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Abstract: The false discovery rate (FDR) and false nondiscovery rate
(FNDR) have received considerable attention in the literature on multiple
testing. These performance measures are also appropriate for classification,
and in this work we develop generalization error analyses for FDR and
FNDR when learning a classifier from labeled training data. Unlike more
conventional classification performance measures, the empirical FDR and
FNDR are not binomial random variables but rather a ratio of binomi-
als, which introduces challenges not present in conventional formulations
of the classification problem. We develop distribution-free uniform devia-
tion bounds and apply these to obtain finite sample bounds and strong
universal consistency. We also present a simulation study demonstrating
the merits of variance-based bounds, which we also develop. In the context
of multiple testing with FDR/FNDR, our framework may be viewed as a
way to leverage training data to achieve distribution free, asymptotically
optimal inference under the random effects model.
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1. Introduction

Consider the problem of learning a classifier from labeled training data. Tradi-
tional learning algorithms are designed to optimize the probability of error, or
some combination of false positive and negative rates. These criteria are typi-
cally viewed as measures of performance on a single future test point. However,
it is often the case that we desire to classify multiple future test points, in which
case these traditional performance measures may be inappropriate. This situ-
ation is similar to the multiple testing problem in hypothesis testing, where
the goal is also to assign labels to several measurements simultaneously. The
basic approach adopted there is to consider alternative measures of size and
power that are better suited to multiple inference, and to design decision rules
based on these new performance measures. In this paper we extend this idea to
classification.

In particular, we investigate measuring classification performance in terms of
the false discovery rate (FDR) [32] and its companion quantity the false nondis-
covery rate (FNDR). FDR has emerged as the method of choice for quantifying
error rates meaningfully in many multiple testing situations, with applications
ranging from wavelet denoising [17] to neuroimaging [22] to the analysis of DNA
microarrays [19]. Control of the FDR, i.e., the fraction of declared positives
(discoveries) that are in fact negative, ensures that follow-up investigations into
declared positives must return a certain yield of actual positives. Such control
is vital in applications where follow-up studies are time or resource consum-
ing. Several researchers, spurred by the seminal work of [5], have studied FDR
control in the context of multiple hypothesis testing.

The problem we consider is different from the usual multiple testing problem
in the following respects. Multiple testing is concerned with making discoveries
among an observed, unlabeled dataset. It is typically assumed that p-values can
be calculated or estimated. Then, to control FDR, p-values are adjusted through
one of a variety of single step, step-up or step-down procedures, and thresholded.
We are concerned with building a classifier based on labeled training data, and
making predictions on future test points. In our setup, we assume the unlabeled
test data will be observed after the classifier is learned. Thus, we are in the
inductive setting; in the transductive setting the test points would be observed
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before learning. We assume measurements are iid, which coincides with the
“random effects model” in the multiple testing literature.

Our framework may be viewed as a way to leverage training data, when
available, to overcome what are often weakness of multiple testing based on ad-
justed p-values. First, in many applications, the null distribution cannot not be
easily modeled or simulated, so that p-values are difficult to estimate. Second,
thresholding adjusting p-values is almost never optimal in terms of minimiz-
ing FNDR or some other measure of Type II error [35]. In this work, we show
how training data may be used to adapt to both the null and alternative dis-
tributions, while making no assumptions whatsoever on either. Adopting the
perspective of statistical learning theory, we develop distribution free results on
the generalization error analysis of FDR and FNDR, including uniform devia-
tion bounds, finite sample performance guarantees, strong universal consistency,
and variance-based bounds.

1.1. Motivation

We offer two motivating examples. First, consider a network operator who seeks
to detect anomalous activities in a network such as malware propagation. For
example, suppose that every ten minutes, a feature vector X is observed, where
X consists of different measurable quantities such as traffic volumes on different
links. The process of determining the presence of an anomaly is laborious, so
the operator would like a predictor based on X to tell him whether to invest the
time and energy to determine if an anomaly occurred. Now suppose that some
historical data (Xi, Yi)

n
i=1 are available, such as measurements from the past

month gathered under similar conditions (e.g., time of day), where every label
Yi was carefully determined. A classifier based on this historical data should
take into consideration the fact that it will be used multiple times, and that the
network operator is willing to investigate many events if they turn out to be
positive, but does not want to chase down too many false leads. In this setting,
the most natural approach may be to control the false discovery rate (FDR) of
the classifier.

Alternatively, consider a neuroimaging (e.g., functional MRI) experiment con-
ducted on multiple subjects performing some task. For each subject, we would
like to identify which voxels in the brain are active during different phases of the
experiment. In particular, suppose each voxel is associated with a vector X con-
sisting of features derived from the voxel time series. Activity detection is then
commonly accomplished by assuming that inactive voxels generate Gaussian-
distributed measurements, calculating p-values, and adjusting these p-values to
ensure a small FDR. This is a useful alternative to earlier approaches which de-
termined thresholds based on a target false positive rate, since a 5% threshold
generated many false positives and suggested significant scattered brain activity
which was not reasonable from a biological perspective [22].

Despite the relative success of FDR for p-value adjustment in neuroimaging,
this approach has some limitations. For instance, as mentioned above, accurate
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modeling of inactive voxel time-series can be a challenge. Furthermore, robust
theoretical analyses of this approach focus on voxel-wise thresholding decisions,
even though there are biological reasons to expect active voxels to be clustered
together. In contrast, if training data are available (provided by, say, a neu-
roimaging expert), our approach can easily handle features that include spatial
coordinates, and the shape of possible activation patterns can be influenced by
specifying a prior on the space of possible classifiers.

1.2. Notation

More formally, in this paper we consider the following scenario: Let X be a
set and Z = (X, Y ) be a random variable taking values in Z = X × {0, 1}.
The variable X corresponds to a pattern or feature vector and Y to a class
label associated with X; Y = 0 corresponds to the null hypothesis (e.g., that
no target is present) and Y = 1 corresponds to the alternative hypothesis (e.g.,
that a target is present). The distribution on Z is unknown and is denoted by P.
Assume we make n independent and identically distributed training observations
of Z, denoted Zn = (Xi, Yi)

n
i=1. This corresponds to the random effects model

common in the multiple testing literature [19].
A classifier is a function h : X −→ {0, 1} mapping feature vectors to class

labels. Let H denote a collection of different classifiers. A false discovery occurs
when h(X) = 1 but the true label is Y = 0. Similarly, a false nondiscovery
occurs when h(X) = 0 but Y = 1. We define the false discovery rate (FDR)

RD (h) :=

{
P(Y = 0 | h(X) = 1), if P(h(X) = 1) > 0,
∞, else,

and the false nondiscovery rate (FNDR)

RND(h) :=

{
P(Y = 1 | h(X) = 0), if P(h(X) = 0) > 0,
∞, else.

