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Abstract—Decision trees are among the most popular types of
classifiers, with interpretability and ease of implementation being
among their chief attributes. Despite the widespread use of decision
trees, theoretical analysis of their performance has only begun to
emerge in recent years. In this paper, it is shown that a new family
of decision trees, dyadic decision trees (DDTs), attain nearly op-
timal (in a minimax sense) rates of convergence for a broad range of
classification problems. Furthermore, DDTs are surprisingly adap-
tive in three important respects: they automatically 1) adapt to
favorable conditions near the Bayes decision boundary; 2) focus
on data distributed on lower dimensional manifolds; and 3) reject
irrelevant features. DDTs are constructed by penalized empirical
risk minimization using a new data-dependent penalty and may
be computed exactly with computational complexity that is nearly
linear in the training sample size. DDTs comprise the first classi-
fiers known to achieve nearly optimal rates for the diverse class
of distributions studied here while also being practical and imple-
mentable. This is also the first study (of which we are aware) to
consider rates for adaptation to intrinsic data dimension and rele-
vant features.

Index Terms—Complexity regularization, decision trees, feature
rejection, generalization error bounds, manifold learning, min-
imax optimality, pruning, rates of convergence, recursive dyadic
partitions, statistical learning theory.

I. INTRODUCTION

DECISION trees are among the most popular and widely
applied approaches to classification. The hierarchical

structure of decision trees makes them easy to interpret and
implement. Fast algorithms for growing and pruning decision
trees have been the subject of considerable study. Theoretical
properties of decision trees including consistency and risk
bounds have also been investigated. This paper investigates
rates of convergence (to Bayes error) for decision trees, an issue
that previously has been largely unexplored.

It is shown that a new class of decision trees called dyadic de-
cision trees (DDTs) exhibit near-minimax optimal rates of con-
vergence for a broad range of classification problems. In partic-
ular, DDTs are adaptive in several important respects.
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Noise Adaptivity DDTs are capable of automatically
adapting to the (unknown) noise level in the neighbor-
hood of the Bayes decision boundary. The noise level
is captured by a condition similar to Tsybakov’s noise
condition [1].

Manifold Focus When the distribution of features happens
to have support on a lower dimensional manifold, DDTs
can automatically detect and adapt their structure to the
manifold. Thus, decision trees learn the “intrinsic” data
dimension.

Feature Rejection If certain features are irrelevant (i.e., in-
dependent of the class label), then DDTs can automati-
cally ignore these features. Thus, decision trees learn the
“relevant" data dimension.

Decision Boundary Adaptivity If the Bayes decision
boundary has derivatives, , DDTs can
adapt to achieve faster rates for smoother boundaries. We
consider only trees with axis-orthogonal splits. For more
general trees, such as perceptron trees, adapting to
should be possible, although retaining implementability
may be challenging.

Each of the preceding properties can be formalized and trans-
lated into a class of distributions with known minimax rate of
convergence. Adaptivity is a highly desirable quality since in
practice the precise characteristics of the distribution are un-
known.

Dyadic decision trees are constructed by minimizing a com-
plexity penalized empirical risk over an appropriate family of
dyadic partitions. The penalty is data dependent and comes from
a new error deviance bound for trees. This new bound is tai-
lored specifically to DDTs and therefore involves substantially
smaller constants than bounds derived in more general settings.
The bound in turn leads to an oracle inequality from which rates
of convergence are derived.

A key feature of our penalty is spatial adaptivity. Penalties
based on standard complexity regularization (as represented by
[2]–[4]) are proportional to the square root of the size of the
tree (number of leaf nodes) and apparently fail to provide op-
timal rates [5]. In contrast, spatially adaptive penalties depend
not only on the size of the tree, but also on the spatial distribu-
tion of training samples as well as the “shape” of the tree (e.g.,
deeper nodes incur a smaller penalty).

Our analysis involves bounding and balancing estimation and
approximation errors. To bound the estimation error, we apply
well-known concentration inequalities for sums of Bernoulli
trials, most notably the relative Chernoff bound, in a spatially
distributed and localized way. Moreover, these bounds hold for
all sample sizes and are given in terms of explicit, small con-
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stants. Bounding the approximation error is handled by the re-
striction to dyadic splits, which allows us to take advantage of
recent insights from multiresolution analysis and nonlinear ap-
proximation [6]–[8]. The dyadic structure also leads to compu-
tationally tractable classifiers based on algorithms akin to fast
wavelet and multiresolution transforms [9]. The computational
complexity of DDTs is nearly linear in the training sample size.
Optimal rates may be achieved by more general tree classifiers,
but these require searches over prohibitively large families of
partitions. DDTs are thus preferred because they are simulta-
neously implementable, analyzable, and sufficiently flexible to
achieve optimal rates.

The paper is organized as follows. The remainder of the In-
troduction sets notation and surveys related work. Section II de-
fines dyadic decision trees. Section III presents risk bounds and
an oracle inequality for DDTs. Section IV reviews the work of
Mammen and Tsybakov [10] and Tsybakov [1] and defines reg-
ularity assumptions that help us quantify the four conditions out-
lined above. Section V presents theorems demonstrating the op-
timality (and adaptivity) of DDTs under these four conditions.
Section VI discusses algorithmic and practical issues related to
DDTs. Section VII offers conclusions and discusses directions
for future research. The proofs are gathered in Section VIII.

A. Notation

Let be a random variable taking values in a set , and
let be independent and identically
distributed (i.i.d.) realizations of . Let be the probability
measure for , and let be the empirical estimate of based
on

where denotes the indicator function. Let denote the -fold
product measure on induced by . Let and denote
expectation with respect to and , respectively.

In classification, we take , where is the col-
lection of feature vectors and is a fi-
nite set of class labels. Let and denote the marginal
with respect to and the conditional distribution of given

, respectively. In this paper, we focus on binary classification
, although the results of Section III can be easily ex-

tended to the multiclass case.
A classifier is a measurable function . Let

be the set of all classifiers. Each
induces a set . Define the proba-
bility of error and empirical error (risk) of by
and , respectively. The Bayes classifier is
the classifier achieving minimum probability of error and is
given by

When , the Bayes classifier may be written

where is the a posteriori probability
that the correct label is . The Bayes risk is and denoted

. The excess risk of is the difference . A discrim-
ination rule is a measurable function .

The symbol will be used to denote the length of a binary
encoding of its argument. Additional notation is given at the
beginning of Section IV.

B. Rates of Convergence in Classification

In this paper, we study the rate at which the expected ex-
cess risk goes to zero as for
based on dyadic decision trees. Marron [11] demonstrates min-
imax optimal rates under smoothness assumptions on the class-
conditional densities. Yang [12] shows that for in certain
smoothness classes, minimax optimal rates are achieved by ap-
propriate plug-in rules. Both [11] and [12] place global con-
straints on the distribution, and in both cases optimal classifi-
cation reduces to optimal density estimation. However, global
smoothness assumptions can be overly restrictive for classifi-
cation since high irregularity away from the Bayes decision
boundary may have no effect on the difficulty of the problem.

Tsybakov and collaborators replace global constraints on
the distribution by restrictions on near the Bayes decision
boundary. Faster minimax rates are then possible, although
existing optimal discrimination rules typically rely on -nets
for their construction and in general are not implementable
[10], [1], [13]. Tsybakov and van de Geer [14] offer a more
constructive approach using wavelets (essentially an explicit
-net) but their discrimination rule is apparently still intractable

and assumes the Bayes decision boundary is a boundary frag-
ment (see Section IV). Other authors derive rates for existing
practical discrimination rules, but these works are not compa-
rable to ours, since different distributional assumptions or loss
functions are considered [15]–[19].

