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Abstract

Flow cytometry is a technology that rapidly measures antiggsed markers associated to cells in a
cell population. Although analysis of flow cytometry data hieditionally considered one or two markers
at a time, there has been increasing interest in multidimaatanalysis. However, flow cytometers are
limited in the number of markers they can jointly observejolihis typically a fraction of the number
of markers of interest. For this reason, practitionersrofterform multiple assays based on different,
overlapping combinations of markers. In this paper, we esklithe challenge of imputing the high
dimensional jointly distributed values of marker attrigsitbased on overlapping marginal observations.
We show that simple nearest neighbor based imputation cah e spurious subpopulations in the
imputed data, and introduce an alternative approach basetkarest neighbor imputation restricted to
a cell's subpopulation. This requires us to perform clustewith missing data, which we address with
a mixture model approach and novel EM algorithm. Since métmodel fitting may be ill-posed, we
also develop techniques to initialize the EM algorithm gs@omain knowledge. We demonstrate our

approach on real flow cytometry data.

Index Terms

statistical file matching, flow cytometry, mixture modelopabilistic PCA, EM algorithm, imputation,

incomplete data, clustering

. INTRODUCTION

Flow cytometry is a technique for quantitative cell anadyd]]. It provides simultaneous measurements

of multiple characteristics of individual cells. Typicalla large number of cells are analyzed in a short
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period of time — up to thousands of cells per second. Sinceetelopment in the late 1960s, flow
cytometry has become an essential tool in various biolbgicd medical laboratories. Major applications
of flow cytometry include hematological immunophenotypingd diagnosis of diseases such as acute
leukemias, chronic lymphoproliferative disorders, andigmant lymphomas_[2].

Flow cytometry data has traditionally been analyzed byaliguspection of one-dimensional histograms
or two-dimensional scatter plots. Clinicians will visyalhspect a sequence of scatter plots based on
different pairwise marker combinations, and perform ggtithe manual selection of marker thresholds,
to eliminate certain subpopulations of cells. They idgmtifrious pathologies based on the shape of cell
subpopulations in these scatter plots. There has beentrewek, reviewed below, on automatic cell
gating or classification of pathologies based on multidish@mal analysis of flow cytometry data.

Despite the promise of multidimensional analysis, thigction is limited by the number of markers that
can be simultaneously measured, which is typically a fomctif the number of markers of interest. It is
therefore common in practice to perform multiple assaysthas different, overlapping combinations of
markers. We may view these combinations as different malgiof the joint distribution of all observed
markers. However, even when analysis is based on visuakdtisp of scatter plots, problems arise
when the desired marker pair was not jointly measured. Tihisitgon arises frequently in the analysis
of historical data.

To address these issues and to facilitate higher dimerisioadysis, we present a statistical method for
file matching, which imputes higher dimensional flow cytomeatata from multiple lower dimensional
data files. While[[B] proposed a simple approach based oneselieighbor (NN) imputation, this method
is prone to induce spurious clusters, as we demonstraterb@ler method can improve the file matching
of flow cytometry and is less likely to generate false cluster

In the following, we explain the principles of flow cytometayd introduce the file matching problem
in the context of flow cytometry data. We then present an aagrdo file matching which imputes a
cell’s missing marker values with the values of the nearegghbor among cells of the same type. To
implement this approach we develop a method for clusteriitiy missing data. We model flow cytometry
data with a latent variable Gaussian mixture model, wheoh &aussian corresponds to a cell type, and
develop an expectation-maximization (EM) algorithm to fietmodel. Since a large majority of all
values are unobserved, most covariances cannot be edlifinate the data. However, domain experts
possess considerable knowledge about the characteridtidefferent cell types, and we incorporate
this knowledge into the initialization of the EM algorithWe compare our method with simple nearest

neighbor imputation on real flow cytometry data, and show @ method offers improved performance.
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Fig. 1. A flow cytometer system. As a stream of cells passesutiir a laser beam, the photo-detectors detect forward
angle light scatter, side angle light scatter, and lightssions from fluorochromes. Then the digitized signals aedyaad in

a computer.

Il. BACKGROUND AND MOTIVATION

In this section, we explain the principles of flow cytometifye also define the statistical file matching

problem in the context of flow cytometry data, and motivate tieed for an improved solution.

A. Flow Cytometry

In flow cytometry analysis, a cell suspension is first pregdrem peripheral blood, bone marrow, or
lymph node. The suspension of cells is then mixed with a Esludf fluorochrome-labeled antibodies.
Typically, each antibody is labeled with a different fludnoeme. As the stream of suspended cells
passes through a focused laser beam, they either scattbsarbathe light. If the labeled antibodies are
attached to proteins of a cell, the associated fluoresceritemsaabsorb the laser and emit light with
the corresponding wavelength (color). Then a set of phetedators in the line of the light beam and
perpendicular to the light capture the scattered and ainligit. The signals from the detectors are
digitized and stored in a computer system. Forward scé®) &nd side scatter (SS) signals as well as
various fluorescence signals are collected for each cedl Fsg[1).