1.3. Related Concepts

These definitions, which are natural in the classification setting, coincide with
the so-called positive FDR/FNDR of Storey [33, 34], so named because it can
be seen to equal the expected fraction of false discoveries/nondiscoveries, con-
ditioned on a positive number of discoveries/nondiscoveries having been made.
Storey makes some decision-theoretic connections to classification [34], but does
not consider learning from data.

Storey’s definition does not cover the case where the conditioning event has
probability zero. Our definition in these cases is motivated primarily by techni-
cal considerations. In particular, it allows us to treat extreme cases where true
positives (or negatives) are never observed, and thereby establish a universally
consistent rule. Our definition has the effect of assigning high costs to classi-
fiers that fail to make at least some discoveries (and nondiscoveries). This is
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consistent with the multiple testing perspective, where often the goal is to gen-
erate discoveries for further examination, just not too many false ones. Further
comments on our definitions of FDR and FNDR are given after the proof of
Theorem 2.

In certain communities, different terms embody the idea behind FDR. In the
medical diagnostic testing literature, the positive predictive value (PPV) is de-
fined as the “proportion of patients with positive test results who are correctly
diagnosed” [2]. In database information retrieval problems, the precision is de-
fined as the ratio of the number of relevant documents retrieved by a search
to the total number of documents retrieved by a search [38]. Both PPV and
precision are equal to 1 - FDR. Precision is discussed further is Section 7.2.

Finally, several researchers have recently investigated connections between
multiple testing and statistical learning theory. McAllester’s PAC-Bayesian
learning theory may be viewed as an extension of multiple testing procedures
to (possibly uncountably) infinite collections of hypotheses [26]. Blanchard and
Fleuret present an extension of the Occam’s razor principle for generalization
error analysis in classification, and apply it to derive p-value adjustment pro-
cedures for controlling FDR [8]. Arlot et al. develop concentration inequalities
that apply to multiple testing with correlated observations [3]. Scott and Blan-
chard present a learning theoretic analysis of semi-supervised novelty detection,
which includes multiple testing under the random effects model as a special
case [28]. None of these works consider FDR/FNDR as performance criteria for
classification.

1.4. Connections to Cost-Sensitive Learning and Related Problems

In Sections 3 and Section 4 we consider the performance measure Eλ(h) :=
RND (h) + λRD(h). This criterion is evocative of the cost-sensitive Bayes risk,

P(h(X) = 0, Y = 1) + γP(h(X) = 1, Y = 0),

γ > 0. The global minimizer of this risk has the form

h(x) = 1{η(x)≥c}, (1)

where η(x) := P(Y = 1|X = x) and c = 1/(1 + γ). Proof of this fact is a direct
generalization of the case of the probability of error, when γ = 1 [15]. Fur-
thermore, many statistical learning algorithms have been developed to perform
cost-sensitive classification [4, 21], and their theoretical properties are typically
similar to those of standard classification algorithms [7].

Unfortunately, algorithms for cost-sensitive classification cannot be easily
applied to our problem. In particular, we may write

Eλ(h) = P(Y = 1|h(X) = 0) + λP(Y = 0|h(X) = 1)

∝ P(h(X) = 0, Y = 1) +

[
λ
P(h(X) = 0)

P(h(X) = 1)

]
P(h(X) = 1, Y = 0).
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The term in brackets is not constant, but depends on the classifier h as well as
the unknown distribution.

Despite this lack of any simple reduction, it is still true that the family of
classifiers in (1) are the global minimizers of Eλ, with λ and the corresponding
c obeying a monotone relationship. Storey [34] gives a proof of this fact for
the case where the two class-conditional distributions are continuous. A precise
statement of the result requires that this family be extended by a standard
randomization argument if its receiver operating characteristic (ROC) is not
concave.

This suggests that it may still be possible to minimize Eλ by performing
cost-sensitive classification with a certain cost γ. The critical issue is that γ is
an implicit function of λ, and cannot be determined a priori without knowl-
edge of the underlying distribution. Thus, when only data are given, apply-
ing existing cost-sensitive classification methods to our problem would require
estimating γ. In practice, this would most likely entail learning cost-sensitive
classifiers ĥγi

for some grid of values {γi} that grows increasingly dense as
n → ∞. Then, the best of these candidates would be selected by minimiz-
ing an estimate of Eλ(h). Such a procedure would likely be expensive compu-
tationally. From an analytical standpoint, it seems plausible that generaliza-
tion error analyses for cost-sensitive classification could be useful; however, the
need to search for a γ that approximately minimizes our criterion would cer-
tainly complicate the analysis. The objective of our work is to develop a much
more direct approach, which does not require repeated cost-sensitive classifica-
tion.

Similarly, in Section 7, we consider minimizing RND(h) subject to RD (h) < α.
This has clear ties to Neyman-Pearson classification [10, 29, 27]. Once again,
however, there is no direct reduction from this problem to ours. Furthermore,
we present a general result for learning with a Type I error constraint whose
proof is much simpler than those given in [10, 30].

Connections to other learning problems may also be drawn. Liu et al. [24]
apply VC theory to study the problem of optimizing precision subject to a
constraint on recall. Their precision bound is loose and evidently does not lead to
a consistent procedure. Recently, Clémencon and Vayatis have studied learning
theoretic aspects of learning the entire precision-recall curve [13]. More generally,
several authors have analyzed learning the entire ROC for bipartite ranking
[1,37,12,14]. Our problem amounts to estimating a specific point on this curve,
where the point of interest (for us) on this curve depends not only on the value
of λ, but also on the unknown distribution. Therefore, adapting these methods
to our setting is likely to be no easier than it would be to adapt methods for
cost-sensitive classification.

1.5. Overview

In the next section we present and prove uniform deviation bounds for FDR
and FNDR. In Section 3, we discuss performance measures based on FDR and
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FNDR, and in Section 4 we establish the strong universal consistency of a learn-
ing rule with respect to the measure Eλ. A variance-based bounding technique
is employed in Section 5 to a faster rate of convergence for the zero-error case,
and in Section 6 we present an experimental evaluation and comparison of our
bounds. Section 7 treats performance measures which constrain FDR, and the
final section offers a concluding discussion.