Our contribution is to demonstrate a discrimination rule that
is not only practical and implementable, but also one that adap-
tively achieves nearly minimax optimal rates for some of Tsy-
bakov’s and related classes. We further investigate issues of
adapting to data dimension and rejecting irrelevant features, pro-
viding optimal rates in these settings as well. In an earlier paper,
we studied rates for DDTs and demonstrated the (nonadaptive)
near-minimax optimality of DDTs in a very special case of the
general classes considered herein [20]. We also simplify and im-
prove the bounding techniques used in that work. A more de-
tailed review of rates of convergence is given in Section IV.

C. Decision Trees

In this subsection, we review decision trees, focusing on
learning-theoretic developments. For a multidisciplinary survey
of decision trees from a more experimental and heuristic view-
point, see [21].

A decision tree, also known as a classification tree, is a classi-
fier defined by a (usually binary) tree where each internal node
is assigned a predicate (a “yes” or “no” question that can be
asked of the data) and every terminal (or leaf) node is assigned
a class label. Decision trees emerged over 20 years ago and
flourished thanks in large part to the seminal works of Breiman,
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Friedman, Olshen, and Stone [22] and Quinlan [23]. They have
been widely used in practical applications owing to their inter-
pretability and ease of use. Unlike many other techniques, de-
cision trees are also easily constructed to handle discrete and
categorical data, multiple classes, and missing values.

Decision tree construction is typically accomplished in two
stages: growing and pruning. The growing stage consists of the
recursive application of a greedy scheme for selecting predi-
cates (or “splits”) at internal nodes. This procedure continues
until all training data are perfectly classified. A common ap-
proach to greedy split selection is to choose the split maximizing
the decrease in “impurity” at the present node, where impu-
rity is measured by a concave function such as entropy or the
Gini index. Kearns and Mansour [24] demonstrate that greedy
growing using impurity functions implicitly performs boosting.
Unfortunately, as noted in [25, Ch. 20], split selection using im-
purity functions cannot lead to consistent discrimination rules.
For consistent growing schemes, see [26], [25].

In the pruning stage, the output of the growing stage is
“pruned back” to avoid overfitting. A variety of pruning strate-
gies have been proposed (see [27]). At least two groups of
pruning methods have been the subject of recent theoretical
studies. The first group involves a local, bottom-up algorithm,
while the second involves minimizing a global penalization cri-
terion. A representative of the former group is pessimistic error
pruning employed by C4.5 [23]. In pessimistic pruning, a single
pass is made through the tree beginning with the leaf nodes and
working up. At each internal node, an optimal subtree is chosen
to be either the node itself or the tree formed by merging the
optimal subtrees of each child node. That decision is made
by appealing to a heuristic estimate of the error probabilities
induced by the two candidates. Both [28] and [29] modify
pessimistic pruning to incorporate theoretically motivated local
decision criteria, with the latter work proving risk bounds
relating the pruned tree’s performance to the performance of
the best possible pruned tree.

The second kind of pruning criterion to have undergone the-
oretical scrutiny is especially relevant for the present work. It
involves penalized empirical risk minimization (ERM) whereby
the pruned tree is the solution of

where is the initial tree (from stage one) and is
a penalty that in some sense measures the complexity of .
The best known example is the cost-complexity pruning (CCP)
strategy of [22]. In CCP, where is a con-
stant and is the number of leaf nodes, or size, of . Such a
penalty is advantageous because can be computed rapidly via
a simple dynamic program. Despite its widespread use, theoret-
ical justification outside the case has been scarce. Only
under a highly specialized “identifiability” assumption (similar
to the Tsybakov noise condition in Section IV with ) have
risk bounds been demonstrated for CCP [30].

Indeed, a penalty that scales linearly with tree size appears to
be inappropriate under more general conditions. Mansour and
McAllester [31] demonstrate error bounds for a “square root”
penalty of the form . Nobel [32] considers

a similar penalty and proves consistency of under certain
assumptions on the initial tree produced by the growing stage.
Scott and Nowak [5] also derive a square root penalty by ap-
plying structural risk minimization to DDTs.

Recently, a few researchers have called into question the va-
lidity of basing penalties only on the size of the tree. Berkman
and Sandholm [33] argue that any preference for a certain kind
of tree implicitly makes prior assumptions on the data. For
certain distributions, therefore, larger trees can be better than
smaller ones with the same training error. Golea et al. [34]
derive bounds in terms of the effective size, a quantity that can
be substantially smaller than the true size when the training
sample is nonuniformly distributed across the leaves of the
tree. Mansour and McAllester [31] introduce a penalty that
can be significantly smaller than the square root penalty for
unbalanced trees. In papers antecedent to the present work, we
show that the penalty of Mansour and McAllester can achieve
an optimal rate of convergence (in a special case of the class of
distributions studied here), while the square root penalty leads
to suboptimal rates [5], [20].

The present work examines DDTs (defined in the next sec-
tion). Our learning strategy involves penalized ERM, but there
are no separate growing and pruning stages; split selection and
complexity penalization are performed jointly. This promotes
the learning of trees with ancillary splits, i.e., splits that do not
separate the data but are the necessary ancestors of deeper splits
that do. Such splits are missed by greedy growing schemes,
which partially explains why DDTs outperform traditional tree
classifiers [35] even though DDTs use a restricted set of splits.

We employ a spatially adaptive, data-dependent penalty.
Like the penalty of [31], our penalty depends on more than just
tree size and tends to favor unbalanced trees. In view of [33],
our penalty reflects a prior disposition toward Bayes decision
boundaries that are well approximated by unbalanced recursive
dyadic partitions.

D. Dyadic Thinking in Statistical Learning

Recursive dyadic partitions (RDPs) play a pivotal role in the
present study. Consequently, there are strong connections be-
tween DDTs and wavelet and multiresolution methods, which
also employ RDPs. For example, Donoho [36] establishes close
connections between certain wavelet-based estimators and Clas-
sification and Regression Tree (CART)-like analyses. In this
subsection, we briefly comment on the similarities and differ-
ences between wavelet methods in statistics and DDTs.

Wavelets have had a tremendous impact on the theory of non-
parametric function estimation in recent years. Prior to wavelets,
nonparametric methods in statistics were primarily used only
by experts because of the complicated nature of their theory
and application. Today, however, wavelet thresholding methods
for signal denoising are in widespread use because of their ease
of implementation, applicability, and broad theoretical founda-
tions. The seminal papers of [37]–[39] initiated a flurry of re-
search on wavelets in statistics, and [9] provides a wonderful
account of wavelets in signal processing.

Their elegance and popularity aside, wavelet bases can be
said to consist of essentially two key elements: a nested hi-
erarchy of recursive, dyadic partitions; and an exact, efficient
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representation of smoothness. The first element allows one to
localize isolated singularities in a concise manner. This is ac-
complished by repeatedly subdividing intervals or regions to
increase resolution in the vicinity of singularities. The second
element then allows remaining smoothness to be concisely rep-
resented by polynomial approximations. For example, these two
elements are combined in the work of [40], [41] to develop a
multiscale likelihood analysis that provides a unified framework
for wavelet-like modeling, analysis, and regression with data of
continuous, count, and categorical types. In the context of clas-
sification, the target function to be learned is the Bayes decision
rule, a piecewise-constant function in which the Bayes decision
boundary can be viewed as an “isolated singularity” separating
totally smooth (constant) behavior.

Wavelet methods have been most successful in regression
problems, especially for denoising signals and images. The or-
thogonality of wavelets plays a key role in this setting, since
it leads to a simple independent sequence model in conjunc-
tion with Gaussian white noise removal. In classification prob-
lems, however, one usually makes few or no assumptions re-
garding the underlying data distribution. Consequently, the or-
thogonality of wavelets does not lead to a simple statistical rep-
resentation, and therefore wavelets themselves are less natural
in classification.