In a flow cytometer that is capable of measurihg@ttributes, calledmarkers, the measurements of

each cell can be represented withl@imensional vectox = (z(1), 2 ...  z(9)) wherez(!) is FS,
2@ is SS, andz®), ..., z(@ are the fluorescent markers. Thus, the accumulatio®V afells forms a
N x d matrix.
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The detected signals provide information about the physioa chemical properties of each cell
analyzed. FS is related to the relative size of the cell andsS@lated to its internal granularity or
complexity. The fluorescence signals reflect the abundahexmressed antigens on the cell surface.
These various attributes are used for identification anchiifiation of cell populations. FS and SS are
always measured, while the marker combination is a part @fetperimental design.

Flow cytometry data is usually analyzed using a sequenceefdimensional histograms and two or
three dimensional scatter plots by choosing a subset oftaieor three markers. The analysis typically
involves manually selecting and excluding cell subpopores, called gating, by thresholding and drawing
boundaries on the scatter plots. Clinicians routinely désg by visualizing the scatter plots.

Recently, some attempts have been made to analyze diredtigh dimensional spaces by mathemat-
ically modeling flow cytometry data. In[4]. [5], a mixture Gfaussian distributions is used to model cell
populations, while a mixture af-distributions with a Box-Cox transformation is used [in.[8] mixture
of skew t-distributions is studied in[7]. The knowledge of expedssbmetimes incorporated as prior
information [8]. Instead of using finite mixture models, somecent approaches proposed information
preserving dimension reduction to analyze high dimensifioar cytometry datal[9], [[10]. However,

standard techniques for multi-dimensional flow cytometmglgsis are not yet established.

B. Satistical File Matching

The number of dimensions in flow cytometry is limited by themier of light sources and detectable
fluorochrome markers, and available reagent combinatiewven though recent innovations have enabled
measuring near 20 cellular attributes, there are typicddlyens or hundreds of markers of interest in
a given flow cytometry experiment. Furthermore, instruraetgployed in clinical laboratories still only
measure 5-7 markers simultaneously! [11].

Being unable to simultaneously measure all markers ofésteit is common to divide a sample into
several “tubes” and stain each tube separately with a diffeset of markers [12]. In practice, partially
overlapping marker combinations are used to help ident#y populations (see Fid.] 2). The marker
combinations are designed based on which markers need tddsrved together. However, it is not
always possible to anticipate all marker combinations déptal interest.

In the sequel, we present a method that generates flow cytpmata in which all the markers of
interest are available for the union of cells. Thus, we abtakingle higher dimensional dataset beyond
the current limits of instrumentation. Then pairs of mask#rat are not measured together can still be

visualized through scatter plots, and methods of multidisi@nal analysis may be applied to the full
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Fig. 2. Flow cytometry analysis on a large number of antiboglggents within a limited capacity of a flow cytometer. A
sample from a patient is separated into multiple tubes whiichvdifferent combinations of fluorochrome labeled anties are
stained. Each output file contains at least two variablesaf$SS, in common as well as some variables that are specific to

the file.

common specificl  specific2

c S1 52

file 1 (V1)
X1

file 2 (V)
X

Fig. 3. Data structure of two incomplete data files. Two filasehsome overlapping variablesand some variables; and

s2 that are never jointly observed. File matching combinestiiwfiles by completing the missing blocks of variables.

dataset.

This technique, called file matching, merges two nor morasks that have some commonly observed
variables as well as some variables unique to each datasetxémplary two file case is drawn in Fig.
[3. Each unit (cell),, is a vector inR? and belongs to one of the data files (tub&s)or X», where each
file has N7 and N, units, respectively. While variablesare observed in all the units, units i, have
variabless, missing and units i, have variables; missing, wheresq, s, andc represent specific and
common variable sets. If the observed and missing compsrtéra unitx,, are denoted by,, andm,,,
theno,, = cU sy andm,, = s, for x,, € Xy, ando,, = cU s; andm,, = s for x,, € Xs.

The file matching problem is a missing data problem whereksl@¢ missing data need to be imputed.

