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ABSTRACT

High dimensional prediction problems are pervasive in the scien-
tific community. In practice, dimensionality reduction (DR) is often
performed as an initial step to improve prediction accuracy and in-
terpretability. Principal component analysis (PCA) has been utilized
extensively for DR, but does not take advantage of outcome variables
inherent in the prediction task. Existing approaches for supervised
PCA (SPCA) either take a multi-stage approach or incorporate su-
pervision indirectly. We present a manifold optimization approach
to SPCA that simultaneously solves the prediction and dimensional-
ity reduction problems. The proposed framework is general enough
for both regression and classification settings. Our empirical results
show that the proposed approach explains nearly as much variation
as PCA while outperforming existing methods in prediction accu-
racy.

1. INTRODUCTION

Consider the problem of linear prediction of a set of q outcome vari-
ables y1, y2, . . . , yq from a set of p predictor variables x1, x2, . . . , xp
based on n observations, i.e., in terms of matrices, predicting
Y ∈ Rn×q from X ∈ Rn×p. In the interest of both interpretability
and prediction error, it is often desirable to perform dimension re-
duction (DR) to learn a low-dimensional representation of X . Such
a low-dimensional representation enhances prediction accuracy by
combating irrelevant directions and the curse of dimensionality
(1; 2). At the same time, DR aids interpretation of X by concisely
representing the structure in X . Perhaps the most widely used DR
technique is Principal Component Analysis (PCA), which finds di-
rections in X of maximal variation. PCA has become especially
popular in neuroscience and other fields where high dimensional
data abound, owing to ease of computation and geometric inter-
pretability (3; 4).

PCA is unsupervised in that it does not leverage the training
output Y . The goal of supervised PCA (SPCA) is to learn a low-
dimensional representation that explains much of the total variation
of X while also being predictive of Y . Such a low-dimensional rep-
resentation should naturally lead to improved prediction accuracy,
and could also offer increased interpretability by discovering com-
ponents that explain the output variables. In general, the two goals
of SPCA are in competition. Therefore, some notion of trading off
between these two goals is desirable for any SPCA approach.

Several approaches to SPCA have been proposed (5; 6; 7; 8).
These works often adopt a multi-stage approach, first performing
supervised dimensionality reduction before learning a predictor. Ex-
isting methods also lack a means of specifying the trade-off between
explaining variation in X and prediction on Y .

This work proposes a straightforward approach to SPCA that
jointly solves the dimensionality reduction and prediction problems.
We formulate SPCA as optimization of an objective function over
the Grassmann manifold; the proposed objective is a weighted sum
of the PCA objective and an empirical risk associated with the pre-
diction problem. This formulation is general enough to handle clas-
sification and regression problems by changing the loss. We evaluate
the proposed approach using squared error loss and find that it domi-
nates existing methods for SPCA in terms of both variation explained
and prediction accuracy. Omitted for brevity, we have also explored
using the logistic loss and found results to be similarly compelling.

2. BACKGROUND

PCA has been used extensively for dimensionality reduction (DR)
due to its effectiveness, ease of computation and interpretation.
However, PCA is unsupervised, and therefore DR via PCA may not
be optimal for classification or regression tasks. Existing approaches
for SPCA either take a multi-stage approach, lack a direct means
of specifying the trade-off between learning data structure and pre-
dictivity, or both. The method we propose governs this trade-off
directly through regularization, at the expense of adding a tuning
parameter. We begin by describing some classical supervised DR
methods that attempt to solve a similar problem to the one we have
described. We then describe some modern methods that attempt to
supervise PCA more directly.

Linear discriminant analysis (LDA) is arguably the canonical ex-
ample of supervised dimensionality reduction in the classification
setting. LDA finds a DR of X such that separability among classes
is maximized. Though it may seem that LDA is generally preferable
to PCA in this setting, this has been shown not always to be the case,
especially when the number of training samples is small (9). Another
shortcoming of LDA is that the number of projection dimensions is
limited to c− 1, where the number of classes in the dataset is c.

Perhaps the simplest approach to SPCA is principal component
regression (PCR), which simply performs ordinary least squares re-
gression on data that has been reduced by PCA.

