density
estimation. Thus, we do not require that the density exhibits some smoothness at
all points in the domain. We introduce the notation an � bn to denote an = O(bn)

and bn = O(an).
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THEOREM 1. Assume that the local density regularity α is known. Pick res-
olution j ≡ j (n) such that 2−j � sn(n/ logn)−1/(d+2α), where sn is a monotone
diverging sequence. Then,

sup
f ∈F ∗

1 (α)

E[d∞(Ĝj ,G
∗
γ )] ≤ Csn

(
n

logn

)−1/(d+2α)

for all n, where C ≡ C(C1,C3, εo, fmax, δ1, d,α) > 0 is a constant.

The proof is given in Appendix A and relies on two key facts. First, the den-
sity regularity assumption [A1] implies that the distance of any point in the level
set estimate is controlled by its deviation from the level of interest γ . Therefore,
with high probability, only the cells near the boundary are erroneously included
or excluded in the level set estimate. Second, the level set boundary does not have
very narrow features—features that cannot be detected by a finite sample—and is
locally Lipschitz as per assumption [B]. This implies that the erroneous cells are
not too far from the nonerroneous cells. Using these arguments, it is shown that
the Hausdorff error scales as the histogram cell sidelength.

Theorem 1 provides an upper bound on the Hausdorff error of our esti-
mate. If sn is slowly diverging, for example, if sn = (logn)ε where ε > 0,
this upper bound agrees with the minimax lower bound of Proposition 1 up
to a (logn)ε factor. Hence, the proposed estimator can achieve near minimax
optimal rates, given knowledge of the density regularity. We would like to
point out that if the parameter δ1 characterizing assumption [A] and the density
bound fmax are also known, then the appropriate resolution can be chosen as
j = log2(c

−1(n/ logn)1/(d+2α))�, where the constant c ≡ c(δ1, fmax). With this
choice, the optimal sidelength scales as 2−j � (n/ logn)−1/(d+2α), and the estima-
tor Ĝj exactly achieves the minimax optimal rate.

REMARK 1. A dyadic sidelength is not necessary for Theorem 1 to hold, how-
ever the adaptive procedure described below is based on a search over dyadic res-
olutions. Thus, to present a unified analysis, we consider a dyadic sidelength here
as well.

3.2. Adapting to unknown local density regularity. In this section, we present
a procedure that automatically selects the appropriate resolution in a purely data-
driven way without assuming prior knowledge of α. The proposed procedure is
a complexity regularization approach that is reminiscent of Lepski-type methods
for function estimation [10], which are spatially adaptive bandwidth selectors. In
Lepski methods, the appropriate bandwidth at a point is determined as the largest
bandwidth for which the estimate does not deviate significantly from estimates
generated at finer resolutions. Our procedure is similar in spirit, however it is tai-
lored specifically for the level set problem; hence, the chosen resolution at any
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point depends only on the local regularity of the density around the level of inter-
est.

The histogram resolution search is focused on regular partitions of dyadic side-
length 2−j , j ∈ {0,1, . . . , J }. The choice of J will be specified below. Since the
selected resolution needs to be adapted to the local regularity of the density around
the level of interest, we introduce the following vernier:

Vγ,j = min
A∈Aj

max
A′∈Aj ′∩A

|γ − f̄ (A′)|.

Here f̄ (A) = P(A)/μ(A), j ′ = j + log2 sn�, where sn is a slowly diverging
monotone sequence, for example, logn, log logn, etc., and Aj ′ ∩ A denotes the
collection of subcells with sidelength 2−j ′ ∈ [2−j /sn,2−j+1/sn) within the cell A.
Observe that the vernier value is determined by a cell A ∈ Aj that intersects the
boundary ∂G∗

γ . By evaluating the deviation in average density from level γ within
subcells of A, the vernier indicates whether or not the density in cell A is uniformly
close to γ . Thus, the vernier is sensitive to the local density regularity in the vicin-
ity of the desired level and leads to selection of the appropriate resolution adapted
to the unknown density regularity parameter α, as we will show in Theorem 2.

Since Vγ,j requires knowledge of the unknown probability measure, we must
work with the empirical version, defined analogously as

V̂γ,j = min
A∈Aj

max
A′∈Aj ′∩A

|γ − f̂ (A′)|.

The empirical vernier V̂γ,j is balanced by a penalty term

	j ′ := max
A∈Aj ′

√
8

log(2j ′(d+1)16/δ)

nμ(A)
max

(
f̂ (A),8

log(2j ′(d+1)16/δ)

nμ(A)

)
,

where 0 < δ < 1 is a confidence parameter, and μ(A) = 2−j ′d . Notice that the
penalty is computable from the given observations. The precise form of 	 is cho-
sen to bound the deviation between true and empirical vernier with high probability
(refer to Corollary B.1 for a formal proof). The final level set estimate is given by

Ĝ = Ĝĵ ,(2)

where

ĵ = arg min
0≤j≤J

{V̂γ,j + 	j ′ }.(3)