Among imputation methods, algorithms using conditionaamer regression are most common. As shown
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in Fig.[4, however, these imputation algorithms tend torshtihe variance of data. Thus, these approaches
are inappropriate in flow cytometry where the shapes of aghufations are important in analysis, and
the preservation of variability after file matching is highdesired. More discussions on missing data

analysis and file matching can be found|(in/[13] and [14].
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Fig. 4. Examples of imputation methods: NN, conditional meand regression. The NN method relatively well preserkes t

distribution of imputed data, while other imputation methasuch as conditional mean and regression significantiyceethe
variability of data.

[3] proposed to use Nearest Neighbor (NN) imputation to mdkow cytometry data files. In their
approach, missing variables of one unit, called the rentpiare imputed with observed variables from

a unit in the other file, called the donor, that is most similark; is a unit in X7, the missing variables

are set as follows

s * 5
x52 = x*952

: y wherexj = argmin ||x§ — X§H2-

XjeXQ
Note that the similarity is based on the distance in the ptegespace of jointly observed variables. This
algorithm is advantageous over other imputation algorithbased on conditional mean or regression,

as displayed in Fid.4. It generally preserves the distigioubf cells, while the other methods cause the

variance structure to shrink toward zero.
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Fig. 5.  Comparison of results for two imputations methodshe ground truth cell distribution. Figures show scattertsl

on pairs of markers that are not jointly observed. The middie and the bottom row shows the imputation results from the
NN and Cluster-based NN, respectively. The results fromNtNemethod show spurious clusters conspicuously in the tight
panels. The false clusters are indicated by dotted circleSD3 vs. CD8 and CD3 vs. CD4 scatter plots. On the other hand,
the results from our proposed approach better resemblaubedistribution on the top row.

However, the NN method sometimes introduces spuriousestishto the imputed results and fails
to replicate the true distribution of cell populations. Fijshows an example of false clusters from the
NN imputation algorithm (for detailed experimental setape Sectioh V). We present a toy example to

explain why the NN imputation can fail, and to motivate oupeagach.
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C. Motivating Toy Example

Fig.[@ shows a toy example datasetRA. In the two data files, two of three features of these points
are observed: ands; in file 1, andc and s, in file 2. Each data point belongs to one of two clusters,
but its label is unavailable.

When imputing features; of units in file 2, the NN algorithm produces four clusters vdes there
should be two, as shown in Figl 6 (d). This is because the NNhodetises only one feature, and fails
to leverage the information about the joint distributionvafriables that are not observed together. On
the other hand, if we can infer the cluster membership of gatats, the NN imputation can be applied
within the same cluster. Hence, we search a donor from thgreup (1) for the data points ir{3), and
likewise we search a donor froi2) for the points in(4) in the example. Then the file matching result

greatly improves and better replicates the true distrivugis in Fig[b (e).

(a) True (b) file 1 (c) file 2

(e) cluster — NN (f) (incorrect) cluster — NN
4 4

Fig. 6. Toy example of file matching. Two files (b) and (c) pdipartial information of data points (a) &*. The variable
c is observed in both files while; ands» are specific to each file. The NN method creates false dot ptipos in thes; vs.
so scatter plot in (d). On the other hand, the NN applied withia same cluster successfully replicated the true distoibutf

the cluster are incorrectly paired, however, the Clustrdypproach fails, as in (f).

In this example, as in real flow cytometry data, there is no wainfer cluster membership from the
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Input: two files &7 and A to be matched
1. Cluster the units in¥; and X5.
2. Perform NN imputation within the same cluster.

Output: statistically matched complete file¥; and X

Fig. 7. The description of the Cluster-based NN algorithmtéeo files. For two input flow cytometry data filek; and A%,

specific variables are imputed using NN method after climjezach cell into one ofS clusters.

data alone, and incorrect labeling can lead to poor reskits[@ (f)). Fortunately, in flow cytometry we

can incorporate prior knowledge to achieve an accurateesing.

1. CLUSTER-BASED IMPUTATION OF MISSING VARIABLES

We first focus on the case of matching two files. The case of mhane two files is discussed in Section
VTl For the present section, we assume thatand X, have both been partitioned inf§ clusters. Let
Xf and X denote the cells i} and X, from the kth cluster, respectively.

Suppose that the data is configured as in Eig. 3. In order tatienfhe missing variables of a unit in
file 1, we locate a donor among the data points in file 2 that flasesame cluster label as the recipient.
When imputing incomplete units in file 2, the roles changes $tmilarity between two units is evaluated
on the projected space of jointly observed variables, wenlestraining both units to belong to the same
cluster. Then we impute the missing variables of the renipi®y patching the corresponding variables

from the donor. More specifically, fat; € X, we impute the missing variables by

X"

i =x;"" wherex] = argmin [|x{ — x7|2

XjGsz
The proposed Cluster-based NN imputation algorithm is sarmed in Fig[7V.
In social applications such as survey completion, file matgls often performed on the same class
such as gender, age, or county of residence. However, tluigriation that is used to label each unit is

available in data, and the inference as in our algorithm tsneaessary [14].