Partial Least Squares (PLS) regression is an iterative procedure
that attempts to find directions in the input space that account for a
high amount of variation of the input data, but are also highly cor-
related with the dependent variables. In this sense, the goal of PLS
is very similar to the goal of supervised PCA. However, it should
be noted that well known PLS procedures do not provide a means
of trading off between the two competing objectives. Furthermore,
PLS tends to put preference on directions that account for high vari-
ation rather than high correlation, causing it to behave similarly to
PCR (10).

To our knowledge, the earliest of the modern SPCA approaches
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is due to (5). This approach, herein referred to as Bair’s method, is
a simple two stage procedure: 1) perform feature selection based
on univariate regression coefficients, and 2) perform PCA on the
data matrix consisting only of the selected features. From here the
learned principal components are used for prediction purposes. One
shortcoming of this method is that it only applies to regression prob-
lems with a single dependent variable. Another is that this method
takes a two stage approach to the prediction problem. Therefore,
it is not straightforward how the number of features selected or the
threshold for selecting them governs the trade-off between prediction
and variation explained. Recent work elaborates on Bair’s method
by iteratively performing a similar procedure, only taking the first
supervised principal component, subtracting the variation explained
by this principal component fromX , and repeating (8). This method
is referred to as Iterative Supervised Principal Component Analysis
(ISPCA).

Supervised probabilistic principal component analysis (7) (SP-
PCA) uses the probabilistic principal component analysis (PPCA)
framework to approach the SPCA problem. One substantial draw-
back of this approach is that it places the same amount of empha-
sis on the dependent and independent variables. Therefore SPPCA
does not offer a way to trade-off between prediction and variation
explained. It is also sensitive to the relative dimensions of x and y.

The method of (6), herein referred to as Barshan’s method,
approaches the supervised PCA problem by means of the Hilbert-
Schmidt Independence Criterion (HSIC), a measure of indepen-
dence in reproducing kernel Hilbert spaces (RKHSs). In a universal
RKHS, the HSIC of two random variables is zero if and only if
the random variables are independent. Barshan’s method attempts
to maximize an empirical measure of the HSIC. The connection
to PCA is drawn through the similarity of the empirical HSIC and
the trace maximization formulation of PCA. It can also be shown
that their approach reduces to PCA if there is no supervisory data
available. This approach again leads to a two stage approach for
the prediction problem. Due to the structure of the objective, there
is no way to trade-off between learning the structure in X and its
predictivity of Y .

3. SUPERVISED PCA AS MANIFOLD OPTIMIZATION

Our approach to SPCA is to solve an optimization problem whose
objective is a weighted sum of the PCA objective and an empirical
risk associated with the prediction problem. This makes the trade-off
between prediction and variation explained explicit, at the expense
of adding a tuning parameter. In particular, we propose to solve

minimize
L,β

n∑
i=1

`(yi, Lxi, β) + λ‖X −XLTL‖2F (1)

s.t. LLT = Ik,

where `(·) is a loss function in terms of the dependent variables and
the dimension-reduced data, n is the number of observations, k a
user specified dimension of the subspace to be learned, λ > 0 is
a trade-off parameter, and the remaining quantities are described in
Table 1. The constraint on LT in (1) is over the Stiefel manifold, i.e.,
the set of all matrices with orthonormal columns.

The key feature of the proposed approach is that the predictor,
parametrized by β, operates directly on the low-dimensional rep-
resentation Lxi. The variable L ties the two terms together and
enables simultaneous DR and prediction, with λ affecting a trade-
off between these two goals. We also remark that, unlike other ap-

proaches to high-dimensional prediction, there is no need to regular-
ize β because the predictor acts on a low-dimensional space.

In the following sections we explore applications of the pro-
posed general methodology to regression by taking `(·) to be the
squared error loss.