Observe that the value of the vernier decreases with increasing resolution as better
approximations to the true level are available. On the other hand, the penalty is de-
signed to increase with resolution to penalize high complexity estimates that might
overfit the given sample of data. Thus, the above procedure chooses the appropri-
ate resolution automatically by balancing these two terms. The following theorem
characterizes the performance of the proposed complexity penalized procedure.
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THEOREM 2. Pick J ≡ J (n) such that 2−J � sn(n/ logn)−1/d , where sn is
a monotone diverging sequence. Let ĵ denote the resolution chosen by the com-
plexity penalized method as given by (3) and Ĝ denote the final estimate of (2).
Then, with probability at least 1 − 2/n, for all densities in the class F ∗

2 (α),

c1s
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

≤ 2−ĵ ≤ c2sns
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

for n large enough [so that sn > c(C3, εo, d)], where c1, c2 > 0 are constants. In
addition,

sup
f ∈F ∗

2 (α)

E[d∞(Ĝ,G∗
γ )] ≤ Cs2

n

(
n

logn

)−1/(d+2α)

for all n, where C ≡ C(C1,C2,C3, εo, fmax, δ1, δ2, d,α) > 0 is a constant.

The proof is given in Appendix B. Observe that the maximum resolution
2J � s−1

n (n/ logn)1/d depends only on n and allows the optimal resolution for
any α to lie in the search space. By appropriate choice of sn, for example,
sn = (logn)ε/2 with ε a small number > 0, the bound of Theorem 2 matches the
minimax lower bound of Proposition 1, except for an additional (logn)ε factor.
Hence, our method adaptively achieves near minimax optimal rates of convergence
for the class F ∗

2 (α).

REMARK 2. The case α = 0 corresponds to jump in the density across the
level γ , at all points along the level set boundary. The adaptive estimator can be
extended to handle the complete range 0 ≤ α < ∞ by a slight modification of the
vernier

Vγ,j = 2−j ′/2 min
A∈Aj

max
A′∈Aj ′∩A

|γ − f̄ (A′)|.

This makes the vernier sensitive to the resolution even for the jump case and bi-
ases a vernier minimizer toward finer resolutions. The exact form of the modifica-
tion arises from technical considerations and is somewhat nonintuitive. Hence, we
omitted the jump case in our earlier analysis to keep the presentation simple. The
penalty also needs to be scaled by a factor of 2−j ′/2, to ensures that balancing the
vernier and penalty leads to the appropriate resolution for the whole range of the
regularity parameter 0 ≤ α < ∞. Please refer to [18] for a detailed proof.

REMARK 3. Under a measure of the symmetric difference error, it is known
that support set estimation, that is, learning the set G∗

0 := {x :f (x) > 0}, is eas-
ier than level set estimation, except for the case α = 0 (see [7, 23]). The same
holds for Hausdorff error and the minimax rate of convergence can be shown to
be (n/ logn)−1/(d+α) [18]. The minimax lower bound follows along the lines of
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the minimax lower bound in [23] for level set estimation (γ > 0). This rate can be
achieved by the following plug-in histogram estimator:

Ĝ0,j = ⋃
A∈Aj : f̂ (A)>0

A.

The analysis requires a modified theoretical analysis using Bernstein inequalities
rather than the relative VC inequalities we use in the proofs of Theorems 1 and 2
for level set estimation. Formal proofs for support set estimation are given in [18].

4. Conclusions. In this paper, we developed a Hausdorff accurate level set es-
timation method that is adaptive to unknown density regularity and achieves nearly
minimax optimal rates of error convergence over a more general class of level sets
than considered in previous literature. The vernier provides the key to achieve
adaptivity while requiring only local regularity of the density in the vicinity of the
desired level. We also discussed extensions of the proposed estimator to address
discontinuity in the density around the level of interest and support set estimation.

While this paper considers level sets with locally Lipschitz boundaries, exten-
sions to additional boundary smoothness (e.g., Hölder regularity > 1) may be
possible in the proposed framework using techniques such as wedgelets [5] or
curvelets [1]. The earlier work on Hausdorff accurate level set estimation [2, 9,
23] does address higher smoothness of the boundary, but that follows as a straight-
forward consequence of assuming a functional form for the boundary. Also, we
have only addressed the density level set problem in this paper. Extensions to gen-
eral regression level set estimation should be possible using a similar approach.

The results of this paper indicate that a regular, spatially nonadaptive partition
suffices for minimax optimal Hausdorff accurate level set estimation. However,
in practice, a spatially adapted partition can provide better performance than a
uniform partition. This is because nonuniform partitions can adapt to the spatial
variations in density regularity to yield better estimate of the boundary where the
density changes sharply, even though the Hausdorff error is dominated by the ac-
curacy in regions where the density is relatively flat at the level of interest. Thus, it
is of interest to develop spatially adapted estimators. This might be possible by de-
veloping a tree-based approach or a modified Lepski method, and it is the subject
of current research.

APPENDIX A: PROOF OF THEOREM 1

Before proceeding to the proof of Theorem 1, we establish three lemmas that
will be used both in this proof and in the proof of Theorem 2. The first lemma
bounds the deviation of true and empirical density averages. The choice of penalty
used to achieve adaptivity is motivated by this relation.
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LEMMA A.1. Consider 0 < δ < 1. With probability at least 1 − δ, the follow-
ing is true for all j ≥ 0

max
A∈Aj

|f̄ (A) − f̂ (A)| ≤ 	j .