The dyadic partitions underlying wavelets are nonetheless
tremendously useful since they can efficiently approximate
piecewise-constant functions. Johnstone [42] wisely anticipated
the potential of dyadic partitions in other learning problems:
“We may expect to see more use of ‘dyadic thinking’ in areas
of statistics and data analysis that have little to do directly with
wavelets.” Our work reported here is a good example of his
prediction (see also the recent work of [30], [40], [41]).

II. DYADIC DECISION TREES

In this and subsequent sections we assume . We
also replace the generic notation for classifiers with for
decision trees. A dyadic decision tree (DDT) is a decision tree
that divides the input space by means of axis-orthogonal dyadic
splits. More precisely, a dyadic decision tree is specified by
assigning an integer to each internal node
of (corresponding to the coordinate that is split at that node),
and a binary label or to each leaf node.

The nodes of DDTs correspond to hyperrectangles (cells) in
(see Fig. 1). Given a hyperrectangle ,

let and denote the hyperrectangles formed by splitting
at its midpoint along coordinate . Specifically, define

and

Each node of a DDT is associated with a cell according to the
following rules: 1) The root node is associated with ; 2) If

is an internal node associated to the cell , then the children
of are associated to and .

Let denote the partition induced by
. Let denote the depth of and note that

where is the Lebesgue measure on . Define to be the

Fig. 1. A dyadic decision tree (right) with the associated recursive dyadic
partition (left) when d = 2. Each internal node of the tree is labeled with an
integer from 1 to d indicating the coordinate being split at that node. The leaf
nodes are decorated with class labels.

collection of all DDTs and to be the collection of all cells
corresponding to nodes of trees in .

Let be a dyadic integer, that is, for some non-
negative integer . Define to be the collection of all DDTs
such that no terminal cell has a side length smaller than .
In other words, no coordinate is split more than times when
traversing a path from the root to a leaf. We will consider the
discrimination rule

(1)

where is a “penalty” or regularization term specified later
in (9). Computational and experimental aspects of this rule are
discussed in Section VI.

A. Cyclic DDTs

In earlier work, we considered a special class of DDTs called
cyclic DDTs [5], [20]. In a cyclic DDT, when is the
root node, and for every parent–child
pair . In other words, cyclic DDTs may be grown by cy-
cling through the coordinates and splitting cells at the midpoint.
Given the forced nature of the splits, cyclic DDTs will not be
competitive with more general DDTs, especially when many ir-
relevant features are present. That said, cyclic DDTs still lead to
optimal rates of convergence for the first two conditions outlined
in the Introduction. Furthermore, penalized ERM with cyclic
DDTs is much simpler computationally (see Section VI-A).

III. RISK BOUNDS FOR TREES

In this section, we introduce error deviance bounds and an
oracle inequality for DDTs. The bounding techniques are quite
general and can be extended to larger (even uncountable) fami-
lies of trees (using VC [25] theory, for example) but for the sake
of simplicity and smaller constants we confine the discussion to
DDTs. These risk bounds can also be easily extended to the case
of multiple classes, but here we assume .

A. A Square-Root Penalty

We begin by recalling the derivation of a square-root penalty
which, although leading to suboptimal rates, helps motivate our
spatially adaptive penalty. The following discussion follows



SCOTT AND NOWAK: MINIMAX-OPTIMAL CLASSIFICATION WITH DYADIC DECISION TREES 1339

[31] but traces back to [3]. Let be a countable collection of
trees and assign numbers to each such that

In light of the Kraft inequality for prefix codes1 [43], may
be defined as the code length of a codeword for in a prefix
code for . Assume the code lengths are assigned in such a
way that , where is the complementary classifier,

.

Proposition 1: Let . With probability at least
over the training sample

for all

(2)

Proof: By the additive Chernoff bound (see Lemma 4), for
any and , we have

Set . By the union bound

The reverse inequality follows from

and from .

We call the term on the right-hand side of (2) the square-root
penalty. Similar bounds (with larger constants) may be derived
using VC theory and structural risk minimization (see, for ex-
ample, [32], [5]).

Code lengths for DDTs may be assigned as follows. Let
denote the number of leaf nodes in . Suppose . Then

bits are needed to encode the structure of , and an
additional bits are needed to encode the class labels of the
leaves. Finally, we need bits to encode the orientation of
the splits at each internal node for a total of

bits. In summary, it is possible to construct a prefix
code for with . Thus, the square-root
penalty is proportional to the square root of tree size.

B. A Spatially Adaptive Penalty

The square-root penalty appears to suffer from slack in the
union bound. Every node/cell can be a component of many dif-
ferent trees, but the bounding strategy in Proposition 1 does not

1A prefix code is a collection of codewords (strings of 0’s and 1’s) such that
no codeword is a prefix of another.

take advantage of that redundancy. One possible way around this
is to decompose the error deviance as

(3)

where

and

Since Binomial , we may still apply
standard concentration inequalities for sums of Bernoulli trials.
This insight was taken from [31], although we employ a dif-
ferent strategy for bounding the “local deviance”

.
It turns out that applying the additive Chernoff bound to each

term in (3) does not yield optimal rates of convergence. Instead,
we employ the relative Chernoff bound (see Lemma 4) which
implies that for any fixed cell , with probability at least

, we have

where . See the proof of Theorem 1 for details.
To obtain a bound of this form that holds uniformly for all

, we introduce a prefix code for . Suppose
corresponds to a node at depth . Then bits can en-
code the depth of and bits are needed to encode the direc-
tion (whether to branch “left” or “right”) of the splits at each
ancestor of . Finally, an additional bits are needed to en-
code the orientation of the splits at each ancestor of , for a total
of bits. In summary, it is possible to
define a prefix code for with . With
these definitions, it follows that

(4)

Introduce the penalty

(5)

This penalty is spatially adaptive in the sense that different
leaves are penalized differently depending on their depth, since

and is smaller for deeper nodes. Thus, the
penalty depends on the shape as well as the size of the tree. We
have the following result.

Theorem 1: With probability at least

(6)

The proof may be found in Section VIII-A
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Fig. 2. An unbalanced tree/partition (right) can approximate a decision boundary much better than a balanced tree/partition (left) with the same number of leaf
nodes. The suboptimal square-root penalty penalizes these two trees equally, while the spatially adaptive penalty favors the unbalanced tree.

The relative Chernoff bound allows for the introduction of
local probabilities to offset the additional cost of encoding a
decision tree incurred by encoding each of its leaves individ-
ually. To see the implications of this, suppose the density of

is essentially bounded by . If has depth , then
. Thus, while increases at a linear

rate as a function of decays at an exponential rate.
From this discussion it follows that deep nodes contribute

less to the spatially adaptive penalty than shallow nodes, and
moreover, the penalty favors unbalanced trees. Intuitively, if
two trees have the same size and empirical risk, minimizing the
penalized empirical risk with the spatially adaptive penalty will
select the tree that is more unbalanced, whereas a traditional
penalty based only on tree size would not distinguish the two
trees. This has advantages for classification because we expect
unbalanced trees to approximate a (or lower) dimensional
decision boundary well (see Fig. 2).

Note that achieving spatial adaptivity in the classification set-
ting is somewhat more complicated than in the case of regres-
sion. In regression, one normally considers a squared-error loss
function. This leads naturally to a penalty that is proportional
to the complexity of the model (e.g., squared estimation error
grows linearly with degrees of freedom in a linear model). For
regression trees, this results in a penalty proportional to tree
size [44], [30], [40]. When the models under consideration con-
sist of spatially localized components, as in the case of wavelet
methods, then both the squared error and the complexity penalty
can often be expressed as a sum of terms, each pertaining to a lo-
calized component of the overall model. Such models can be lo-
cally adapted to optimize the tradeoff between bias and variance.