Table 1: Description of Key Variables

VARIABLE DESCRIPTION

X
n×p

Data matrix

Y
n×q

Dependent variables

L
k×p

Basis for the learned subspace

XL
n×k

T Dimension reduced form of X

β
k×q

Learned coefficients for prediction

3.1. Grassmannian Constraints for Linear Prediction

In the case of linear prediction, i.e., where the predicted output de-
pends on XLTβ, the value of the objective function (1) only de-
pends on the subspace spanned by the rows of L. To see this, imag-
ine applying the same rotation to L and β. In this problem setting it
is natural to consider the Grassmann manifold instead of the Stiefel
manifold. The Grassmannian G(p, k) is the set of k dimensional
subspaces in Rp. In general many of the necessary operations for
manifold optimization can be more easily performed on the Grass-
mannian, e.g., projection to the tangent space and geodesic step. For
this reason we solve optimization problems presented in subsequent
sections over the Grassmannian. It should be noted that even though
points on the Grassmannian are subspaces, numerical algorithms re-
quire a representation of the subspace to be stored. Here, and in
general, these representations are taken to be matrices with orthogo-
nal columns or rows that span the subspace.

4. SUPERVISED PCA FOR LINEAR REGRESSION

In this section we consider the case where `(yi, Lxi, β) = ‖yi −
βTLxi‖22 is the squared error loss. The resulting optimization prob-
lem, which we call least squares PCA (LSPCA), is as follows:

minimize
L,β

‖Y −XLTβ‖2F + λ‖X −XLTL‖2F (2)

s.t. LLT = Ik.

Note the problem is not convex inL, andL is constrained to the non-
convex Stiefel manifold which, as noted previously, can be relaxed
to a Grassmannian constraint. However, for any fixed L the optimal
β is just the solution to the ordinary least squares problem,

β̂ = (XLT )+Y, (3)

where (·)+ denotes the Moore-Penrose pseudoinverse.
This immediately suggests substituting β̂ in (3) to simplify (2)

to an optimization problem with a single variable:

minimize
L

‖Y −XLT (XLT )+Y ‖2F + λ‖X −XLTL‖2F (4)

s.t. LLT = Ik.
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Gradient-based optimization methods on the Grassmannian are well
studied in the literature (11; 12). A gradient step on the Grassman-
nian for a given objective function can be calculated directly from its
Euclidean gradient, or Frechét derivative, via a projection onto the
tangent space at the current point.

4.1. A Gradient Algorithm for LSPCA

Elimination of β in (2) gives rise to difficulties in calculating the
Frechét derivative of the objective function. We can be assured the
derivative exists under the assumption that XLT has locally con-
stant rank over L, i.e., rank(XL̃T ) = rank(XLT ) for all L̃ ∈ Ω ⊂
Rk×p for some open set Ω containing L (13). We assume that the
descent step of (2) does not decrease the rank of XLT . Therefore, if
we seed the proposed algorithm with L0 such that rank(XL0) = k,
every iterate XT

Li
will have rank k as well. If we take the rows of

L0 to be the first k principal components of X , and rank(X) ≥ k,
clearly the preceding condition is satisfied. This implies the LSPCA
objective is differentiable at every iterate of a gradient descent type
algorithm (assuming proper stepsize), if the algorithm is seeded us-
ing the first k principal components of X . The derivative of the
LSPCA objective function is therefore

∂f

∂L
= −2(XLT )+Y Y TP⊥XLTX − 2λLXTX, (5)

where P⊥XLT is the projection matrix onto the orthogonal compli-
ment of the span of XLT .

The key notion for applying gradient based optimization meth-
ods to manifold optimization is that of the retraction. At any itera-
tion, the gradient step we wish to take lies in the tangent space of
the manifold. However, since the Grassmannian is not linear, the
gradient step does not reside on the manifold. To account for this,
a retraction is used to take a step in the direction of the negative
gradient so that the resulting point lies on the manifold. If a closed
form expression is available for moving between two points on the
manifold while remaining on the manifold, it is possible to take the
update step directly. This is called a geodesic step. For the Grass-
mannian, an expression for the geodesic step is given in Eqn. 2.65 of
(11), which we utilize in line 7 of Algorithm 1.

A conjugate gradient method on the Grassmannian is described
by (11). We choose to implement the gradient descent algorithm
described in (12), in which step size is chosen by Armijo style back-
tracking. Gradient descent over compact Riemannian manifolds
with Armijo style backtracking converges to first order stationary
points asymptotically, provided the objective is differentiable (14).
Algorithm 1 satisfies these conditions. However, additional proper-
ties must be verified to guarantee convergence within a finite number
of iterations (12). Note that the convergence criteria of Algorithm 1
is ‖ grad(Lt)‖F < ε. Here grad f(L) is the Riemannian Gradient.