PROOF. The proof relies on a pair of VC inequalities (see [4], Chapter 3) that
bound the relative deviation of true and empirical probabilities. For the collec-
tion Aj with cardinality 2jd , the relative VC inequalities imply that for any ε > 0,

with probability > 1 − 8 · 2jde−nε2/4, ∀A ∈ Aj both

P(A) − P̂ (A) ≤ ε
√

P(A) and P̂ (A) − P(A) ≤ ε

√
P̂ (A).

Also, observe that

P̂ (A) ≤ P(A) + ε

√
P̂ (A) �⇒ P̂ (A) ≤ 2 max(P (A),2ε2)(4)

and

P(A) ≤ P̂ (A) + ε
√

P(A) �⇒ P(A) ≤ 2 max(P̂ (A),2ε2).(5)

To understand statement (4), consider the following two cases: (i) If P̂ (A) ≤ 4ε2,
the statement is obvious; (ii) if P̂ (A) > 4ε2, this gives a bound on ε which implies
P̂ (A) ≤ P(A) + P̂ (A)/2 �⇒ P̂ (A) ≤ 2P(A). Statement (5) follows similarly.
Therefore, using (5) we get, with probability > 1 − 8 · 2jde−nε2/4, ∀A ∈ Aj ,

|P(A) − P̂ (A)| ≤ ε

√
2 max(P̂ (A),2ε2).

Setting ε =
√

4 log(2jd8/δj )/n, δj = δ2−(j+1) and applying union bound, we have
with probability > 1 − δ, for all j ≥ 0 and all cells A ∈ Aj

|P(A) − P̂ (A)| ≤
√

8
log(2j (d+1)16/δ)

n
max

(
P̂ (A),8

log(2j (d+1)16/δ)

n

)
.

The result follows by dividing both sides by μ(A). �

The next lemma states how the density deviation bound or penalty 	j scales
with resolution j and number of observations n.

LEMMA A.2. There exist constants c3, c4 ≡ c4(fmax, d) > 0 such that if j ≡
j (n) satisfies 2j = O((n/ logn)1/d), then for all n, with probability at least 1 −
1/n,

c3

√
2jd

logn

n
≤ 	j ≤ c4

√
2jd

logn

n
.
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PROOF. We first derive the lower bound. Observe that since the total empirical
probability mass is 1, we have

1 = ∑
A∈Aj

P̂ (A) ≤ max
A∈Aj

P̂ (A) × |Aj | = max
A∈Aj

P̂ (A)

μ(A)
= max

A∈Aj

f̂ (A).

Using this along with δ = 1/n, j ≥ 0 and μ(A) = 2−jd , we get

	j ≥
√

2jd8
log 16n

n
.

To get the upper bound, using statement (4) from the proof of Lemma A.1,
we have, with probability > 1 − 8 · 2jde−nε2/4, for all A ∈ Aj , P̂ (A) ≤
2 max(P (A),2ε2). Setting ε =

√
4 log(2jd8/δj )/n, δj = δ2−(j+1) and applying

union bound, we have, with probability > 1 − δ, for all j ≥ 0 and all A ∈ Aj ,

P̂ (A) ≤ 2 max
(
P(A),8

log(2j (d+1)16/δ)

n

)
.

Dividing by μ(A) = 2−jd and using the density bound fmax, we get a bound on
maxA∈Aj

f̂ (A), which implies that, with probability > 1 − δ,

	j ≤
√

2jd8
log(2j (d+1)16/δ)

n
· 2 max

(
fmax,2jd8

log(2j (d+1)16/δ)

n

)
.

And using δ = 1/n and 2j = O((n/ logn)1/d), we get

	j ≤ c4(fmax, d)

√
2jd

logn

n
. �

We now analyze the performance of the plug-in histogram-based level set es-
timator proposed in (1), and establish the following lemma that bounds its Haus-
dorff error. The first term denotes the estimation error while the second term that is
proportional to the sidelength of a cell (2−j ) reflects the approximation error. We
would like to point out that some arguments in the proofs hold for sn large enough.
This implies that some of the constants in our proofs will depend on {si}∞i=1, the
exact form that the sequence sn takes (but not on n). However, we omit this depen-
dence for simplicity.

LEMMA A.3. Consider densities satisfying assumptions [A1] and [B]. If j ≡
j (n) is such that 2j = O(s−1

n (n/ logn)1/d), where sn is a monotone diverging
sequence, and n ≥ n0 ≡ n0(fmax, d, δ1, εo,C1, α), then with probability at least
1 − 3/n,

d∞(Ĝj ,G
∗
γ ) ≤ max

(
2C3 + 3,8

√
dε−1

o

)[(
	j

C1

)1/α

+ √
d2−j

]
.
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PROOF. Let J0 = �log2 4
√

d/εo�, where εo is as defined in assumption [B].
Also, define

εj :=
[(

	j

C1

)1/α

+ √
d2−j

]
.