In classification, a loss is used. Traditional estimation
error bounds in this case give rise to penalties proportional to
the square root of model size, as seen in the square-root penalty
above. While the (true and empirical) risk functions in classifi-
cation may be expressed as a sum over local components, it is
no longer possible to easily separate the corresponding penalty
terms since the total penalty is the square root of the sum of
(what can be interpreted as) local penalties. Thus, the traditional
error bounding methods lead to spatially nonseparable penalties
that inhibit spatial adaptivity. On the other hand, by first spatially
decomposing the (true minus empirical) risk and then applying
individual bounds to each term, we arrive at a spatially decom-

posed penalty that engenders spatial adaptivity in the classifier.
An alternate approach to designing spatially adaptive classifiers,
proposed in [14], is based on approximating the Bayes decision
boundary (assumed to be a boundary fragment; see Section IV)
with a wavelet series.

Remark 1: The decomposition in (3) is reminiscent of the
chaining technique in empirical process theory (see [45]). In
short, the chaining technique gives tail bounds for empirical pro-
cesses by bounding the tail event using a “chain” of increasingly
refined -nets. The bound for each -net in the chain is given
in terms of its entropy number, and integrating over the chain
gives rise to the so-call entropy integral bound. In our analysis,
the cells at a certain depth may be thought of as comprising an
-net, with the prefix code playing a role analogous to entropy.

Since our analysis is specific to DDTs, the details differ, but the
two approaches operate on similar principles.

Remark 2: In addition to different techniques for bounding
the local error deviance, the bound of [31] differs from ours in
another respect. Instead of distributing the error deviance over
the leaves of , one distributes the error deviance over some
pruned subtree of called a root fragment. The root fragment
is then optimized to yield the smallest bound. Our bound is a
special case of this setup where the root fragment is the entire
tree. It would be trivial to extend our bound to include root frag-
ments, and this may indeed provide improved performance in
practice. The resulting computational task would increase but
still remain feasible. We have elected to not introduce root frag-
ments because the penalty and associated algorithm are simpler
and to emphasize that general root fragments are not necessary
for our analysis.

C. A Computable Spatially Adaptive Penalty

The penalty introduced above has one major flaw: it is not
computable, since the probabilities depend on the unknown
distribution. Fortunately, it is possible to bound (with high
probability) in terms of its empirical counterpart, and vice versa.

Recall and set
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For define

and

Lemma 1: Let . With probability at least

for all (7)

and with probability at least ,

for all (8)

We may now define a computable, data-dependent, spatially
adaptive penalty by

(9)

Combining Theorem 1 and Lemma 1 produces the following.

Theorem 2: Let . With probability at least

for all (10)

Henceforth, this is the penalty we use to perform penalized
ERM over .

Remark 3: From this point on, for concreteness and sim-
plicity, we take and omit the dependence of and

on . Any choice of such that and
would suffice.

D. An Oracle Inequality

Theorem 2 can be converted (using standard techniques) into
an oracle inequality that plays a key role in deriving adaptive
rates of convergence for DDTs.

Theorem 3: Let be as in (1) with as in (9). Define

With probability at least over the training sample

(11)

As a consequence

(12)

The proof is given in Section VIII-C. Note that these inequal-
ities involve the uncomputable penalty . A similar theorem

with replacing is also true, but the above formulation is
more convenient for rate of convergence studies.

The expression is the approximation error of ,
while may be viewed as a bound on the estimation error

. These oracle inequalities say that finds a
nearly optimal balance between these two quantities. For further
discussion of oracle inequalities, see [46], [47].

IV. RATES OF CONVERGENCE UNDER COMPLEXITY AND

NOISE ASSUMPTIONS

We study rates of convergence for classes of distributions in-
spired by the work of Mammen and Tsybakov [10] and Tsy-
bakov [1]. Those authors examine classes that are indexed by a
complexity exponent that reflects the smoothness of the
Bayes decision boundary, and a parameter that quantifies how
“noisy” the distribution is near the Bayes decision boundary.
Their choice of “noise assumption” is motivated by their in-
terest in complexity classes with . For dyadic decision
trees, however, we are concerned with classes having , for
which a different noise condition is needed. The first two parts
of this section review the work of [10] and [1], and the other
parts propose new complexity and noise conditions pertinent to
DDTs.

For the remainder of the paper, assume . Classi-
fiers and measurable subsets of are in one-to-one correspon-
dence. Let denote the set of all measurable subsets of
and identify each with

The Bayes decision boundary, denoted , is the topological
boundary of the Bayes decision set . Note that while

, and depend on the distribution , this dependence
is not reflected in our notation. Given , let

denote the symmetric differ-
ence. Similarly, define

To denote rates of decay for integer sequences we write
if there exists such that for sufficiently

large. We write if both and . If and
are functions of , we write if there

exists such that for sufficiently small,
and if and .

A. Complexity Assumptions

Complexity assumptions restrict the complexity (regularity)
of the Bayes decision boundary . Let be a pseudo-
metric2 on and let . We have in mind the
case where and is a collection
of Bayes decision sets. Since we will be assuming is es-
sentially bounded with respect to Lebesgue measure , it will
suffice to consider .

Denote by the minimum cardinality of a set
such that for any there exists satisfying

2A pseudo-metric satisfies the usual properties of metrics except �d(x; y) = 0
does not imply x = y.
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. Define the covering entropy of with respect
to to be . We say has covering
complexity with respect to if .

Mammen and Tsybakov [10] cite several examples of with
known complexities.3 An important example for the present
study is the class of boundary fragments, defined as follows.
Assume , let , and take to be the largest
integer strictly less than . Suppose is

times differentiable, and let denote the th-order Taylor
polynomial of at the point . For a constant , define

, the class of functions with Hölder regularity , to be
the set of all such that

for all

The set is called a boundary fragment of smoothness if
for some . Here

is the epigraph of . In other words, for a boundary fragment
the last coordinate of is a Hölder- function of the first

coordinates. Let denote the set of all boundary
fragments of smoothness . Dudley [48] shows that
has covering complexity with respect to Lebesgue
measure, with equality if .

B. Tsybakov’s Noise Condition

Tsybakov also introduces what he calls a margin assumption
(not to be confused with data-dependent notions of margin) that
characterizes the level of “noise” near in terms of a noise
exponent . Fix . A distribution satisfies
Tsybakov’s noise condition with noise exponent if

for all

(13)

This condition can be related to the “steepness” of the regression
function near the Bayes decision boundary. The case
is the “low noise” case and implies a jump of at the Bayes
decision boundary. The case is the high noise case and
imposes no constraint on the distribution (provided ). It
allows to be arbitrarily flat at . See [1], [15], [13], [47] for
further discussion.

A lower bound for classification under boundary frag-
ment and noise assumptions is given by [10] and [1]. Fix

and . Define

to be the set of all product measures on such that

for all measurable ;
, where is the Bayes decision set;

3Although they are more interested in bracketing entropy rather than covering
entropy.

for all

Theorem 4 (Mammen and Tsybakov): Let . Then

(14)

where .

The is over all discrimination rules
and the is over all .

Mammen and Tsybakov [10] demonstrate that ERM over
yields a classifier achieving this rate when .

Tsybakov [1] shows that ERM over a suitable “bracketing”
net of also achieves the minimax rate for .
Tsybakov and van de Geer [14] propose a minimum penalized
empirical risk classifier (using wavelets, essentially a construc-
tive -net) that achieves the minimax rate for all (although
a strengthened form of 2A is required; see below). Audibert
[13] recovers many of the above results using -nets and further
develops rates under complexity and noise assumptions using
PAC-Bayesian techniques. Unfortunately, none of these works
provide computationally efficient algorithms for implementing
the proposed discrimination rules, and it is unlikely that prac-
tical algorithms exist for these rules.