IV. CLUSTERING WITH MISSING DATA

To implement the above approach, we vigivand X, as a single data set and cluster its elements. We
propose a method for clustering with missing data based onite fcaussian mixture model. Mixture

models are common models for flow cytometry where each coemooorresponds to a cell type.
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While non-Gaussian models might provide a better fit, there itrade-off between estimation error
and approximation error. More complicated models tend tebee challenging to fit. Furthermore, even
with an imperfect data model, we may still achieve an impdofile matching.

Thus, clustering amounts to fitting the parameters of thauréxmodel. In general, fitting such a model
is ill-posed. For example, in the toy example, there is no wanow the correct cluster inference based
solely on the data. However, we can leverage domain knowledgselect the number of components

and initialize model parameters.

A. Mixture of PPCA

In a mixture model framework, the probability distributiofi a d-dimensional data vectot takes the

form

K
p(x) =Y mkpk(x)
k=1

where K is the number of components in the mixture andis a mixing weight.

In flow cytometry, mixture models are common models of cebmpulations. Mixture models with
Gaussian components are commbh [4], [5], [8], althoughribigions with more parameters, such as
t-distributions or skewt-distributions, have been proposdd [6]] [7]. However, ¢h@sodels require
estimating a large number of parameters, and it becomesutiffio obtain reliable estimates when
the number of components or the dimensions of the data iserda this application, the model needs
not be perfect to get improved imputation. We adopt a prdisaéibiprincipal component analysis (PPCA)
mixture model as a way to model cell populations with fewaapgeters. Without PPCA, our experience
has revealed that even a Gaussian mixture model may havedog parameters to be accurately fit.

PPCA was proposed by [15] as a probabilistic interpretatibPCA. While conventional PCA lacks
a probabilistic formulation, PPCA specifies a generativaleholt is a latent variable model, in which a
data vector is linearly related to a latent variable. Theratariable space is generally lower dimensional
than the ambient variable space, so the latent variabldges\an economical representation of the data.

The PPCA model is built by specifying a conditional disttibn of a data vectok in R¢, given a

latent variablet in RY:
p(x[t) = N (Wt + p, 0°T)

wherep is ad-dimensional vector andV is ad x ¢ linear transform matrix. The latent variable is also
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assumed to be Gaussian wijtfit) = A(0,I). Then the marginal distribution of is also Gaussian:

p(x) = N(p, C)

with a covariance matrixC = WW? 4 521. The posterior distribution can be shown to be Gaussian as

well:
p(tx) = N(M™'WT (x — p), 0*M ™)

whereM = WI'W + 621 is ag x ¢ matrix.

The PPCA mixture model is a combination of multiple PPCAscHERPCA component explains local
data structure or cell subpopulation. The model is definethéyollection of each component parameters
O = {7k, iy, Wy, o2 }. From a flow cytometry datasét = {xi,--- ,xy}, an EM algorithm can learn
the mixture model by iteratively computing these paransetetore details on the PPCA mixture and the
EM algorithm are explained in [16]

The mixture of PPCA offers a way of controlling the number afgmeters to be estimated without
completely sacrificing the flexibility of model. In mixtureadel framework, a more common choice is
the standard Gaussian mixture model. In the Gaussian reixtodel, however, each Gaussian component
requiresd(d + 1)/2 covariance parameters to be estimated if a full covarianagixnis used. Thus, as
the data dimension increases, more data points are needeelifdle estimation of those parameters.
The number of parameters can be reduced by constraining av&riance matrix to be isotropic or
diagonal. These are too restrictive, however, since arnogiator diagonal covariance makes the Gaussian
component spherical or, respectively, elliptical aligméahg the data axes; hence, the correlation structure
between variables cannot be captured. On the other hand®RE&A mixture model lies between those
two extremes, and allows to control the number of paramdigrspecifyingq, the dimension of the

latent variable.

B. Mixture of PPCA with Missing Data

Even though our file matching problem has a particular patedrmissing variables, we develop a
more general algorithm that allows for an arbitrary pat@frmissing variables. Our development assumes
values are “missing at random,” meaning that whether a bkrigs missing or not, is independent of
its value [13]. Our algorithm may be viewed as an extensiothefalgorithm of [1V] to PPCA, or the
algorithm of [16] to data with missing values.