Consider the following two cases:

I. j < J0. For this case, since the domain X = [0,1]d , we use the trivial bound

d∞(Ĝj ,G
∗
γ ) ≤ √

d ≤ 2J0
(√

d2−j ) ≤ 8
√

dε−1
o εj .

The last step follows by choice of J0 and since 	j,C1 > 0.
II. j ≥ J0. Observe that assumption [B] implies that G∗

γ is not empty since
G∗

γ ⊇ Iε(G
∗
γ ) 
= ∅ for ε ≤ εo. We will show that for large enough n, with

high probability, Ĝj ∩ G∗
γ 
= ∅ for j ≥ J0, and hence Ĝj is not empty. Thus,

the Hausdorff error is given as

d∞(Ĝj ,G
∗
γ ) = max

{
sup

x∈G∗
γ

ρ(x, Ĝj ), sup
x∈Ĝj

ρ(x,G∗
γ )

}
,(6)

and we need bounds on the two terms in the right-hand side.
To prove that Ĝj is not empty and obtain bounds on the two terms in the

Hausdorff error, we establish a proposition and corollary. In the following
analysis, if G = ∅, then we define supx∈G g(x) = 0 for any function g(·). The
proposition establishes that for large enough n, with high probability, all points
whose distance to the boundary ∂G∗

γ is greater than εj are correctly excluded
or included in the level set estimate.

PROPOSITION 2. If j ≡ j (n) is such that 2j = O(s−1
n (n/ logn)1/d), and n ≥

n1(fmax, d, δ1), then with probability at least 1 − 2/n,

sup
x∈Ĝj�G∗

γ

ρ(x, ∂G∗
γ ) ≤

(
	j

C1

)1/α

+ √
d2−j = εj .

PROOF. If Ĝj�G∗
γ = ∅, then supx∈Ĝj�G∗

γ
ρ(x, ∂G∗

γ ) = 0 by definition, and

the result of the proposition holds. If Ĝj�G∗
γ 
= ∅, consider x ∈ Ĝj�G∗

γ . Let
Ax ∈ Aj denote the cell containing x at resolution j . Consider the following two
cases:

(i) Ax ∩ ∂G∗
γ 
= ∅. This implies that ρ(x, ∂G∗

γ ) ≤ √
d2−j .

(ii) Ax ∩ ∂G∗
γ = ∅. Since x ∈ Ĝj�G∗

γ , it is erroneously included or excluded
from the level set estimate Ĝj . Therefore, if f̄ (Ax) ≥ γ , then f̂ (Ax) < γ and if
f̄ (Ax) < γ , then f̂ (Ax) ≥ γ . This implies that |γ − f̄ (Ax)| ≤ |f̄ (Ax) − f̂ (Ax)|.
Using Lemma A.1, we get |γ − f̄ (Ax)| ≤ 	j with probability at least 1 − δ.
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Now let x1 be any point in Ax such that |γ −f (x1)| ≤ |γ − f̄ (Ax)|. (Notice that
at least one such point must exist in Ax since this cell does not intersect the bound-
ary.) As argued above, |γ − f̄ (Ax)| ≤ 	j with probability at least 1 − 1/n (for
δ = 1/n). Using Lemma A.2, for resolutions satisfying 2j = O(s−1

n (n/ logn)1/d)

and for large enough n ≥ n1(fmax, d, δ1), 	j ≤ δ1; hence, |γ − f (x1)| ≤ δ1, with
probability at least 1 − 1/n. Thus, the density regularity assumption [A1] holds
at x1 with probability > 1 − 2/n, and we have

ρ(x1, ∂G∗
γ ) ≤

( |γ − f (x1)|
C1

)1/α

≤
( |γ − f̄ (Ax)|

C1

)1/α

≤
(

	j

C1

)1/α

.

Since x, x1 ∈ Ax ,

ρ(x, ∂G∗
γ ) ≤ ρ(x1, ∂G∗

γ ) + √
d2−j ≤

(
	j

C1

)1/α

+ √
d2−j .

So for both cases, if j ≡ j (n) is such that 2j = O(s−1
n (n/ logn)1/d), and n ≥

n1(fmax, d, δ1), then with probability at least 1−2/n, ∀x ∈ Ĝj�G∗
γ , ρ(x, ∂G∗

γ ) ≤
(	j/C1)

1/α + √
d2−j = εj . �

Based on Proposition 2, the following corollary argues that for large enough n

and j ≥ J0 = �log2 4
√

d/εo�, with high probability, all points within the inner
cover I2εj

(G∗
γ ) that are at a distance greater than εj are correctly included in the

level set estimate; hence, they lie in Ĝj ∩ G∗
γ . This also implies that Ĝj is not

empty.

COROLLARY 1. Recall assumption [B] and denote the inner cover of G∗
γ

with 2εj -balls, I2εj
(G∗

γ ) ≡ I2εj
for simplicity. If j ≡ j (n) is such that 2j =

O(s−1
n (n/ logn)1/d), j ≥ J0, and n ≥ n0 ≡ n0(fmax, d, δ1, εo, C1, α), then with

probability at least 1 − 3/n,

Ĝj 
= ∅ and sup
x∈I2εj

ρ(x, Ĝj ∩ G∗
γ ) ≤ εj .