Unlike traditional performance measures, whose empirical versions are related
to binomial random variables, empirical versions of FDR and FNDR are related
to ratios of binomial variables. Thus, our analytical methods are combinations
of both existing and new techniques.

2. Uniform Deviation Bounds

Define empirical analogues to the FDR and FNDR according to

R̂D (h) :=

{ 1
nD(h,Zn)

∑n
i=1 1{Yi=0,h(Xi)=1}, nD (h, Zn) > 0,

∞, nD (h, Zn) = 0,

R̂ND (h) :=

{ 1
nND(h,Zn)

∑n
i=1 1{Yi=1,h(Xi)=0}, nND (h, Zn) > 0,

∞, nND (h, Zn) = 0,

where nD(h, Zn) =
∑n

i=1 1{h(Xi)=1} and nND(h, Zn) =
∑n

i=1 1{h(Xi)=0} are
binomial random variables. When nD(h, Zn) and nND (h, Zn) are greater than

zero, R̂D(h) and R̂ND (h) are known as the false discovery proportion and false

nondiscovery proportion, respectively. Storey showed thatE[R̂D(h)|nD(h, Zn) >
0] = RD(h), and similarly for FNDR [34]. This section describes a uniform bound
on the amount by which the empirical estimate of FDR/FNDR can deviate
from the true value. Note that unlike the usual empirical estimates for the
probability of error/false positive rate/false negative rate, here both numerator
and denominator are random, and both depend on h.

Assume H is countable, and let JhK be a real valued functional on H such
that

∑
h∈H

2−JhK ≤ 1. If JhK is integer valued, such a functional can be identified
with a prefix code for H, in which case JhK is the codelength associated to h. If∑

h∈H
2−JhK = 1, then 2−JhK may be viewed as a prior distribution on H.

For δ > 0, we introduce the penalty terms

φD(h, δ) :=

{ √
JhK ln 2+ln(2/δ)

2nD(h,Zn) , nD (h, Zn) > 0,

∞, nD (h, Zn) = 0,

φND(h, δ) :=

{ √
JhK ln 2+ln(2/δ)

2nND(h,Zn) , nND (h, Zn) > 0,

∞, nND (h, Zn) = 0.

The interpretation of these expressions as penalties comes from the learning
algorithms studied below, where we minimize the empirical error plus a penalty
to avoid overfitting. Note that the penalties are data dependent.
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Theorem 1. With probability at least 1 − δ with respect to the draw of the
training data,

|RD(h) − R̂D (h)| ≤ φD(h, δ) (2)

for all h ∈ H. Similarly, with probability at least 1 − δ with respect to the draw
of the training data,

|RND(h) − R̂ND(h)| ≤ φND(h, δ) (3)

for all h ∈ H. The results are independent of the underlying probability distri-
bution.

Because of the form of the penalty terms, the bound is larger for classi-
fiers h that are more complex, as represented through the codelength JhK, and
smaller when more discoveries/nondiscoveries are made. This result leads to fi-
nite sample bounds and strong universal consistency for certain learning rules
based on minimization of the penalized empirical error, as developed in the
sequel.

Proof. We prove the first statement, the second being similar. For added clarity,
write the penalty as φD(h, δ, nD(h, Zn)), where

φD(h, δ, k) :=

{ √
JhK ln 2+ln(2/δ)

2k , k > 0,

∞, k = 0.

Consider a fixed h ∈ H. The fundamental concentration inequality underlying
our bounds is Hoeffding’s [23], which, in one form, states that if Sk is the sum
of k > 0 independent random variables bounded between zero and one, and
µ = E[Sk], then

P(|µ− Sk| > kǫ) ≤ 2e−2kǫ2.

To apply Hoeffding’s inequality, we need the following conditioning argument.
Let V = (V1, . . . , Vn) ∈ {0, 1}n be a binary indicator vector, with Vi = h(Xi).
Let Vk denote the set of all v = (v1, . . . , vn) ∈ {0, 1}n such that

∑n
i=1 vi = k.

We may then write

P(|RD(h) − R̂D(h)| > φD(h, δ, nD(h, Zn)))

=

n∑

k=0

∑

v∈Vk

P(|RD(h) − R̂D(h)| > φD(h, δ, k)|V = v)P(V = v)

=

n∑

k=0

∑

v∈Vk

P(|kRD(h) − kR̂D(h)| > kφD(h, δ, k)|V = v)P(V = v),

First note that |RD(h) − R̂D(h)| ≤ φD(h, δ) with probability one when
nD (h, Zn) = 0. We now apply Hoeffding’s inequality for each k ≥ 1 and v ∈ Vk,
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conditioning on V = v. Setting Sk = kR̂D(h), we have

µ = E[Sk|V = v]

= kE[R̂D(h)|V = v]

= E[
n∑

i=1

1{Yi=0,h(Xi)=1}|V = v]

= E[
∑

i:vi=1

1{Yi=0}|V = v]

= kP(Y = 0|h(X) = 1)

= kRD(h),

where in the next to last step we use independence of the realizations. Therefore,
applying Hoeffding’s inequality conditioned on V = v ∈ Vk yields

P(|RD(h) − R̂D(h)| > φD(h, δ, nD(h, Zn)))

≤
n∑

k=1

∑

v∈Vk

2e−2kφ2

D
(h,δ,k)P(V = v)

≤
n∑

k=1

∑

v∈Vk

δ2−JhKP(V = v)

= δ2−JhK(1 −P(
∑
Vi = 0)) ≤ δ2−JhK.

The result now follows by applying the union bound over all h ∈ H.

The technique of conditioning on the random denominator of a ratio of
binomials has also been applied in others settings [25, 29, 11]. Unlike those
works, however, here the binomial denominator depends on the classifier h. This
presents difficulties for extending the above techniques to uncountable classes
H. See the final section for further discussion of this issue.

3. Measuring Performance

We would like to be able to make FDR/FNDR related guarantees about how

a data-based classifier ĥ performs. For this, we need to specify a performance
measure or optimality criterion that incorporates both FDR and FNDR quan-
tities simultaneously. One possibility is to specify a number 0 < α < 1 and seek
the classifier such that RND (h) is minimal while RD(h) ≤ α. We consider this
setting in Section 7. Another is to specify a constant λ > 0 reflecting the relative
cost of FDR to FNDR, and minimize

Eλ(h) := RND (h) + λRD(h).