Denoting the observed and missing components,pgndm,,, each data point can be divideg, =

(xgr,x'). In a missing data problem, a set of partial observatipg§, --- ,x3} is given. Similar
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to EM algorithms for Gaussian mixture models, we introdutdidator variable%,,. One and only one
entry of z,, is nonzero, and,,; = 1 indicates that théth component is responsible for generatiag
We also include the missing componest3" and the set of latent variables, for each component to
form the complete datéx?,x)", t,x,2,) forn=1,--- N andk=1,--- | K.

We derive an iterative EM algorithm for the PPCA mixture mlodligh missing data. The key difference
from the EM algorithm for completely observed data is tha tdonditional expectation is taken with
respect tax® as opposed tx in the expectation steps.

To develop an EM algorithm, we employ and extend the two stepqulure as described in_[16]. In

the first stage of the algorithm, the component weightsand the component centgr, are updated:

F=n 3 (k) ®
= @

where (z,z) = P(zn, = 1]|x27) is the responsibility of mixture componehtfor generating the unit
Xp, and (x") = E[x]' |z, = 1,x%] is the conditional expectation. Note that we are not assgmin
the vectors in the bracket are stackable. This notation eareplaced by the true component ordering
without difficulty.

In the second stage, we updafé, ando::

o 1 1%

from local covariance matri$y:
1 ~ ~
Sk = N—%k’ ;(znkx(xn — Hy) (%n — :Uk)T>-

These update rules boil down to the update rules for conipleteserved data when there are no missing
variables. We derive the EM algorithm in detail in Appendix A
After model parameters are estimated, the observationgligiged into groups according to their

posterior distribution:

argmax p (z,, = 1|x7"),
k=1,--K

so each unit (cell) is classified into one &f cell populations. Note that this posterior probability is

computed in the E-step.
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Cell Type CD markers

granulocyte CD45+, CD15+
monocyte CD45+, CD14+
helper T cell CD45+, CD3+
cytotoxic T cell | CD45+, CD3+, CD8+
cell CD45+, CD19+ or CD45+, CD20+
NK cell CD16+, CD56+, CD3-

lymphocyte

Fig. 8. Types of white blood cells. Each cell type is chandzéel by a set of expressed CD markers. The cluster of diffexon
(CD) markers are commonly used to identify cell surface makes on white blood cells. Thet/—’ signs indicate whether a

certain cell type has corresponding antigens on the cefhceir

C. Domain Knowledge and Initialization of EM algorithm

In file matching of flow cytometry data, domain knowledge iftical. First, as explained above, the
incompletely observed data is insufficient to determine dbeect cluster labeling. Second, the initial
conditions of the EM algorithm affect its performance andwaygence rate. Domain knowledge allows
us to choose the number of components, and to initialize ldp@rithm so that it converges to the best
local maximum.

In flow cytometry, from the design of fluorochrome marker camkions and the knowledge about
the blood sample composition, we can anticipate certaipgati@s of cell subpopulations. For example,
Fig.[8 summarizes white blood cell types and their charattercluster of differentiation (CD) marker
expressions. That these are six cell types suggests clgoASia 6 when analyzing white blood cells.

The CD markers indicated are commonly used in flow cytometrgéntify cell surface molecules on
leukocytes[[1B]. However, this information is qualitatied needs to be quantified.

To achieve this, we use one dimensional histograms. In adrism, two large peaks are generally
expected depending on the expression level of the correapprCD marker. If a cell subpopulation
expresses a CD marker, denoted hy, ‘then it forms a peak on the right side of the histogram. Q. th
other hand, if a cell population does not express the madarpted by ~’, then a peak can be found
on the left side of the histogram. We use the locations of #ekp to quantify the expression levels.

These quantified values can be combined with the CD markeessgjon levels of each cell type to
specify the initial cluster centers. Thus, each componéni;00f a certain cell type is initialized by
either the positive quantity or the negative quantity frdra histogram. In our implementation, these are
set manually based on visual inspection of histograms. Teimitialize the mixture model parameters

{7k, 1y, Wi, 02} as described in Figl 9.
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Input: X;, &, data files ;K the number of componentsy;the dimension of latent variable spacg;
for initial component mean.
for k=1to K do

1. using distancéx%" — pu7||, find the set of data pointd’* whose nearest component mearnujs

. initialize a covariance matri&;, with random entries
. replace submatrices @, with sample covariance of data points A
. makeC,, positive definite by enforcing the eigenvalues to be pasitiv

Xk
setm, = XL

o O B~ WN

. setW, with the ¢ principal eigenvectors o€y,
7. seto} with the average of remaining eigenvalues@f
end for

Output: {my, ps, Wi, 01%} fork=1,---, K

Fig. 9. Parameter initialization of an EM algorithm for miigg data. Cell populations are partitioned ink groups based
on the distance to each component center. The componenhiwagigds initialized according to the size of each partition. From
the covariance matrix estimate’;,, parameter$W,, ando; are initialized by taking eigen-decomposition.