PROOF. Observe that for j ≥ J0, 2
√

d2−j ≤ 2
√

d2−J0 ≤ εo/2. By Lem-
ma A.2, for resolutions satisfying 2j = O(s−1

n (n/ logn)1/d), and for large enough
n ≥ n2(εo, fmax,C1, α), 2(	j/C1)

1/α ≤ εo/2, with probability at least 1 − 1/n.
Therefore, for resolutions satisfying 2j = O(s−1

n (n/ logn)1/d) and j ≥ J0, and for
n ≥ n2, with probability at least 1 − 1/n, 2εj ≤ εo and hence I2εj


= ∅.
Now consider any 2εj -ball in I2εj

. Then the distance of all points in the interior
of the concentric εj -ball from the boundary of I2εj

, and hence from the boundary
of G∗

γ , is greater than εj . As per Proposition 2, for n ≥ n0 = max(n1, n2) with
probability > 1 − 3/n, none of these points can lie in Ĝj�G∗

γ ; hence, they must
lie in Ĝj ∩ G∗

γ since they are in I2εj
⊆ G∗

γ . Thus, Ĝj 
= ∅, and for all x ∈ I2εj
,

ρ(x, Ĝj ∩ G∗
γ ) ≤ εj . �
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We now resume the proof of Lemma A.3, case II. Assume the conclusions
of Proposition 2 and Corollary 1 hold. Thus, all the following statements hold
for resolutions satisfying 2j = O(s−1

n (n/ logn)1/d), j ≥ J0 and n ≥ n0 ≡
n0(fmax, d, δ1, εo,C1, α), with probability at least 1 − 3/n. Since G∗

γ and Ĝj

are nonempty sets, we now bound the two terms that contribute to the Hausdorff
error. To bound the term supx∈Ĝj

ρ(x,G∗
γ ), observe that

sup
x∈Ĝj

ρ(x,G∗
γ ) = sup

x∈Ĝj \G∗
γ

ρ(x,G∗
γ ) = sup

x∈Ĝj \G∗
γ

ρ(x, ∂G∗
γ )

(7)
≤ sup

x∈Ĝj�G∗
γ

ρ(x, ∂G∗
γ ) ≤ εj ,

where the last step follows from Proposition 2.
To bound the term supx∈G∗

γ
ρ(x, Ĝj ), we recall assumption [B] which states

that the boundary points of G∗
γ are O(εj ) from the inner cover I2εj

(G∗
γ ), and we

use Corollary 1 to bound the distance of the inner cover from Ĝj as follows:

sup
x∈G∗

γ

ρ(x, Ĝj ) ≤ sup
x∈G∗

γ

ρ(x, Ĝj ∩ G∗
γ )

= max
{

sup
x∈I2εj

ρ(x, Ĝj ∩ G∗
γ ), sup

x∈G∗
γ \I2εj

ρ(x, Ĝj ∩ G∗
γ )

}
(8)

≤ max
{
εj , sup

x∈G∗
γ \I2εj

ρ(x, Ĝj ∩ G∗
γ )

}
,

where the last step follows from Corollary 1.
Now consider any x ∈ G∗

γ \ I2εj
. By the triangle inequality, ∀y ∈ ∂G∗

γ and
∀z ∈ I2εj

,

ρ(x, Ĝj ∩ G∗
γ ) ≤ ρ(x, y) + ρ(y, z) + ρ(z, Ĝj ∩ G∗

γ )

≤ ρ(x, y) + ρ(y, z) + sup
z′∈I2εj

ρ(z′, Ĝj ∩ G∗
γ )

≤ ρ(x, y) + ρ(y, z) + εj ,

where the last step follows from Corollary 1. This implies that, ∀y ∈ ∂G∗
γ ,

ρ(x, Ĝj ∩ G∗
γ ) ≤ ρ(x, y) + inf

z∈I2εj

ρ(y, z) + εj

= ρ(x, y) + ρ(y, I2εj
) + εj

≤ ρ(x, y) + sup
y′∈∂G∗

γ

ρ(y′, I2εj
) + εj

≤ ρ(x, y) + 2C3εj + εj ,
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where the last step invokes assumption [B]. This, in turn, implies

ρ(x, Ĝj ∩ G∗
γ ) ≤ inf

y∈∂G∗
γ

ρ(x, y) + (2C3 + 1)εj ≤ 2εj + (2C3 + 1)εj .

The second step is true for x ∈ G∗
γ \ I2εj

, because if it was not true then ∀y ∈ ∂G∗
γ ,

ρ(x, y) > 2εj ; hence, there exists a closed 2εj -ball around x that is in G∗
γ . This

contradicts the fact that x /∈ I2εj
. Therefore, we have

sup
x∈G∗

γ \I2εj

ρ(x, Ĝj ∩ G∗
γ ) ≤ (2C3 + 3)εj .