This measure was introduce by Storey [34], but was not studied in a learning
context. The uniform deviation bounds of the previous section immediately
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imply the following computable bound on a classifier’s performance with respect
to this measure.

Corollary 1. For any δ > 0 and n ≥ 1, with probability at least 1 − 2δ with
respect to the draw of the training data,

Eλ(h) ≤ R̂ND(h) + φND(h, δ) + λ[R̂D(h) + φD(h, δ)]

for all h ∈ H.

In the next section, we analyze a learning rule based on minimizing the bound
of Corollary 1, and establish its strong universal consistency.

4. Strong Universal Consistency

Denote the globally optimal value of the performance measure by

E
∗
λ := inf

h
Eλ(h),

where the inf is over all measurable h : X → {0, 1}. We seek a learning rule ĥλ,n

such that Eλ(ĥλ,n) → E∗
λ almost surely, regardless of the underlying probability

distribution. Thus let {Hk}k≥1 be a family of finite sets of classifiers with univer-
sal approximation capability. That is, assume that limk→∞ infh∈Hk

Eλ(h) = E∗
λ

for all distributions on (X, Y ). Furthermore, assume this family to be nested,
meaning H1 ⊆ H2 ⊆ H3 · · · . For example, if X = [0, 1]d, we may take Hk to be
the collection of histogram classifiers based on a binwidth of 2−k. Recall that
we can set JhK = log2 |Hk| for h ∈ Hk, where |Hk| is the cardinality of Hk. For

histograms, we have |Hk| = 22kd

and hence JhK = 2kd ln 2.
The bound of Corollary 1 suggests bound minimization as a strategy for se-

lecting a classifier empirically. However, rather than minimizing over all possible
classifiers in some Hk, we first discard those classifiers whose empirical num-
bers of discoveries or nondiscoveries are too small. In these cases, the penalties
are possibly quite large, and we are unable to obtain tight concentrations of
empirical FDR/FNDR measures around their true values. However, as n in-
creases, we are able to admit classifiers with increasingly small proportions of
(non)discoveries, so that in the limit, we can still approximate arbitrary dis-
tributions. This aspect is another unique feature of FDR/FNDR compared to
traditional performance measures.

Formally, define

Ĥn := {h ∈ Hkn
:
nND (h, Zn)

n
≥ pn,

nD(h, Zn)

n
≥ pn},

where pn := (lnn)−1. Here kn is such that kn → ∞ as n → ∞ and
ln |Hkn

| = o(n/ lnn). For the histogram example, ln |Hkn
| = 2knd ln 2, and thus

the assumed conditions on the growth of kn are essentially the same (up to
a logarithmic factor) as for consistency of histograms in other problems. For
example, in standard classification, 2knd = o(n) is required [15].
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For concreteness, set δn = 1/n2. Denote the bound of Corollary 1 by

Ẽλ(h) := R̂ND (h) + φND(h, δn) + λ[R̂D(h) + φD(h, δn)],

and define the classification rule

ĥλ,n := arg min
h∈Ĥn

Ẽλ(h).

If Ĥn = ∅, then ĥλ,n may be defined arbitrarily.

Theorem 2. For any distribution on (X, Y ), and any λ > 0,

Eλ(ĥλ,n) → E
∗
λ

almost surely. That is, ĥλ,n is strongly universally consistent.

Proof. First consider the case where there is no measurable h : X → {0, 1} such
that both P(h(X) = 0) > 0 and P(h(X) = 1) > 0. This occurs when X is

deterministic. Then E∗
λ = ∞, and trivially ĥλ,n achieves optimal performance.

So assume this is not the case.
By the Borel-Cantelli lemma [18,15], it suffices to show that for each ǫ > 0

∞∑

n=1

P(Ωn) <∞,

where
Ωn := {Zn : Eλ(ĥλ,n) − E

∗
λ ≥ ǫ}.

Introduce the event
Θn = {Zn : Ĥn 6= ∅}.

Since
P(Ωn) ≤ P(Ωn ∩ Θn) + P(Θn),

we have
∞∑

n=1

P(Ωn) ≤
∞∑

n=1

P(Ωn ∩ Θn) +

∞∑

n=1

P(Θn). (4)

We will bound these two terms separately.
Consider the second term.

Lemma 1. Let ν > 0 and assume E∗
λ < ∞. There exist h′ and N1 such that

Eλ(h′) ≤ E∗
λ + ν and, for all n > N1, P(h′ ∈ Ĥn) ≥ 1 − 1/n2.

Proof. By the universal approximation assumption, there exist m and h′ ∈ Hkm

such that Eλ(h′) ≤ E∗
λ+ν . Since E∗

λ <∞, this h′ necessarily has both P(h′(X) =
0) > 0 and P(h′(X) = 1) > 0. Denote q := min{P(h′(X) = 1),P(h′(X) =
0)} > 0. Introduce

τn :=

√
ln(2/δn)

2n
.
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By Hoeffding’s inequality, with probability at least 1 − δn, |P(h′(X) = 1) −
nD (h′, Zn)/n| = |P(h′(X) = 0) − nND (h′, Zn)/n| ≤ τn. Since δn = 1/n2, we
have that τn = o(pn). Now choose N1 such that τN1

≤ pN1
and 2pN1

≤ q. Then,
for a sample of size n = N1, min{nD(h′, Zn)/N1, nND(h′, Zn)/N1} ≥ q− ǫN1

≥
2pN1

− τN1
≥ pN1

with probability at least 1 − δN1
= 1 − 1/N1

2. Since pn is
decreasing and {Hk} is nested, the same is true for all n > N1.

By this lemma we have P(Θn) ≤ δn = 1/n2 for all n > N1 (Here we only the
need the second part of the conclusion of the lemma; later we use the lemma in
its full generality). Thus

∞∑

n=1

P(Θn) ≤ N1 +
∑

n>N1

1

n2
<∞.

Now consider the first term on the right-hand side of (4). Define the events

Ωn
1 := {Zn : Eλ(ĥλ,n) − inf

h∈Ĥn

Eλ(h) ≥ ǫ

2
}

Ωn
2 := {Zn : inf

h∈Ĥn

Eλ(h) − E
∗
λ ≥ ǫ

2
}

Since Ωn ⊂ Ωn
1

⋃
Ωn

2 , we have

∞∑

n=1

P(Ωn ∩ Θn) ≤
∞∑

n=1

P(Ωn
1 ∩ Θn) +

∞∑

n=1

P(Ωn
2 ∩ Θn). (5)

We consider the two terms individually and show that each of them is finite.
To bound the first term on the right-hand side of (5) we use the following

lemma.