C. The Box-Counting Class

Boundary fragments are theoretically convenient because ap-
proximation of boundary fragments reduces to approximation
of Hölder functions, which can be accomplished constructively
by means of wavelets or piecewise polynomials, for example.
However, they are not realistic models of decision boundaries.
A more realistic class would allow for decision boundaries
with arbitrary orientation and multiple connected components.
Dudley’s classes [48] are a possibility, but constructive approx-
imation of these sets is not well understood. Another option
is the class of sets formed by intersecting a finite number
of boundary fragments at different “orientations.” We prefer
instead to use a different class that is ideally suited for con-
structive approximation by DDTs.

We propose a new complexity assumption that generalizes
the set of boundary fragments with (Lipschitz regu-
larity) to sets with arbitrary orientations, piecewise smoothness,
and multiple connected components. Thus, it is a more realistic
assumption than boundary fragments for classification. Let
be a dyadic integer and let denote the regular partition of

into hypercubes of side length . Let be the
number of cells in that intersect . For , define the
box-counting class4 to be the collection of all sets
such that for all . The following lemma
implies has covering complexity .

4The name is taken from the notion of box-counting dimension [49]. Roughly
speaking, a set is in a box-counting class when it has box-counting dimension
d � 1. The box-counting dimension is an upper bound on the Hausdorff di-
mension, and the two dimensions are equal for most “reasonable” sets. For ex-
ample, if @G is a smooth k-dimensional submanifold of , then @G has
box-counting dimension k.
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Lemma 2: Boundary fragments with smoothness sat-
isfy the box-counting assumption. In particular

where .
Proof: Suppose , where . Let

be a hypercube in with side length . The maximum
distance between points in is . By the Hölder as-
sumption, deviates by at most over the cell .
Therefore, passes through at most cells
in .

Combining Lemma 2 and Theorem 4 (with and )
gives a lower bound under 0A and the condition

.
In particular we have the following.

Corollary 1: Let be the set of product mea-
sures on such that 0A and 1B hold. Then

This rate is rather slow for large . In the remainder of this
section, we discuss conditions under which faster rates are
possible.

D. Excluding Low-Noise Levels

RDPs can well approximate with smoothness , and
hence covering complexity . However, Tsy-
bakov’s noise condition can only lead to faster rates of conver-
gence when . This is seen as follows. If , then as

, the right-hand side of (14) decreases. Thus, the lower bound
is greatest when and the rate is . But from the
definition of we have for
any . Therefore, when , the minimax rate is always
at least regardless of .

In light of the above, to achieve rates faster than
when , clearly an alternate assumption must be made. In
fact, a “phase shift” occurs when we transition from to

. For , faster rates are obtained by excluding distri-
butions with high noise (e.g., via Tsybakov’s noise condition).
For , however, faster rates require the exclusion of distri-
butions with low noise. This may seem at first to be counterin-
tuitive. Yet recall we are not interested in the rate of the Bayes
risk to zero, but of the excess risk to zero. It so happens that for

, the gap between actual and optimal risks is harder to
close when the noise level is low.

E. Excluding Low Noise for the Box-Counting Class

We now introduce a new condition that excludes low
noise under a concrete complexity assumption, namely, the
box-counting assumption. This condition is an alternative to
Tsybakov’s noise condition, which by the previous discussion
cannot yield faster rates for the box-counting class. As dis-
cussed later, our condition may be though of as the negation of
Tsybakov’s noise condition.

Before stating our noise assumption precisely we require ad-
ditional notation. Fix and let be a dyadic integer. Let

denote the number of nodes in at depth . Define

Note that when , we have
which allows to approximate members of the
box-counting class. When , the condition

ensures the trees in are un-
balanced. As is shown in the proof of Theorem 6, this condition
is sufficient to ensure that for all (in particular the
“oracle tree” ) the bound on estimation error decays
at the desired rate. By the following lemma, is also
capable of approximating members of the box-counting class
with error on the order of .

Lemma 3: For all , there exists
such that

where is the indicator function on .

See Section VIII-D for the proof. The lemma says that
is an -net (with respect to Lebesgue measure) for ,
with .

Our condition for excluding low noise levels is defined as
follows. Let be the set of all
product measures on such that

for all measurable ;
;

For every dyadic integer

where minimizes over .
In a sense 2B is the negation of 2A. Note that Lemma 3

and 0A together imply that the approximation error satisfies
. Under Tsybakov’s noise condi-

tion, whenever the approximation error is large, the excess risk
to the power is at least as large (up to some constant). Under
our noise condition, whenever the approximation error is small,
the excess risk to the is at least as small. Said another way,
Tsybakov’s condition in (13) requires the excess risk to the
to be greater than the probability of the symmetric difference for
all classifiers. Our condition entails the existence of at least one
classifier for which that inequality is reversed. In particular, the
inequality is reversed for the DDT that best approximates the
Bayes classifier.

Remark 4: It would also suffice for our purposes to require
2B to hold for all dyadic integers greater than some fixed .

To illustrate condition 2B we give the following example. For
the time being suppose . Let be fixed. Assume

and for
, where is some fixed dyadic integer. Then

. For let denote the dyadic
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interval of length containing . Assume without loss of
generality that is closer to than . Then

and

If then

and hence 2B is satisfied. This example may be extended to
higher dimensions, for example, by replacing with the
distance from to .

We have the following lower bound for learning from
.

Theorem 5: Let . Then

The proof relies on ideas from [13] and is given in Sec-
tion VIII-E. In the next section the lower bound is seen to be
tight (within a log factor). We conjecture a similar result holds
under more general complexity assumptions (e.g., ), but
that extends beyond the scope of this paper.

The authors of [14] and [13] introduce a different condi-
tion—what we call a two-sided noise condition—to exclude
low noise levels. Namely, let be a collection of candidate
classifiers and , and consider all distributions such that

(15)

Such a condition does eliminate “low noise” distributions, but it
also eliminates “high noise” (forcing the excess risk to behave
very uniformly near ), and is stronger than we need. In fact,
it is not clear that (15) is ever necessary to achieve faster rates.
When , the right-hand side determines the minimax rate,
while for the left-hand side is relevant.

Also, note that this condition differs from ours in that we
only require the first inequality to hold for classifiers that ap-
proximate well. While [13] does prove a lower bound for the
two-sided noise condition, that lower bound assumes a different

than his upper bounds and so the two rates are really not com-
parable. We believe our formulation is needed to produce lower
and upper bounds that apply to the same class of distributions.
Unlike Tsybakov’s or the two-sided noise conditions, it appears
that the appropriate condition for properly excluding low noise
must depend on the set of candidate classifiers.

V. ADAPTIVE RATES FOR DDTS

All of our rate of convergence proofs use the oracle inequality
in the same basic way. The objective is to find an “oracle tree”

such that both and decay at the de-
sired rate. This tree is roughly constructed as follows. First form
a “regular” dyadic partition (the exact construction will depend
on the specific problem) into cells of side length , for a cer-
tain . Next “prune back” cells that do not intersect .
Approximation and estimation errors are then bounded using the
given assumptions and elementary bounding techniques, and
is calibrated to achieve the desired rate.

This section consists of four subsections, one for each kind
of adaptivity we consider. The first three make a box-counting
complexity assumption and demonstrate adaptivity to low noise
exclusion, intrinsic data dimension, and relevant features. The
fourth subsection extends the complexity assumption to Bayes
decision boundaries with smoothness . While treating
each kind of adaptivity separately allows us to simplify the dis-
cussion, all four conditions could be combined into a single re-
sult.