C

51

52

Fig. 10.  Structure of covariance mati®. The sub-matrice€;""** andC;>** cannot be estimated from a sample covariance

matrix because these variables are never jointly observed.

An important issue in file matching arises from the covargameatrix. When data is completely
observed, a common way of initialization of a covarianceriras using a sample covariance matrix. In
the case of file matching, however, it cannot be evaluatetkssome sets of variables are never jointly
observed (see Fif. 110). We chose to build a covariance m@jfrifrom variable to variable with sample
covariances. For example, we can €&t™ with the sample covariance for variablesnd s; based on
cases for which both variablesand s; are present. On the other hand, the subma(fr@(’s2 cannot

81,82

be built based on the observation. In our implementation,saethe submatrixC, > with arbitrary
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ID N1 No Ne
Patientl| 10000 10000 5223
Patient2| 7000 7000 4408
Patient3| 3000 3000 3190

Fig. 11. Three flow cytometry datasets from three differeitgmts. Each dataset is divided into two data files and aluatan

set. N1 and N> denote the size of two data files and is the size of evaluation set.

FS SS CD56 CDi16 CD3 CD8 CD4

file 1

file 2

Fig. 12. File structure used in the experiment. FS, SS, an86C&e common in both files, and a pair of CD markers are

observed in only one of the files. The blank blocks corresponthe unobserved variables. The blocks in file 1 are matrices

with N; rows, and the blocks in file 2 are matrices with rows.

values. However, the resulting matrix may not be positivénite. Thus,C is made positive definite
by replacing negative eigenvalues with a small positivei@aDnce a covariance mat¥;, is obtained,

we can initializeW,, ando} by taking eigen-decomposition @8;.

V. EXPERIMENTS AND RESULTS

We apply the proposed file matching technique to real flowrogtiny datasets, and present experimental
results.

Three flow cytometry datasets are prepared from lymph noehples of three patients. These datasets
were provided by the Department of Pathology at the Uniteisi Michigan. The measurements are of
different sizes and have seven attributes: FS, SS, CD566CDD3, CD8, and CD4. Each dataset is
randomly permuted ten times and divided into two data fileb@aseparate evaluation set. In Higl 11, the
cell counts of the two files and the held-out set are dendigdV,, and N, respectively. Two attributes
from each file are made hidden to construct hypothetical fildéls missing data. Thus, CD16 and CD3
are available only in file 1, and CD8 and CD4 are available amlfile 2, while FS, SS, and CD56 are
common. The pattern of the constructed data files is illtestran Fig.[I2 where the blocks of missing
variables are left blank.

For each white blood cell type, its expected marker expoess(CD markers), relative size (FS),
and relative granularity (SS) are presented in Eid. 13. Bseedt is from a lymph node sample, the

majority of cell population is lymphocytes, while the mosintmon white blood cells in a human body
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Cell type FS SS CD56 CD16 CD3 CD8 CD4
granulocyte + + - + — — _
monocyte + - - + - — _
helper T cell - - - — + - +
cytotoxic T cell - - - — + + -
B lymphocyte - = — — - — _
Natural Killer cell | — — + + — _ _

Fig. 13.  Cell types in the dataset and their correspondintkenaxpressions. ‘+’ or ‘-’ indicates whether a certainl ¢gpe

expresses the CD marker or not.

CD56
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X:136.5
v:147

0 o
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 14.  Histogram of each marker in the dataset. The peak$fiamd-picked and are indicated in each panels.

are granulocytes. Thet'/—’ signs indicate whether a certain cell type expresses thekersa or not.
For example, helper T cells express both CD3 and CD4 but rwret This qualitative knowledge is
quantified with the help of single dimensional histogramssslained in Sectiof IV-IC. Two dominant
peaks are picked from each histogram and their correspgmd@asurement values are set to the positive
and negative expression levels. Higl 14 and Eig. 15 summérig histogram analysis.

Two incomplete data files are completed following the praredas described in Fi§l 7. A mixture
of PPCA is fitted with six components because six cell typesexpected from this dataset. The latent

variable dimension of each PPCA component is fixed to two.
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‘ FS SS CD56 CDi16 CD3 CD8 CD4
+ | 800 680 500 350 550 750 650
— | 400 400 240 130 200 170 200

Fig. 15. The positive and negative expression levels araranned.