Lemma 2. If Ĥn 6= ∅, then

Eλ(ĥλ,n) − inf
h∈Ĥn

Eλ(h) ≤ 2 sup
h∈Ĥn

|Eλ(h) − Ẽλ(h)|.

Proof. Let h′ ∈ Ĥn be arbitrary. By the definition of ĥλ,n, Ẽλ(ĥλ,n) ≤ Ẽλ(h′).
Hence

Eλ(ĥλ,n) = Eλ(ĥλ,n) − Ẽλ(ĥλ,n) + Ẽλ(ĥλ,n) − Eλ(h′) + Eλ(h′)

≤ Eλ(ĥλ,n) − Ẽλ(ĥλ,n) + Ẽλ(h′) − Eλ(h′) + Eλ(h′)

≤ 2 sup
h∈Ĥn

|Eλ(h) − Ẽλ(h)| + Eλ(h′).

Since h′ was arbitrary, the result now follows.
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Define the events

Ωn
11 := {Zn : sup

h∈Ĥn

|RND(h) − R̂ND(h)| ≥ ǫ

16
}

Ωn
12 := {Zn : sup

h∈Ĥn

|RD(h) − R̂D (h)| ≥ ǫ

16λ
}

Ωn
13 := {Zn : sup

h∈Ĥn

|φND(h, δn)| ≥ ǫ

16
}

Ωn
14 := {Zn : sup

h∈Ĥn

|φD(h, δn)| ≥ ǫ

16λ
}

From Lemma 2 it follows that

Ωn
1 ⊂

4⋃

i=1

Ωn
1i

and hence it suffices to show

∞∑

n=1

P(Ωn
1i ∩ Θn)

is finite for each i = 1, 2, 3, 4. We shall consider Ω11 and Ω13, the other two cases
following similarly.

For h ∈ Ĥn we have nND (h, Zn)/n ≥ pn and therefore

φND(h, δn) =

√
ln |Hkn

| + ln(2n2)

2nND(h, Zn)

≤
√

(ln |Hkn
| + ln(2n2))

lnn

2n
<

ǫ

16

for n ≥ N2, for some N2 sufficiently large. Here we use δn = 1/n2 and ln |Hkn
| =

o(n/ lnn). Then
∞∑

n=1

P(Ωn
13 ∩ Θn) ≤ N2.

Furthermore, by the uniform deviation bound,

∞∑

n=1

P(Ωn
11 ∩ Θn) ≤ N2 +

∑

n>N2

1

n2
<∞.

Now consider the event Ωn
2 . Applying Lemma 1 with ν = ǫ/2, we have that

∞∑

n=1

P(Ωn
2 ∩Θn) ≤ N1 +

∑

n>N1

1

n2
<∞.
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In the definitions of RD(h) and RND(h), we define these quantities to be
infinity when the conditioning event has probability zero (see Introduction).
This forces the globally optimal classifier to have both P(h(X) = 1) > 0 and
P(h(X) = 0) > 0 whenever possible. The same property would hold provided
RD (h) > (1+λ)/λ when P(h(X) = 1) = 0 and RND (h) > 1+λ when P(h(X) =
0) = 0. Were we to define FDR or FNDR to be smaller, our consistency argument
would not apply universally. In particular, it might fail for distributions where
the global minimizer of Eλ has either P(h(X) = 0) = 0 or P(h(X) = 0) = 1,
such as whenX is deterministic. In a preliminary version of this work, we defined
RD (h) and RND (h) to be zero when the conditioning event is a null event, and
were able to prove consistency under a very mild condition on the underlying
distribution [31].

5. Variance-Based Bounds and the Zero-Error Case

The previous bounds are based on Hoeffding’s inequality. However, a variety of
other inequalities exist for sums of bounded random variables. In this section we
explore bounds based on Bernstein’s inequality, which often allows for tighter
bounds through the incorporation of variance information.

For simplicity let us assume that H is finite with a uniform prior. The results

below extend easily to countable H, where ln
|H|
δ is replaced by JhK ln 2 + ln 1

δ .
We denote

Êλ(h) = R̂ND (h) + λR̂D(h).

Theorem 3. With probability at least 1 − δ with respect to the draw of the
training data,

Eλ(h) ≤ Êλ(h) + ψ(h, δ, nD(h, Zn)) (6)

for all h ∈ H, where

ψ(h, δ, k) :=






√
2Eλ(h) ln |H|

δ

(
1

n−k
+ λ

k

)
+

2 ln
|H|

δ

3

(
1

n−k
+ λ

k

)
, 0 < k < n,

∞, k = 0, n.

Proof. We recall Bernstein’s inequality [6]:

Lemma 3. Let Z1, . . . , Zn be independent zero-mean random variables bounded
in absolute value by c. Denote Sn =

∑n
i=1Zi and σ2 = 1

n

∑n
i=1 Var{Zi}. For

any t > 0,

P(Sn > t) ≤ exp

(
− t2

2nσ2 + 2ct/3

)
.

By the quadratic formula, we may invert the relationship between the bound
t and the confidence δ. Thus, for 0 < δ < 1, we have that

Sn ≤
√

2nσ2 ln
1

δ
+

2c ln 1
δ

3

with probability at least 1 − δ.
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Consider a fixed h ∈ H. Recall the following notation from the proof of
Theorem 1. Let V = (V1, . . . , Vn) ∈ {0, 1}n be a binary indicator vector, with
Vi = h(Xi). Let Vk denote the set of all v = (v1, . . . , vn) ∈ {0, 1}n such that∑n

i=1 vi = k. Since the bound holds trivially for k = 0, n, we have

P(Eλ(h) − Êλ(h) > ψ(h, δ, nD(h, Zn)))

≤
n−1∑

k=1

∑

v∈Vk

P(Eλ(h) − Êλ(h) > ψ(h, δ, k)|V = v)P(V = v).

Introduce

Zi =
1

n − k

[
RND (h)1{h(Xi)=0} − 1{Yi=1,h(Xi)=0}

]

+
λ

k

[
RD(h)1{h(Xi)=1} − 1{Yi=0,h(Xi)=1}

]
.

Note that, if we condition on V = v, then

Eλ(h) − Êλ(h) =

n∑

i=1

Zi

and for v ∈ Vk, E{Zi|V = v} = 0 and

|Zi| ≤
1

n− k
+ λ

1

k
.