A. Adapting to Noise Level

DDTs, selected according to the penalized empirical risk cri-
terion discussed earlier, adapt to achieve faster rates when low
noise levels are not present. By Theorem 5, this rate is optimal
(within a log factor).

Theorem 6: Choose such that . Define
as in (1) with as in (9). If then

(16)

The complexity penalized DDT is adaptive in the sense
that it is constructed without knowledge of the noise exponent

or the constants . can always be constructed and
in favorable circumstances the rate in (16) is achieved. See Sec-
tion VIII-F for the proof.

B. When the Data Lie on a Manifold

In certain cases, it may happen that the feature vectors lie on
a manifold in the ambient space (see Fig. 3(a)). When this
happens, dyadic decision trees automatically adapt to achieve
faster rates of convergence. To recast assumptions 0A and 1B in
terms of a data manifold we again use box-counting ideas. Let

and . Recall denotes the regular par-
tition of into hypercubes of side length and
is the number of cells in that intersect . The boundedness
and complexity assumptions for a -dimensional manifold are
given by

For all dyadic integers and all

For all dyadic integers .
We refer to as the intrinsic data dimension. In practice, it may
be more likely that data “almost” lie on a -dimensional man-
ifold. Nonetheless, we believe the adaptivity of DDTs to data
dimension depicted in the following theorem reflects a similar
capability in less ideal settings.

Let be the set of all product mea-
sures on such that 0B and 1C hold.
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Fig. 3. Cartoons illustrating intrinsic and relevant dimension. (a) When the data lies on a manifold with dimension d < d, then the Bayes decision boundary has
dimension d � 1. Here d = 3 and d = 2. (b) If the X axis is irrelevant, then the Bayes decision boundary is a “vertical sheet” over a curve in the (X ;X )
plane.

Proposition 2: Let . Then

Proof: Assume satisfies 0A and
1B in . Consider the mapping of features

to
, where is any real number other than a dyadic

rational number. (We disallow dyadic rationals to avoid poten-
tial ambiguities in how boxes are counted.) Then
satisfies 0B and 1C in . Clearly, there can be no dis-
crimination rule achieving a rate faster than uniformly
over all such , as this would lead to a discrimination rule
outperforming the minimax rate for given in Corollary 1.

Dyadic decision trees can achieve this rate to within a log
factor.

Theorem 7: Choose such that . Define
as in (1) with as in (9). If then

(17)

Again, is adaptive in that it does not require knowledge of
the intrinsic dimension or the constants . The proof may
be found in Section VIII-G.

C. Irrelevant Features

We define the relevant data dimension to be the number
of features that are not statistically independent of . For

example, if and , then is a horizontal or
vertical line segment (or union of such line segments). If
and , then is a plane (or union of planes) orthogonal
to one of the axes. If and the third coordinate is irrelevant

, then is a “vertical sheet” over a curve in the
plane (see Fig. 3(b)).

Let be the set of all product mea-
sures on such that 0A and 1B hold and has relevant
data dimension .

Proposition 3: Let . Then

Proof: Assume satisfies 0A and 1B in
. Consider the mapping of features

to

where are independent of . Then
satisfies 0A and 1B in and has relevant data

dimension (at most) . Clearly, there can be no discrimination
rule achieving a rate faster than uniformly over all such

, as this would lead to a discrimination rule outperforming
the minimax rate for given in Corollary 1.

DDTs can achieve this rate to within a log factor.

Theorem 8: Choose such that . Define
as in (1) with as in (9). If then

(18)

As in the previous theorems, our discrimination rule is adap-
tive in the sense that it does not need to be told or
which features are relevant. While the theorem does not cap-
ture degrees of relevance, we believe it captures the essence of
DDTs’ feature rejection capability.

Finally, we remark that even if all features are relevant, but
the Bayes rule still only depends on features, DDTs are
still adaptive and decay at the rate given in the previous theorem.

D. Adapting to Bayes Decision Boundary Smoothness

Thus far in this section we have assumed satisfies a box-
counting (or related) condition, which essentially includes all

with Lipschitz smoothness. When , DDTs can still
adaptively attain the minimax rate (within a log factor). Let

denote the set of product measures
satisfying 0A and the following.

One coordinate of is a function of the others,
where the function has Hölder regularity and con-
stant .

Note that 1D implies is a boundary fragment but with arbi-
trary “orientation” (which coordinate is a function of the others).
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It is possible to relax this condition to more general (piece-
wise Hölder boundaries with multiple connected components)
using box-counting ideas (for example), although we do not
pursue this here. Even without this generalization, when com-
pared to [14] DDTs have the advantage (in addition of being
implementable) that it is not necessary to know the orientation
of , or which side of corresponds to class 1.

Theorem 9: Choose such that .
Define as in (1) with as in (9). If and , then

(19)

By Theorem 4 (with ) this rate is optimal (within a log
factor). The problem of finding practical discrimination rules
that adapt to the optimal rate for is an open problem we
are currently pursuing.

VI. COMPUTATIONAL CONSIDERATIONS

The data-dependent, spatially adaptive penalty in (9) is ad-
ditive, meaning it is the sum over its leaves of a certain func-
tional. Additivity of the penalty allows for fast algorithms for
constructing when combined with the fact that most cells
contain no data. Indeed, Blanchard et al. [30] show that an al-
gorithm of [36], simplified by a data sparsity argument, may be
used to compute in operations, where

is the maximum number of dyadic refinements
along any coordinate. Our theorems on rates of convergence
are satisfied by in which case the complexity
is .

For completeness we restate the algorithm, which relies on
two key observations. Some notation is needed. Let be the
set of all cells corresponding to nodes of trees in . In other
words, is the set of cells obtained by applying no more than

dyadic splits along each coordinate. For ,
let denote a subtree rooted at , and let denote the subtree

minimizing , where

Recall that and denote the children of when split
along coordinate . If and are trees rooted at and

, respectively, denote by MERGE the tree
rooted at having and as its left and right branches.

The first key observation is that

or

MERGE

In other words, the optimal tree rooted at is either the tree
consisting only of or the tree formed by merging the optimal
trees from one of the possible pairs of children of . This fol-
lows by additivity of the empirical risk and penalty, and leads
to a recursive procedure for computing . Note that this algo-
rithm is simply a high-dimensional analogue of the algorithm
of [36] for “dyadic CART” applied to images. The second key
observation is that it is not necessary to visit all possible nodes

in because most of them contain no training data (in which
case is the cell itself).

Although we are primarily concerned with theoretical prop-
erties of DDTs, we note that a recent experimental study
[35] demonstrates that DDTs are indeed competitive with
state-of-the-art kernel methods while retaining the inter-
pretability of decision trees and outperforming C4.5 on a
variety of data sets. The primary drawback of DDTs in practice
is the exponential dependence of computational complexity on
dimension. When , memory and processor limitations
can necessitate heuristic searches or preprocessing in the form
of dimensionality reduction [50].

A. Cyclic DDTs

An inspection of their proofs reveals that Theorems 6 and 7
(noise and manifold conditions) hold for cyclic DDTs as well.
From a computational point of view, moreover, learning with
cyclic DDTs (see Section II-A) is substantially easier. The opti-
mization in (1) reduces to pruning the (unique) cyclic DDT with
all leaf nodes at maximum depth. However, many of those leaf
nodes will contain no training data, and thus it suffices to prune
the tree constructed as follows: cycle through the coordi-
nates and split (at the midpoint) only those cells that contain data
from both classes. will have at most nonempty leaves,
and every node in will be an ancestor of such nodes, or one
of their children. Each leaf node with data has at most ances-
tors, so has nodes. Pruning may be solved
via a simple bottom-up tree-pruning algorithm in op-
erations. Our theorems are satisfied by in which
case the complexity is .