And going back to (8), we get

sup
x∈G∗

γ

ρ(x, Ĝj ) ≤ (2C3 + 3)εj .(9)

From (7) and (9), we have that for all densities satisfying assumptions [A1]
and [B], if j ≡ j (n) is such that 2j = O(s−1

n (n/ logn)1/d), j ≥ J0 and n ≥ n0 ≡
n0(fmax, d, δ1, εo,C1, α), then with probability > 1 − 3/n,

d∞(Ĝj ,G
∗
γ ) = max

{
sup

x∈G∗
γ

ρ(x, Ĝj ), sup
x∈Ĝj

ρ(x,G∗
γ )

}
≤ (2C3 + 3)εj .

And addressing both case I (j < J0) and case II (j ≥ J0), we finally have
that for all densities satisfying assumptions [A1] and [B], if j ≡ j (n) is such
that 2j = O(s−1

n (n/ logn)1/d), and n ≥ n0 ≡ n0(fmax, d, δ1, εo,C1, α), then with
probability > 1 − 3/n,

d∞(Ĝj ,G
∗
γ ) ≤ max

(
2C3 + 3,8

√
dε−1

o

)
εj .

This completes the proof of Lemma A.3. �

We now establish the result of Theorem 1. Since the local density regular-
ity parameter α is known, the appropriate histogram resolution can be chosen
as 2−j � sn(n/ logn)−1/(d+2α). Let 
 denote the event such that the bounds of
Lemma A.2 (with δ = 1/n) and Lemma A.3 hold. Then for n ≥ n0, P(
̄) ≤ 4/n,
where 
̄ denotes the complement of 
. For n < n0, we can use the trivial in-
equality P(
̄) ≤ 1. So we have, for all n, P(
̄) ≤ max(4, n0)

1
n

=: C′ 1
n
. Here

C′ ≡ C′(fmax, d, δ1, εo,C1, α). So ∀f ∈ F ∗
1 (α), we have the following. (Expla-

nation for each step is provided after the equations.)

E[d∞(Ĝj ,G
∗
γ )] = P(
)E[d∞(Ĝj ,G

∗
γ )|
] + P(
̄)E[d∞(Ĝj ,G

∗
γ )|
̄]

≤ E[d∞(Ĝj ,G
∗
γ )|
] + P(
̄)

√
d

≤ max
(
2C3 + 3,8

√
dε−1

o

)[(
	j

C1

)1/α

+ √
d2−j

]
+ C′

√
d

n
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≤ C max
{(

2jd logn

n

)1/(2α)

,2−j ,
1

n

}

≤ C max
{
s−d/2α
n

(
n

logn

)−1/(d+2α)

, sn

(
n

logn

)−1/(d+2α)

,
1

n

}

≤ Csn

(
n

logn

)−1/(d+2α)

.

Here C ≡ C(C1,C3, εo, fmax, δ1, d,α). The second step follows by observ-
ing the trivial bounds P(
) ≤ 1 and E[d∞(Ĝj ,G

∗
γ )|
̄] ≤ √

d since the do-
main X = [0,1]d . The third step follows from Lemma A.3 and the fourth one
using Lemma A.2. The fifth step follows since the chosen resolution 2−j �
sn(n/ logn)−1/(d+2α).

APPENDIX B: PROOF OF THEOREM 2

To analyze the resolution chosen by the complexity penalized procedure of (3)
based on the vernier, we first establish two results regarding the vernier. Using
Lemma A.1, we have the following corollary that bounds the deviation of true and
empirical vernier.

COROLLARY B.1. Consider 0 < δ < 1. With probability at least 1 − δ, the
following is true for all j ≥ 0:

|Vγ,j − V̂γ,j | ≤ 	j ′ .

PROOF. Let A0 ∈ Aj denote the cell achieving the minimum defining Vγ,j

and A1 ∈ Aj denote the cell achieving the minimum defining V̂γ,j . Also, let A′
00

and A′
10 denote the subcells at resolution j ′ within A0 and A1, respectively, that

have maximum average density deviation from γ . Similarly, let A′
01 and A′

11 de-
note the subcells at resolution j ′ within A0 and A1, respectively, that have maxi-
mum empirical density deviation from γ . Then, we have

Vγ,j − V̂γ,j = |γ − f̄ (A′
00)| − |γ − f̂ (A′

11)|
≤ |γ − f̄ (A′

10)| − |γ − f̂ (A′
11)| ≤ |f̄ (A′

10) − f̂ (A′
11)|

≤ max{f̄ (A′
10) − f̂ (A′

10), f̂ (A′
11) − f̄ (A′

11)}
≤ max

A∈Aj ′
|f̄ (A) − f̂ (A)| ≤ 	j ′ .

The first inequality invokes definition of A0, the third inequality invokes definitions
of the subcells A′

10, A′
11 and the last one follows from Lemma A.1. The bound on

V̂γ,j − Vγ,j follows similarly. �

The second result establishes that the vernier is sensitive to the resolution and
density regularity.
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LEMMA B.1. Consider densities satisfying assumptions [A] and [B]. Re-
call that j ′ = j + log2 sn�, where sn is a monotone diverging sequence. There
exists C ≡ C(C2, fmax, δ2, α) > 0 such that if n is large enough so that sn >

8 max(3ε−1
o ,28, 12C3)

√
d , then for all j ≥ 0,

min(δ1,C1)2
−j ′α ≤ Vγ,j ≤ C

(√
d2−j )α

.