The synthesized data after file matching is displayed in[Bidhe figure shows scatter plots of specific
variables: CD16, CD3, CD4, and CD8. Note that these markis aae not jointly observed from the
two incomplete data files. The imputation results from the & the Cluster-based NN methods are
compared in the figure. For reference, scatter plots fromottiginal complete dataset (ground truth)
are also presented. As can be seen, the results from theeChasted NN are far more similar to the
true distributions. On the other hand, the results from tiherhethod generates spurious clusters in the

CD3-CD8 and CD3-CD4 scatter plots. In Fid. 5, these falsstehs are indicated.

A. Evaluation method

To quantitatively evaluate the previous results, we usebiéak-Leibler (KL) divergence. The KL

divergence between two distributigi{x) and g(x) is defined by

KL(gl|l f) =Eg[logg —log f].

Let f denote a true distribution responsible for the observatiandg denote its estimate.

The KL divergence is not symmetric, S8 L(f | g) and KL(g|| f) have different meanings. For a
given distribution f, a distributiong minimizes K L(f || g) when g takes nonzero values in the region
where f takes nonzero values; hence, it overestimates the suppgrt@n the other handiL(g || f) is
minimized forg that is close to zero in the region whefdas near zero. A distributiory that minimizes
KL(g| f) tends to have smaller support. Therefdkd, (g || f) is a better evaluation method for detecting
spurious clusters in an estimate.

Then the empirical estimate of the KL divergence is evallidg

Ne
KL f)~ KLG )~ 3> [logd (Ra) ~ los F (%)
€ n=1

where the distributiong andg are replaced by their corresponding density estimatesthanedxpectation
is approximated by a finite sum over imputed ressti{son the held-out validation set of siZg..
We used kernel density estimation on the ground truth dath the imputed data forf and g,

respectively. The KL divergences are computed for ten rangermutations, and their averages and
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ID NN (file 1)  Cluster-NN (file 1)| NN (file 2)  Cluster-NN (file 2)
Patientl| 2.90+ 0.05 1.55+ 0.05 2.66 £+ 0.03 1.12+ 0.04
Patient2| 4.54 + 0.07 1.22+ 0.03 4.12+ 0.08 0.92+ 0.03
Patient3| 4.46 + 0.10 2.40+ 0.11 418+ 0.11 2.30+ 0.07

Fig. 16. The KL divergences are computed for ten permutatimneach flow cytometry dataset. The averages and standard
errors are reported in the table. For both the NN and Clusised NN algorithm, the file matching results are evaludtbd.KL
divergences of Cluster-based NN are closer to zero thare tbbBIN. Thus the results from Cluster-based NN better rafgid

the true distribution.

standard errors are reported in Higl 16. As can be seen, theildrgences from Cluster-based NN are
substantially smaller than those from NN. Therefore, thes@r-based NN yields a better replication of

true distribution.

VI. DISCUSSION

In this paper, we demonstrated the use of a cluster-basedstagighbor imputation method for file
matching in flow cytometry data. We applied the proposedrédlgn on real flow cytometry data to
generate a dataset of higher dimensions by merging two detadi lower dimensions. The resulting
matched file can be used for visualization and high-dimeradianalysis of cellular attributes.

While the presented imputation method focused on the caseoofiles, it can be generalized to more
than two files. For each missing component of a recipient aalcan find a donor cell among files that
have the component of interest. We envision two extensidriseoclustering-based imputation method.
The first is training a PPCA mixture model on all the data filElsis approach involves the entire data
points for model fitting. The second method considers a phlfiles at a time. In this approach, we
first select a donor file in which the missing component of #@pient file is available. Then we apply
method of this paper to the pair of files. This approach ingslsmaller number of data points in training,
but mixture models of smaller dimensions need to be fittedtiiplaltimes. After training of a mixture
model and clustering of each cell, the similarity betweellsaan be computed. The Euclidean distance
on the projected space of commonly observed variables camsed to find the similarity under the
constraint that both units should have the same clustet.l@be missing components are then imputed
from the donor.

Future research directions include finding ways of autammptior information extraction. The con-
struction of covariance matrices from incomplete dataséhé initialization of the EM algorithm is also

an interesting problem. We expect that better covariantetsre estimation will be helpful for better
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replication of non-symmetric and non-elliptic cell popigas in the imputed results.

A limitation of this work is that it has only been validated gmphocyte data, where, for certain
marker combinations, cell types tend to form relatively lvaefined clusters. However, for other samples
and marker combinations, clusters may be more elongatedsar well-defined due to cells being at
different stages of physiologic development. Future workynalso consider more flexible models for

clustering such data, and associated inference algorithms

APPENDIX

On

Xn

Suppose that we are given an incomplete observation setaW@icide each unit,, asx,, =

X

by separating the observed components and the missing c@n{s Note that we do not assume that
the observed variables are first, and the notation can baaeglby the actual ordering of components
without difficulty.