In addition, the conditional variance term is

σ2
v =

1

n

n∑

i=1

Var{Zi|V = v}

=
1

n

{
∑

i:vi=0

1

(n− k)2
E
[
(RND (h) − 1{Yi=1})

2
∣∣∣h(Xi) = 0

]

+
∑

i:vi=1

λ2

k2
E
[
(RD (h) − 1{Yi=0})

2
∣∣∣h(Xi) = 1

]}

≤ 1

n

[
1

n− k
RND (h) +

λ2

k
RD (h)

]

≤ 1

n
Eλ(h)

(
1

n− k
+
λ

k

)
.

By Bernstein’s inequality,

n−1∑

k=1

∑

v∈Vk

P(Eλ(h) − Êλ(h) > ψ(h, δ, k)|V = v)P(V = v)

≤
n−1∑

k=1

δ

|H|P(V = v) ≤ δ

|H|.

The result now follows by the union bound over all h ∈ H.
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The bound can be tighter than the one based on Hoeffding’s inequality in
Theorem 1. However, it cannot be computed in general because it depends on
Eλ(h). In the zero-error case, however, it can be used to derive faster rates, as
we now describe.

Define the empirical error minimizer

ĥ := arg min
h∈H

Êλ(h).

If there are multiple h ∈ H achieving the minimum, we assume ĥλ has both
nD(ĥλ) > 0 and nND(ĥλ) > 0 if possible.

Corollary 2. Suppose there exists h∗ in H such that Eλ(h∗) = 0. With proba-
bility at least 1 − δ, if 0 <

∑n
i=1 Yi < n, then

Eλ(ĥ) ≤ 4 ln
|H|
δ

(
1

nND(ĥ, Zn)
+

λ

nD(ĥ, Zn)

)
.

Proof. Since h∗ has Eλ(h∗) = 0, it classifies every point correctly. This implies

Êλ(h∗) = 0 and therefore Êλ(ĥ) = 0. Since 0 <
∑n

i=1 Yi < n, we deduce

nND(ĥ, Zn) > 0 and nD(ĥ, Zn) > 0. By Theorem 3,

Eλ(ĥ) ≤
√

2Eλ(ĥ) ·B +
2

3
B,

where B = ln |H|
δ

(
1

nND (̂h,Zn)
+ λ

nD (̂h,Zn)

)
. We would like to show

Eλ(ĥ) ≤ cB

for a universal constant c. For now, let c be fixed but arbitrary. Suppose Eλ(ĥ) >
cB. Then √

Eλ(ĥ) ≤
√

2B +
2

3

B√
Eλ(ĥ)

.

Squaring both sides we have

Eλ(ĥ) ≤ B

(
2 +

4
√

2

3

√
B

Eλ(ĥ)
+

4

9

B

Eλ(ĥ)

)

≤ B

(
2 +

4
√

2

3

1√
c

+
4

9

1

c

)

= c′B.

When c = 4, c′ < 4, contradicting the assumption that Eλ(ĥ) > cB.

There has been recent interest in the learning theory literature in generalizing
such fast rates to settings beyond the zero-error case. The general strategy is
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to apply variance-based concentration inequalities to so-called “relative loss”
classes. Then, conditions such as Tsybakov’s noise condition can be used to
derive faster rates [36,9]. This approach can in principle be applied here, but the
development of appropriate “noise conditions” is likely to be more challenging.
To extend our arguments to a relative loss class, we would need to condition
on both V = (h(X1), . . . , h(Xn)) and V ∗ = (h∗(X1), . . . , h

∗(Xn)). This would
result in quantities such as P (Yi = 1|h(Xi) = 0, h∗(Xi) = 1) appearing in the
variance term. The bound would also involve the quantities nND(h∗, Zn) and
nD (h∗, Zn), which are unknown in general.

6. Experimental Comparison of Bounds

In this section we present a synthetic data experiment to illustrate and com-
pare the two bounding techniques considered in this work, i.e., those based on
Hoeffding’s and Bernstein’s inequalities. These experiments shed light on the
tightness of these bounds in terms of the data and various properties of the
underlying distributions.

We consider the following joint distribution on (X, Y ), where X ∈ [−1, 1].
The a priori probability that Y = 1 is denoted p. The conditional distribu-
tion of X given Y = 0 is uniform on [−1, 1]. The conditional distribution of X
given Y = 1 is a truncated Laplacian distribution, with density f1(x) ∝ e−|x|/β,
−1 ≤ x ≤ 1, where β determines the variance. This model is similar to those
used to analyze differential expression in microarray studies [19], although our
choices here are guided primarily by tractability considerations. H is the set of
classifiers ht = 1[−t,t], where t ∈ { 1

M+1
, 2

M+1
, . . . , M

M+1
}. The endpoints t = 0

and t = 1 are not included because these classifiers make no discoveries or
nondiscoveries, respectively, leading to uninteresting bounds. Thus |H| = M .
With this model, Eλ can be calculated analytically, and the difficulty of the
problem (i.e., the minimum value of Eλ) can be controlled by the parame-
ter β.

To compare the bounds we generated a random sample of size n = 1000. We
set λ = 2 and δ = 0.1. M was fixed at 100. We considered 6 different exper-
imental settings, corresponding to p ∈ {0.2, 0.5, 0.8} and β ∈ {0.1, 0.01}. We
generated a single realization of the data for each setting, and computed the
bounds for each h ∈ H. To be fair, we compared the Bernstein-based bound
in (6) to a one-sided Hoeffding-based bound derived expressly for Eλ. This is
slightly tighter than the bound of Corollary 1, which follows from summing
bounds on RND and RD . Following the same conditioning argument as in Theo-
rems 1 and 3, and employing a general form of Hoeffding’s inequality as stated,
e.g., in [16], this bound states that with probability at least 1 − δ,

Eλ(h) ≤ Êλ(h) +

√
1

2
ln

|H|
δ

(
1

nND(h, Zn)
+

λ2

nD(h, Zn)

)

for all h ∈ H such that 0 < nD(h, Zn) < n. Note that applying the inequality√
a+ b ≤ √

a +
√
b recovers the bound of Corollary 1.
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(a) β = 0.1 (b) β = 0.01

Fig 1. The class 0 (uniform) and class 1 (truncated Laplacian) distributions used in the
simulation study. The variance parameter β of the truncated Laplacian was taken to be β = 0.1
(a) and β = 0.01 (b) in the experiments.