B. Damping the Penalty

In practice, it has been observed that the spatially adaptive
penalty works best on synthetic or real-world data when it is
damped by a constant . We simply remark that the re-
sulting discrimination rule still gives optimal rates of conver-
gence for all of the conditions discussed previously. In fact, the
effect of introducing the damping constant is that the oracle
bound is multiplied by a factor of , a fact that
is easily checked. Since our rates follow from the oracle bound,
clearly a change in constant will not affect the asymptotic rate.

VII. CONCLUSION

This paper reports on a new class of decision trees known
as dyadic decision trees (DDTs). It establishes four adaptivity
properties of DDTs and demonstrates how these properties lead
to near-minimax optimal rates of convergence for a broad range
of pattern classification problems. Specifically, it is shown that
DDTs automatically adapt to noise and complexity characteris-
tics in the neighborhood of the Bayes decision boundary, focus
on the manifold containing the training data, which may be
lower dimensional than the extrinsic dimension of the feature
space, and detect and reject irrelevant features.

Although we treat each kind of adaptivity separately for the
sake of exposition, there does exist a single classification rule
that adapts to all four conditions simultaneously. Specifically, if
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the resolution parameter is such that , and
is obtained by penalized empirical risk minimization (using the
penalty in (9)) over all DDTs up to resolution , then

where is the noise exponent, , is the
Bayes decision boundary smoothness, and is the dimension
of the manifold supporting the relevant features.

Two key ingredients in our analysis are a family of classifiers
based on recursive dyadic partitions (RDPs) and a novel data-
dependent penalty which work together to produce the near-op-
timal rates. By considering RDPs we are able to leverage re-
cent insights from nonlinear approximation theory and multires-
olution analysis. RDPs are optimal, in the sense of nonlinear

-term approximation theory, for approximating certain classes
of decision boundaries. They are also well suited for approxi-
mating low-dimensional manifolds and ignoring irrelevant fea-
tures. Note that the optimality of DDTs for these two conditions
should translate to similar results in density estimation and re-
gression.

The data-dependent penalty favors the unbalanced tree struc-
tures that correspond to the optimal approximations to decision
boundaries. Furthermore, the penalty is additive, leading to a
computationally efficient algorithm. Thus, DDTs are the first
known practical classifier to attain optimal rates for the broad
class of distributions studied here.

An interesting aspect of the new penalty and risk bounds is
that they demonstrate the importance of spatial adaptivity in
classification, a property that has recently revolutionized the
theory of nonparametric regression with the advent of wavelets.
In the context of classification, the spatial decomposition of the
error leads to the new penalty that permits trees of arbitrary
depth and size, provided that the bulk of the leaves correspond
to “tiny” volumes of the feature space. Our risk bounds demon-
strate that it is possible to control the error of arbitrarily large de-
cision trees when most of the leaves are concentrated in a small
volume. This suggests a potentially new perspective on general-
ization error bounds that takes into account the interrelationship
between classifier complexity and volume in the concentration
of the error. The fact that classifiers may be arbitrarily complex
in infinitesimally small volumes is crucial for optimal asymp-
totic rates and may have important practical consequences as
well.

Finally, we comment on one significant issue that still re-
mains. The DDTs investigated in this paper cannot provide more
efficient approximations to smoother decision boundaries (cases
in which ), a limitation that leads to suboptimal rates in
such cases. The restriction of DDTs (like most other practical
decision trees) to axis-orthogonal splits is one limiting factor in
their approximation capabilities. Decision trees with more gen-
eral splits such as “perceptron trees” [51] offer potential advan-
tages, but the analysis and implementation of more general tree
structures becomes quite complicated.

Alternatively, we note that a similar boundary approxima-
tion issue has been addressed in the image processing liter-
ature in the context of representing edges [52]. Multiresolu-
tion methods known as “wedgelets” or “curvelets” [8], [53] can

better approximate image edges than their wavelet counterparts,
but these methods only provide optimal approximations up to

, and they do not appear to scale well to dimensions higher
than . However, motivated by these methods, we pro-
posed “polynomial-decorated” DDTs, that is, DDTs with em-
pirical risk-minimizing polynomial decision boundaries at the
leaf nodes [20]. Such trees yield faster rates but they are compu-
tationally prohibitive. Recent risk bounds for polynomial-kernel
support vector machines may offer a computationally tractable
alternative to this approach [19]. One way or another, we feel
that DDTs, or possibly new variants thereof, hold promise to
address these issues.

VIII. PROOFS

Our error deviance bounds for trees are stated with explicit,
small constants and hold for all sample sizes. Our rate of conver-
gence upper bounds could also be stated with explicit constants
(depending on , etc.) that hold for all . To do
so would require us to explicitly state how the resolution param-
eter grows with . We have opted not to follow this route,
however, for two reasons: the proofs are less cluttered, and the
statements of our results are somewhat more general. That said,
explicit constants are given (in the proofs) where it does not ob-
fuscate the presentation, and it would be a simple exercise for
the interested reader to derive explicit constants throughout.

Our analysis of estimation error employs the following con-
centration inequalities. The first is known as a relative Chernoff
bound (see [54]), the second is a standard (additive) Chernoff
bound [55], [56], and the last two were proved by [56].

Lemma 4: Let be a Bernoulli random variable with
, and let be i.i.d. realiza-

tions. Set . For all

(20)

(21)

(22)

(23)

Corollary 2: Under the assumptions of the previous lemma

This is proved by applying (20) with .

A. Proof of Theorem 1

Let .

where
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For fixed , consider the Bernoulli trial which equals if
and otherwise. By Corollary 2

except on a set of probability not exceeding . We
want this to hold for all . Note that the sets are in
two-to-one correspondence with cells , because each cell
could have one of two class labels. Using , the
union bound, and applying the same argument for each possible

, we have that holds uniformly
except on a set of probability not exceeding

where the last step follows from the Kraft inequality (4). To
prove the reverse inequality, note that is closed under com-
plimentation. Therefore, .
Moreover, . The result now follows.

B. Proof of Lemma 1

We prove the second statement. The first follows in a similar
fashion. For fixed

where the last inequality follows from (22) with

The result follows by repeating this argument for each and
applying the union bound and Kraft inequality (4).

C. Proof of Theorem 3

Recall that in this and subsequent proofs we take in
the definition of and .

Let be the tree minimizing the expression on the
right-hand side of (12). Take to be the set of all such that
the events in (8) and (10) hold. Then . Given

, we know

where the first inequality follows from (10), the second from
(1), the third from (8), and the fourth again from (10). To see
the third step, observe that for

The first part of the theorem now follows by subtracting from
both sides.

To prove the second part, simply observe

and apply the result of the first part of the proof.

D. Proof of Lemma 3

Recall denotes the partition of into hypercubes of
side length . Let be the collection of cells in that
intersect . Take to be the smallest cyclic DDT such that

. In other words, is formed by cycling through
the coordinates and dyadicly splitting nodes containing both
classes of data. Then consists of the cells in , together
with their ancestors (according to the forced splitting scheme of
cyclic DDTs), together with their children. Choose class labels
for the leaves of such that is minimized. Note that
has depth .

To verify , fix and set .
Since . By construction, the nodes
at depth in are those that intersect together with
their siblings. Since nodes at depth are hypercubes with side
length , we have by the
box-counting assumption.