The method is shown in Algorithm 1, and has computational
complexityO(kn(p+q)+kn2 +k2n+k3) at each iteration. Since
k is often taken to be relatively small in DR problems, e.g., k ∈
{2, 3} for data visualization, the cubic complexity in k is not a major
concern. Each iteration can be summarized as follows:

1. Calculate the Euclidean gradient at the current iterate L.

2. Project the negative Euclidean gradient onto the tangent space
of the Grassmannian at the current iterate, to obtain the Rie-
mannian Gradient.

3. Take the singular value decomposition (SVD) of the resulting
p× k matrix.

4. Update L by taking a geodesic step along the Grassmannian,
with stepsize chosen according to Armijo line search.

Algorithm 1 Gradient Descent for LSPCA
1) Column center X and Y
2) Choose the reduction dimension k, and regularization parameter
λ
3) Generate an initialization, L0 via PCA

1: procedure LSPCA(X,Y, L0, λ, k)
2: t = 0
3: while ‖ grad(Lt)‖F < ε do
4: Calculate∇t = ∂f

∂L
|L=Lt via equation (5)

5: grad(Lt)
T = (Ip − LTt Lt)∇Tt

6: Ut,Σt, Vt = SVD(− grad(Lt)
T )

7: LTt+1 = LTt Vt cos(ηtΣt)V
T
t + Ut sin(ηtΣt)V

T
t .

Where ηt is a step size chosen by Armijo backtracking line-
search.

8: t← t+ 1
9: end while

10: Z = XLTt . Generate the reduced data.
11: return Z,Lt
12: end procedure

4.2. Selecting λ

In most settings where a parameter must be tuned by cross valida-
tion, there is a clear metric by which each value of the parameter can
be judged, i.e., squared error or classification accuracy on a holdout
dataset. In the case of LSPCA, this is not the case since the objec-
tives have two competing terms. We propose the following conven-
tion for selecting lambda in the regression case:

λ̂ = argmin
λ

∑n
i=1 `(yi, Lλxi, βλ)

‖Y ‖2F
+
‖X −XLTλLλ‖2F

‖X‖2F
,

where Lλ, βλ are the optimal L, β obtained from solving (1) with a
parameter of λ. The idea is that when the two terms in the objective
are normalized, they will be of similar scale. The λ which gives the
lowest value of the normalized sum should perform approximately
best on both terms of the objective.

5. EXPERIMENTAL RESULTS

We compare performance on three real-world regression datasets.
For each experiment a random 80/20 train/test split is used. For
methods that require parameter tuning, 20% of the training data is
held out for parameter tuning via grid search.

In order to evaluate LSPCA we compare performance on com-
mon datasets, specifically those used by competing methods in pre-
vious work. To compare methods in the prediction task we use
squared error for regression problems. To compare how effectively
each method has learned underlying structure of the data X , we use
proportion of variation explained which is frequently used to eval-
uate the quality of dimensionality reduction by unsupervised PCA.
We calculate proportion of variation explained as

varex =
‖XLT ‖2F
‖X‖2F

(6)
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Fig. 1: Mean squared error and variation explained vs. reduced dimension for each method on various datasets. (a) Parkinsons (b) Music (c)
Residential

5.1. Regression Experiments

We compare performance on three real-world regression datasets,
the Music dataset1 (n = 1059, p = 118) of (15), the Residential
dataset1 (n = 372, p = 105) of (16), and the Parkinsons telemoni-
toring dataset1 (n = 5875, p = 20) of (17).

Figure 1 shows average performance of each method over 10
independent runs (each with random test/train splits) on each dataset.
It is readily seen that LSPCA outperforms or is competitive with
all competing methods on each dataset. In each case, the variation
explained by LSPCA approaches that of PCA.

6. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new approach to SPCA, in both the classi-
fication and regression settings. Our experimental results show that
the new methods outperform existing approaches in many cases in
terms of prediction error, variation explained, or both. The frame-
work we have proposed provides many avenues for future work in-
cluding other losses and nonlinear predictors. We also note that our
method naturally extends to the semi-supervised setting, where un-
labeled data may be used in the PCA term of our objective function.
Finally, when q is large, it may be of interest to simultaneously learn
low-dimensional representations of both X and Y .
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