The results are shown in Figure 2. In each plot, the horizontal axis is the t in
ht, and the vertical axis represents the error Eλ. For comparison, we also show
the performance of the classifier that randomly guesses the class label. The value
of Eλ in this case is p+ λ(1 − p), which is analogous to the value 1

2 in standard
classification. Although our bounds are data-dependent, the general shapes and
relative magnitudes of the bounds are fairly stable across realizations.

We first make the following qualitative observations. Both bounds are looser
near the endpoints, reflecting the small number of false discoveries or nondis-
coveries, which appear as denominators in the bounds. When p is small (mean-
ing fewer class 1 examples in the training data), the bounds are looser at
the left endpoint. Similarly, when p is large, the bounds are looser at the
right endpoint. As p increases, the optimal “rejection region” grows, as ex-
pected.

Regarding performance, for each parameter combination, the bound mini-
mum is always below the random guessing line, meaning the bound is non-trivial
for the bound-minimizing learning rule. To assess the dependence of the property
on n, we also reran the experiments for n = 100, and found that when β = 0.01,
this property still held, but when β = 0.1, it only held for the Hoeffding-based
bounds.

By way of comparison, the bound minimizers tend to be near the true min-
imizer of Eλ. When β = 0.1, the Hoeffding bound is at least as tight as the
Bernstein bound, and typically tighter. When β = 0.01, Eλ is small enough
that the Bernstein bound has a smaller minimum. This again conforms to our
expectations. Finally, we simply recall that the Hoeffding-based bound is com-
putable in practice, but the Bernstein-based bound is not, since it depends
on Eλ. A computable version of the Bernstein bound would necessarily be
larger.
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(c) p = 0.5, β = 0.1 (d) p = 0.5, β = 0.01
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(e) p = 0.8, β = 0.1 (f) p = 0.8, β = 0.01

Fig 2. Experimental comparison of Hoeffding- and Bernstein-based bounds for the data
described in Section 6. The horizontal axis is the value t corresponding to the classifier
ht = 1[−t,t], and the vertical axis is Eλ. Here p is the prior probability of class 1, and β

determines the variance of class 1. Smaller β means less overlap between classes.

7. Constraining FDR

In this section we apply Theorem 1 to analyze a rule that seeks to minimize
the FNDR subject to the constraint that FDR ≤ α, where α is a user-defined
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significance level. In fact, we first present a more general result, and then deduce
results for this and other constrained learning problems as corollaries. Special
cases of this bound have been presented previously in different settings [10, 29,
30], but the proof presented here is much simpler.

Thus, let H be a collection of classifiers as before, but not necessarily finite.
Let R0 and R1 be measures of Type I and Type II error. For example, these
may be FDR and FNDR, false positive rate and false negative rate, or some
combination thereof. Assume that for i = 0, 1, there exist a data-based estimate
R̂i of Ri, and a penalty φi(h, δ), which define a symmetric confidence interval
for Ri. That is, suppose that for any 0 < δ < 1,

PZn(sup
h∈H

[|Ri(h) − R̂i(h)| − φi(h, δ)] > 0) ≤ δ.

For 0 < α < 1 define

h∗
H,α = arg min

h∈H

R1(h)

s. t. R0(h) ≤ α.

Consider the learning rule

ĥH,α = arg min
h∈H

R̂1(h) + φ1(h, δ) (7)

s. t. R̂0(h) ≤ α+ φ0(h, δ).

Theorem 4. The learning rule defined in Eqn. (7) is such that, for any δ > 0
and any n ≥ 1, with probability at least 1 − 2δ with respect to the draw of the
training data,

R1(ĥH,α) ≤ R1(h
∗
H,α) + 2φ1(h

∗
H,α, δ)

and
R0(ĥH,α) ≤ α+ 2φ0(ĥH,α, δ)

for all 0 < α < 1 simultaneously.

The result holds regardless of the data-generating distribution. Note that the
bounds for the two errors are different in that one depends on a theoretical clas-
sifier, while the other involves an empirical classifier. Nonetheless, the bounds
are still quite powerful, and lead to strongly consistent learning procedures in
several different settings. For example, when applied to Neyman-Pearson clas-
sification [29] (see below) and learning minimum volume sets [30], strong con-

sistency has been demonstrated. In these settings, the classifiers h∗
H,α and ĥH,α

both belong to the same VC class, in which case φ0 takes the same value for
all h ∈ H, and likewise for φ1. Below we mention how the same general bound
gives rise to a strongly consistent rule for FDR/FNDR.

The reader may also note that from the bound, the Type I error may exceed
the desired constraint. In special cases, we have previously developed extensions
of this result that allow some or all of the slack in the Type I error bound to
be transferred to the Type II error bound [30,27]. Such analysis should also be
possible in the general setting presented here.
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Proof. Assume that both

|R0(h) − R̂0(h)| ≤ φ0(h, δ) for all h ∈ H (8)

and
|R1(h) − R̂1(h)| ≤ φ1(h, δ) for all h ∈ H, (9)

which, by assumption, occurs with probability at least 1−2δ. By (8), we deduce
the second half of the theorem from

R0(ĥH,α) ≤ R̂0(ĥH,α) + φ0(ĥH,α, δ) ≤ α+ 2φ0(ĥH,α, δ),

where the second inequality follows from R̂0(ĥH,α) ≤ α + φ0(ĥH,α, δ), which

follows from the definition of ĥH,α. To get the first half of the theorem, observe

that R̂0(h
∗
H,α) ≤ R0(h

∗
H,α) + φ0(h

∗
H,α, δ) ≤ α+ φ0(h

∗
H,α, δ). Therefore, h∗

H,α is

among the candidates in the minimization defining ĥH,α. Then

R1(ĥH,α) ≤ R̂1(ĥH,α) + φ1(ĥH,α, δ)

≤ R̂1(h
∗
H,α) + φ1(h

∗
H,α, δ)

≤ R1(h
∗
H,α) + 2φ1(h

∗
H,α, δ).

Theorem 4 can immediately be combined with Theorem 1 to give performance
guarantees for the case R0(h) = RD(h) and R1(h) = RND (h), for a countable
class H. In particular, define the rule

ĥH,α = arg min
h∈H

R̂ND (h) + φND(h, δ) (10)

s. t. R̂D (h) ≤ α+ φD(h, δ).

We have the following.