In the PPCA mixture model, the probability distribution »fis

K
p(x) =Y mip(x|k).
k=1

where K is the number of components in the mixture andis a mixing weight corresponding to the
component density(x|k). We estimate the set of unknown parameters {m, ., Wy, 03} using an
EM algorithm from the partial observatiod?",--- ,x3V}.

To develop an EM algorithm, we introduce indicator variag = (2,1, -+ ,zp,x) forn =1,--- | N.
One and only one entry of, is nonzero, and,; = 1 indicates that théth component is responsible
for generatingx,,. We also include a set of the latent variabtgg for each component, and missing
variablesx]'~ to form the complete datex%", x"", t,;,z,) forn =1,--- /N andk =1,--- | K. Then

n

the corresponding complete data likelihood function hasftim:

Lo=> > zoeIn [mp(Xn, tk)]
n k

d 1
— zn: zk:znk [ln T — B In O‘]% — Rtl’ [(xn — ) (X — uk)T]

1 1
Ok Ok

where terms independent of the parameters are not includin isecond equality. Instead of developing
an EM algorithm directly on this likelihood functiof, we extend the strategy in [16] and build a

two-stage EM algorithm, where each stage is a two-step psoce
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In the first stage of the two stage EM algorithm, we update timponent weightr;, and the component
meangy,. We form a complete data log-likelihood function with themgmonent indicator variables,
and missing variables!" while ignoring the latent variables,;,. Then we have the following likelihood

function:
N

K
£1 = Z Z Znk ln[ﬂkp(XZ" ) X;Lnn |k)]

n=1 k=1

1 L re-1 T

=D k|l — 5 |Gyl = S (Gt (xn — ) (30— pg)) "]
n k

where terms unrelated to the model parameters are omittéteisecond line. We take the conditional

expectation with respect to(z,,, x/'" |x%). Since the conditional probability factorizes as

My

p(ZTL7 Xn On Mn

xp") = p(za x5 )P,

O
ZTL7 Xnn)7

the next conditional expectations follow

0 mep(xp k)
zZnk) =p(k|xy") = 5 ,
< k> p( ‘ ) Zk/ Wk/p(xn" |k")

(znkxy"™) =(znk) (X0"),

Gai) =pi + GO (i — i),

n

(2T = () (),

() =G = G G O (e )

where (-) denote the conditional expectation. Maximizifd;) with respect tory, using a Lagrange

multiplier, and with respect t@y, give the parameter updates

Tk :% > (zan), 5)

n

Xon

ol ry ]

In the second stage, we include the latent variahle as well to formulate the complete data log-

likelihood function. The new values 6f;, and i, are used in this step to compute sufficient statistics.

Taking the conditional expectation afy: with respect top(z,,, t,x, x'" |x%"), we have
. d 1 - .
(£c) =0 3 enah | = G102 = ot {00 = ) — 7))
n k k
1

1 ~
+ —tr [((xn — g )t W] — 2—2” (WEIW L (ath)] |
O} O}
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Since the the conditional probability factorizes

P(Zns bk, 35" (X5 = (2 35 )P (" |20, X5 ) (k| 20, X5 X7),

we can evaluate the conditional expectations as follows :
T
X% x%n 0O O
(%0 — Fig) (xn — g) ") = " — Mg " — M| T+ )
() (') 0 Quk
Qui =Cj"™ — CPmom O
(tnr) =My "W (% — Fiy,),
(%0 — By )th) =((cn — Big) (xn — i)Y WM,
(tnrtar) :Ul%Mlzl + M?W{((Xn = By) (%n — ﬁk)T>WkMI;1

Remember that the x ¢ matrix M, = W{W;‘C + a,ﬁI. Then the maximization ofL¢) with respect to

W, ando? leads to the parameter updates,

1

Wk = [Z(znk><(xn - ﬁk)tz:k>] [Z(znk><tnktgk>] ’ (7)
A 1 - ;
I :dZn<znk> |:2n:<znk>tr (0 — H1.) (%0 — ”k)T>] ®)

-2 Z(znkW [((n — Fig ) b ) W |

+ > (et [WE Wi ltnitiy)] } .
Substituting the conditional expectations simplifies thestelp equations
W =S, Wi(o7l + M ‘WIS, Wy,) !, 9)
52 :%tr (Sk - SkwkM,;lifv{) (10)
where
S = 3= > e (0 = o = )

Each iteration of the EM algorithm updates the set of old patars{r, p;,, Wy, o7} with the set of

new parameterﬁk,ﬁk,\/ﬁk,&k} as in [®), [(6),[(P), and_(10). The algorithm terminates wHenalue
of the log-likelihood function no longer changes.
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