PROOF. We first establish the upper bound. Recall assumption [A] and con-
sider the cell A0 ∈ Aj that contains the point x0. Then, A0 ∩ ∂G∗

γ 
= ∅. Let A′
0

denote the subcell at resolution j ′ within A0 that has maximum average density
deviation from γ . Consider the following two cases:

(i) If the resolution is high enough so that
√

d2−j ≤ δ2, then the density regu-
larity assumption [A2] holds ∀x ∈ A0 since A0 ⊂ B(x0, δ2), the δ2-ball around x0.
The same holds also for the subcell A′

0. Hence,

|γ − f̄ (A′
0)| ≤ C2

(√
d2−j )α

.

(ii) If the resolution is not high enough and
√

d2−j > δ2, use the following
trivial bound: |γ − f̄ (A′

0)| ≤ fmax ≤ fmax
δα

2
(
√

d2−j )α .

Hence, we can say for all j there exists a cell A0 ∈ Aj such that

max
A′∈Aj ′∩A0

|γ − f̄ (A′)| = |γ − f̄ (A′
0)| ≤ max

(
C2,

fmax

δα
2

)(√
d2−j )α

.

This yields the upper bound on the vernier, Vγ,j ≤ C(
√

d2−j )α , where C ≡
C(C2, fmax, δ2, α).

For the lower bound, consider any cell A ∈ Aj . We will show that the level
set regularity assumption [B] implies that for large enough n (so that the side-
length 2−j ′

is small enough), the boundary does not intersect all subcells at reso-
lution j ′ within the cell A at resolution j . In fact, there exists at least one subcell
A′

1 ∈ A ∩ Aj ′ such that ∀x ∈ A′
1,

ρ(x, ∂G∗
γ ) ≥ 2−j ′

.

We establish this statement formally later on, but for now assume that it holds. The
local density regularity condition [A] now gives that for all x ∈ A′

1, |γ − f (x)| ≥
min(δ1,C12−j ′α) ≥ min(δ1,C1)2−j ′α . So we have

max
A′∈A∩Aj ′

|γ − f̄ (A′)| ≥ |γ − f̄ (A′
1)| ≥ min(δ1,C1)2

−j ′α.

Since this is true for any A ∈ Aj , in particular, this is true for the cell achieving
the minimum defining Vγ,j . Hence, the lower bound on the vernier Vγ,j follows.
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We now formally prove that the level set regularity assumption [B] implies that
for large enough n (so that sn > 8 max(3ε−1

o ,28, 12C3)
√

d), ∃A′
1 ∈ A ∩ Aj ′ such

that ∀x ∈ A′
1,

ρ(x, ∂G∗
γ ) ≥ 2−j ′

.

Observe that if we consider any cell at resolution j ′′ := j ′ − 2 that does not in-
tersect the boundary ∂G∗

γ , then it contains a cell at resolution j ′ that is greater

than 2−j ′
away from the boundary. Thus, it suffices to show that for large

enough n [so that sn > 8 max(3ε−1
o ,28, 12C3)

√
d], ∃A′′ ∈ A ∩ Aj ′′ such that

A′′ ∩ ∂G∗
γ = ∅. We prove the last statement by contradiction. Suppose that for

sn > 8 max(3ε−1
o ,28,12C3)

√
d , all subcells in A at resolution j ′′ intersect the

boundary ∂G∗
γ . Let ε = 3

√
d2−j ′′

. Then,

ε = 3
√

d2−j ′′ = 12
√

d2−j ′
<

24
√

d

sn
2−j ≤ 24

√
d

sn
≤ εo,

where the last step follows since sn ≥ 24
√

dε−1
o . By choice of ε, every closed

ε-ball in A must contain an entire subcell at resolution j ′′ and in fact must contain
an open neighborhood around that subcell. Since the boundary intersects all sub-
cells at resolution j ′′, this implies that every closed ε-ball in A contains a bound-
ary point and in fact contains an open neighborhood around that boundary point.
Thus, (i) every closed ε-ball in A contains points not in G∗

γ , and hence cannot lie
in Iε(G

∗
γ ). Also, observe that since all subcells in A at resolution j ′′ intersect the

boundary of G∗
γ , (ii) there exists a boundary point x1 that is within

√
d2−j ′′

of the
center of cell A. From (i) and (ii) it follows that

ρ(x1, Iε(G
∗
γ )) ≥ 2−j

2
− √

d2−j ′′ − 2ε = 2−j

2
− 28

√
d2−j ′

> 2−j

(
1

2
− 56

√
d

sn

)
>

2−j

4
,

where the last step follows since sn > 224
√

d . However, assumption [B] implies
that for ε ≤ εo,

ρ(x1, Iε(G
∗
γ )) ≤ C3ε = 3C3

√
d2−j ′′ = 12C3

√
d2−j ′ ≤ 24C3

√
d2−j

sn
≤ 2−j

4
,

where the last step follows since sn > 96C3
√

d , and we have a contradiction.
This completes the proof of Lemma B.1. �

We are now ready to prove Theorem 2. To analyze the resolution ĵ chosen
by (3), we first derive upper bounds on Vγ,ĵ and 	ĵ ′ that effectively characterize
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the approximation error and estimation error, respectively. Thus, a bound on the
vernier Vγ,ĵ will imply that the chosen resolution ĵ cannot be too coarse, and
a bound on the penalty will imply that the chosen resolution is not too fine. Using
Corollary B.1 and (3), we have the following oracle inequality that holds with
probability at least 1 − δ:

Vγ,ĵ ≤ V̂γ,ĵ + 	ĵ ′ = min
0≤j≤J

{V̂γ,j + 	j ′ } ≤ min
0≤j≤J

{Vγ,j + 2	j ′ }.