Finally, observe

E. Proof of Theorem 5

Audibert [13] presents two general approaches for proving
minimax lower bounds for classification, one based on As-
souad’s lemma and the other on Fano’s lemma. The basic
idea behind Assouad’s lemma is to prove a lower bound for a
finite subset (of the class of interest) indexed by the vertices
of a discrete hypercube. A minimax lower bound for a subset
then implies a lower bound for the full class of distributions.
Fano’s lemma follows a similar approach but considers a finite
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set of distributions indexed by a proper subset of an Assouad
hypercube (sometimes called a pyramid). The Fano pyramid
has cardinality proportional to the full hypercube but its ele-
ments are better separated which eases analysis in some cases.
For an overview of minimax lower bounding techniques in
nonparametric statistics see [57].

As noted by [13, Ch. 3, Sec. 6.2], Assouad’s lemma is in-
adequate for excluding low noise levels (at least when using
the present proof technique) because the members of the hyper-
cube do not satisfy the low noise exclusion condition. To prove
lower bounds for a two-sided noise condition, Audibert applies
Birgé’s version of Fano’s lemma. We follow in particular the
techniques laid out in [13, Ch. 3, Sec. 6.2 and Appendix E], with
some variations, including a different version of Fano’s lemma.

Our strategy is to construct a finite set of probability mea-
sures for which the lower bound holds.
We proceed as follows. Let be a dyadic integer such
that . In particular, it will suffice to take

so that

Let . Associate
with the hypercube

where denotes Cartesian cross-product. To each as-
sign the set

Observe that for all .

Lemma 5: There exists a collection of subsets of
such that

1) each has the form for some ;
2) for any in ;
3) .

Proof: Subsets of are in one-to-one correspondence
with points in the discrete hypercube . We invoke
the following result [58, Lemma 7].

Lemma 6 (Huber): Let denote the Hamming dis-
tance between and in . There exists a subset of

such that

• for any in ;
• .

Lemma 5 now follows from Lemma 6 with and
using for each .

Let be a positive constant to be specified later and set
. Let be as in Lemma 5 and define to be the

set of all probability measures on such that

i) ;
ii) for some

Now set . By construction,
.

Clearly, 0A holds for provided . Condition 1B
requires for all . This holds trivially for

provided . For it also holds provided
. To see this, note that every face of a hypercube

intersects hypercubes of side length . Since each
is composed of at most hypercubes , and each

has faces, we have

To verify 2B, consider and let be the corre-
sponding Bayes classifier. We need to show

for every dyadic , where minimizes over all
. For , this holds trivially because .

Consider . By Lemma 3, we know .
Now

Thus, provided .
It remains to derive a lower bound for the expected excess

risk. We employ the following generalization of Fano’s lemma
due to [57]. Introducing notation, let be a pseudo-metric on a
parameter space , and let be an estimator of based
on a realization drawn from .

Lemma 7 (Yu): Let be an integer and let contain
probability measures indexed by such that for any

and

Then

In the present setting we have ,
and . We apply the lemma with

and

Corollary 3: Assume that for
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Then

Since , it suffices to show
is bounded by a constant for

sufficiently large.
Toward this end, let . We have

The inner integral is unless . Since all
have a uniform first marginal we have

where we use the elementary inequality
for . Thus, take . We have

provided is sufficiently small and sufficiently large. This
proves the theorem.

F. Proof of Theorem 6

Let . For now let be an arbitrary
dyadic integer. Later we will specify it to balance approximation
and estimation errors. By 2B, there exists such that

This bounds the approximation error. Note that has depth
where .

The estimation error is bounded as follows.

Lemma 8:

Proof: We begin with three observations. First

Second, if corresponds to a node of depth , then by
0A, . Third

Combining these, we have where

and

(24)

We note that . This follows from
, for then

for all .
It remains to bound . Let be the number of

nodes in at depth . Since we know
for all . Writing ,

where and , we have

Note that although we use instead of at some steps, this is
only to streamline the presentation and not because we need
sufficiently large.

The theorem now follows by the oracle inequality and
choosing and plugging into the
above bounds on approximation and estimation error.

G. Proof of Theorem 7

Let be a dyadic integer, , with
. Let be the collection of cells in

that intersect . Take to be the smallest cyclic DDT such
that . In other words, consists of the cells in ,
together with their ancestors (according to the forced splitting
structure of cyclic DDTs) and their ancestors’ children. Choose
class labels for the leaves of such that is minimized.
Note that has depth . The construction of is iden-
tical to the proof of Lemma 3; the difference now is that is
substantially smaller.
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Lemma 9: For all

Proof: We have

where the third inequality follows from 0B and the last in-
equality from 1C.

Next we bound the estimation error.

Lemma 10:

Proof: If is a cell at depth in , then
by assumption 0B. Arguing as in the proof of The-

orem 6, we have where

and is as in (24). Note that . This
follows from , for then

for all .
It remains to bound . Let be the number of nodes

in at depth . Arguing as in the proof of Lemma 3 we have
. Then

The theorem now follows by the oracle inequality and plug-
ging into the above bounds on approxima-
tion and estimation error.

H. Proof of Theorem 8

Assume without loss of generality that the first coordi-
nates are relevant and the remaining are statistically in-
dependent of . Then is the Cartesian product of a “box-
counting” curve in with . Formally, we have
the following.

Lemma 11: Let be a dyadic integer, and consider the par-
tition of into hypercubes of side length . Then the
projection of onto intersects at most of
those hypercubes.

Proof: If not, then intersects more than
members of in , in violation of the box-counting
assumption.

Now construct the tree as follows. Let be a dyadic
integer, , with . Let be
the partition of obtained by splitting the first features
uniformly into cells of side length . Let be the collection
of cells in that intersect . Let be the DDT formed
by splitting cyclicly through the first features until all leaf
nodes have a depth of . Take to be the smallest
pruned subtree of such that . Choose class
labels for the leaves of such that is minimized. Note
that has depth .

Lemma 12: For all

Proof: We have

where the second inequality follows from 0A and the last in-
equality from Lemma 11.

The remainder of the proof proceeds in a manner entirely
analogous to the proofs of the previous two theorems, where
now .

I. Proof of Theorem 9

Assume without loss of generality that the last coordinate of
is a function of the others. Let be a dyadic integer,

, with . Let be the
largest dyadic integer not exceeding . Note that .
Construct the tree as follows. First, cycle through the first

coordinates times, subdividing dyadicly along the
way. Then, cycle through all coordinates times, again sub-
dividing dyadicly at each step. Call this tree . The leaves
of are hyperrectangles with side length along the
first coordinates and side length along the last co-
ordinate. Finally, form by pruning back all cells in
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whose parents do not intersect . Note that has depth
.

Lemma 13: Let denote the number of nodes in at
depth . Then

where and and .
Proof: In the first case, the result is obvious by construc-

tion of and the assumption that one coordinate of is a
function of the others. For the second case, let

for some and . Define to be the
partition of formed by the set of cells in having
depth . Define to be the set of cells in that inter-
sect . By construction of we have . From
the fact , we conclude

Thus it remains to show

for each . Each cell in is a rectangle
of the form , where

is a hypercube of side length , and
is an interval of length . For each ,
set

The lemma will be proved if we can show
, for then

as desired. To prove this fact, recall
for some function

satisfying for all .
Therefore, the value of on a single hypercube can vary
by no more than . Here we use
the fact that the maximum distance between points in is

. Since each interval has length

This proves the lemma.

The following lemma bounds the approximation error.

Lemma 14: For all

where .

Proof: Recall has depth , and
define as in the proof of the Lemma 13

By construction, . Noting that
, we have

Thus,

The bound on estimation error decays as follows.

Lemma 15:

This lemma follows from Lemma 13 and techniques used in
the proofs of Theorems 6 and 7. The theorem now follows by
the oracle inequality and plugging
into the above bounds on approximation and estimation error.
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