Corollary 3. Assume H is countable. For any δ > 0 and any n ≥ 1, with
probability at least 1 − 2δ with respect to the draw of the training data, the
learning rule in (10) satisfies

RND(ĥH,α) ≤ RND(h∗H,α) + 2φND(h∗H,α, δ)

and
RD(ĥH,α) ≤ α+ 2φD(ĥH,α, δ)

for all 0 < α < 1 simultaneously.

To extend such a result to a universally consistent estimator, based on the
discussion of Theorem 2, it would be necessary to take H growing with the
sample size n, and to exclude classifiers making too few discoveries or nondis-
coveries. The details are similar to those of Section 4, and a formal development
is omitted.
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7.1. Neyman-Pearson Classification

If we take R0 and R1 to be the false positive rate and false negative rate,
respectively, we may apply Theorem 4 to recover and generalize known results
for Neyman-Pearson classification [10, 29]. Specifically, set

RFP (h) := P(h(X) = 1 | Y = 0)

RFN (h) := P(h(X) = 0 | Y = 1).

There are several possible penalties that provide uniform bounds on the devia-
tion between these quantities and their natural empirical estimates,

R̂FP (h) :=

{
1

n0

∑n
i=1 1{Yi=0,h(Xi)=1}, n0 > 0,

0, n0 = 0,

R̂FN (h) :=

{
1

n1

∑n
i=1 1{Yi=1,h(Xi)=0}, n1 > 0,

0, n1 = 0,

where nj :=
∑n

i=1 1{Yi=j}. Examples of such penalties (e.g., VC and
Rademacher penalties) are given in [27]. As a concrete example, we state a
result here for the case of countable H. Thus define the penalties

φFP (h, δ) =

{ √
JhK ln 2+ln(2/δ)

2n0

, n0 > 0,

1, n0 = 0,

φFN (h, δ) =

{ √
JhK ln 2+ln(2/δ)

2n1

, n1 > 0,

1, n1 = 0.

Define the rule

ĥH,α = arg min
h∈H

R̂FN (h) + φFN (h, δ) (11)

s. t. R̂FP (h) ≤ α+ φFP (h, δ).

We have the following.

Corollary 4. Assume H is countable. For any δ > 0 and any n ≥ 1, with
probability at least 1 − 2δ with respect to the draw of the training data, the
learning rule in (11) satisfies

RFN (ĥH,α) ≤ RFN (h∗H,α) + 2φFN (h∗H,α, δ)

and
RFP (ĥH,α) ≤ α+ 2φFP (ĥH,α, δ)

for all 0 < α < 1 simultaneously.

We note that Theorem 4, applied in the context of Neyman-Pearson classifi-
cation, is a stronger result than those in [10, 29], which do not explicitly allow
penalties that depend on the classifier h.
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7.2. Precision and Recall

As a final application of Theorem 4, we analyze the precision and recall per-
formance measures, common in database information retrieval problems (see
Introduction). Precision and recall can both be defined in terms of quantities
already discussed. Denote the precision

QPR(h) := P(Y = 1 | h(X) = 1) := 1 − RD(h)

and the recall

QRE(h) := P(h(X) = 1 | Y = 1) = 1 − RFN (h),

and let Q̂PR(h) := 1− R̂D(h) and Q̂RE(h) := 1− R̂FN (h) be the empirical esti-
mates. In this setting the goal is to find the classifier with the largest precision,
while maintaining a recall of at least β, where β is a user-specified level. Thus
the optimal classifier in a given class H is

h∗H,β = arg max
h∈H

QPR(h)

s. t. QRE(h) ≥ β.

Define the rule

ĥH,β = arg max
h∈H

Q̂PR(h) − φD(h, δ) (12)

s. t. Q̂RE(h) ≥ β − φFN (h, δ).

We have the following.

Corollary 5. Assume H is countable. For any δ > 0 and any n ≥ 1, with
probability at least 1 − 2δ with respect to the draw of the training data, the
learning rule in (12) satisfies

QPR(ĥH,β) ≥ QPR(h∗
H,β) − 2φD(h∗

H,β , δ)

and
QRE(ĥH,β) ≥ β − 2φFN (ĥH,β , δ)

for all 0 < β < 1 simultaneously

Proof. To apply Theorem 4, note that maximizing QPR(h) is equivalent to min-
imizing RD(h), that the constraint QRE(h) ≥ β is equivalent to RFN (h) ≤
α := 1 − β, and similarly for the empirical objective and constraint. Further-
more, since |QPR(h) − Q̂PR(h)| = |RD(h) − R̂D(h)|, and |QRE(h) − Q̂RE(h)| =

|RFN (h) − R̂FN (h)|, we have that the assumptions of Theorem 4 are satisfied
with the stated penalties.
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8. Conclusion

This paper demonstrates that FDR and FNDR control is possible in the context
of statistical learning theory, where the distribution of (X, Y ) is unknown except
through training data. We develop empirical estimates of these quantities and
derive uniform deviation bounds which assess the closeness of these empirical
estimates to the true FDR and FNDR. Unlike most other performance measures
in statistical learning theory, which are related to binomial random variables,
the FDR and FNDR measures are related to ratios of binomial random vari-
ables, which requires the development of novel bounding techniques. A bound
based on Hoeffding’s inequality is shown to lead to a universally consistent rule,
while a bound based on Bernstein’s inequality is shown to lead to a fast rate of
convergence in the zero-error case. We also present a general result for learning
subject to a Type I error constraint, and apply this to FDR as well as other
criteria.

Extending our results to uncountable classes H is an interesting open
question, and may require the development of new techniques. The standard
proofs of common generalization error bounds for uncountable classes, such as
Rademacher and VC penalties, rely on the introduction of an artificial “ghost”
sample [15]. That technique would require every h ∈ H to have the same
empirical number of discoveries (or nondiscoveries) on both the original and
ghost samples, which is generally not the case. Recently El-Yaniv and Pechy-
ony [20] have extended the ghost sample technique to cases where the training
and ghost samples have different sizes (their results are stated in the context
of transductive learning), and some of their arguments may be useful in this
regard.

Another interesting open question is how to achieve rates of convergence
faster that n−1/2 beyond the zero-error case. Our simulations suggest that a
variance-based bound (in our case, Bernstein’s inequality) can lead to tighter
bounds in “low noise” settings, but formalizing this intuition will evidently entail
new techniques and conditions in addition to those currently used to derive fast
rates.

A third avenue for future work is to consider the transductive setting, where
the test points are available at the time of learning, and the goal is to predict
their labels.
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