Lemma B.1 provides an upper bound on the vernier Vγ,j , and Lemma A.2 provides
an upper bound on the penalty 	j ′ . We plug these bounds into the oracle inequality.
Here C may denote a different constant from line to line. With probability at least
1 − 2/n (with δ = 1/n),

Vγ,ĵ ≤ V̂γ,ĵ + 	ĵ ′ ≤ C min
0≤j≤J

{
max

(
2−jα,

√
2jdsd

n

logn

n

)}

≤ Csdα/(d+2α)
n

(
n

logn

)−α/(d+2α)

.

Here C ≡ C(C2, fmax, δ2, d,α). The first step uses the definition of j ′, and the
second step follows by balancing the two terms for optimal resolution j∗ given by
2−j∗ � s

d/(d+2α)
n (n/ logn)−1/(d+2α). This establishes the desired bounds on Vγ,ĵ

and 	ĵ ′ .
Now, using Lemma B.1 and the definition of j ′, we have the following upper

bound on the chosen sidelength. For sn > 8 max(3ε−1
o ,28, 12C3)

√
d ,

2−ĵ ≤ sn2−ĵ ′ ≤ sn

( Vγ,ĵ

min(δ1,C1)

)1/α

≤ c2sns
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

,

where c2 ≡ c2(C1,C2, fmax, δ1, δ2, d,α) > 0. Also notice that since 2J � s−1
n

(n/ logn)1/d , we have 2j ′ ≤ sn2j ≤ sn2J � (n/ logn)1/d , and thus j ′ satisfies the
condition of Lemma A.2. Therefore, using Lemma A.2, we get a lower bound on
the sidelength. With probability at least 1 − 2/n,

2−ĵ >
sn

2
2−ĵ ′ ≥ sn

2

(	2
ĵ ′

c2
3

n

logn

)−1/d

≥ c1s
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

,

where c1 ≡ c1(C2, fmax, δ2, d,α) > 0. So we have for sn > 8 max(3ε−1
o ,28,

12C3)
√

d , with probability at least 1 − 2/n,

c1s
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

≤ 2−ĵ ≤ c2sns
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

,(10)

where c1 ≡ c1(C2, fmax, δ2, d,α) > 0 and c2 ≡ c2(C1,C2, fmax, δ1, δ2, d,α) > 0.
Hence, the automatically chosen resolution behaves as desired.
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Now we can invoke Lemma A.3 to derive the rate of convergence for the Haus-
dorff error. Consider large enough n ≥ n1(C3, εo, d) so that sn > 8 max(3ε−1

o ,28,

12C3)
√

d . Also, recall that the condition of Lemma A.3 requires that n ≥
n0(fmax, d, δ1, εo, C1, α). Pick n ≥ max(n0, n1) and let 
 denote the event such
that the bound of Lemma A.3 and the upper and lower bounds on the cho-
sen resolution in (10) hold. Then, we have P(
̄) ≤ 5/n. For n < max(n0, n1),
we can use the trivial inequality P(
̄) ≤ 1. So we have, for all n, P(
̄) ≤
max(5,max(n0, n1))

1
n

=: C 1
n

. Here C ≡ C(C1,C3, εo, fmax, δ1, d,α). So ∀f ∈
F ∗

2 (α), we have the following. (Here C may denote a different constant from line
to line. Explanation for each step is provided after the equations.)

E[d∞(Ĝ,G∗
γ )] = P(
)E[d∞(Ĝ,G∗

γ )|
] + P(
̄)E[d∞(Ĝ,G∗
γ )|
̄]

≤ E[d∞(Ĝ,G∗
γ )|
] + P(
̄)

√
d

≤ C

[(
	ĵ

C1

)1/α

+ √
d2−ĵ +

√
d

n

]

≤ C max
{(

2ĵ d logn

n

)1/(2α)

,2−ĵ ,
1

n

}

≤ C max
{
s(−d2/2α)/d+2α
n

(
n

logn

)−1/(d+2α)

,

sns
d/(d+2α)
n

(
n

logn

)−1/(d+2α)

,
1

n

}

≤ Cs2
n

(
n

logn

)−1/(d+2α)

.

Here C ≡ C(C1,C2,C3, εo, fmax, δ1, δ2, d,α). The second step follows by observ-
ing the trivial bounds P(
) ≤ 1 and since the domain X = [0,1]d , E[d∞(Ĝ,G∗

γ )|

̄] ≤ √

d . The third step follows from Lemma A.3 and the fourth one from
Lemma A.2. The fifth step follows using the upper and lower bounds established
on 2−ĵ in (10).
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