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Abstract—There are many systems for counting photons such they appear point-like to a detector [1]. There are many
as gamma-rays emitted from radioactive sources. Many of these gamma-ray detection modalities including stationaryatioin
systems are also position—sensitive, which means that the SyStenbortal monitors [1], coded aperture imaging systems [2hye

provides directional information about recorded events. This f scintillating detect 3 d iti it
paper investigates whether or not the additional information of scintillating detectors [3], and position—sensitivengjzion

provided by position—sensitive capability improves the perfor- detectors [4], [5]. Some detection algorithms are specdic t
mance of detecting a point-source in background. We analyze certain modalities, such as using images reconstructed &o
the asymptotic performance of the generalized likelihood ratio coded aperture system to detect a point-source [2]. A mean
test (GLRT) and a test based on the maximum-likelihood (ML) * gitference test (MDT) statistic was applied to scintiltai
estimate of the source intensity for systems with and without . . .
position—sensitive capability. When the background intensity is arrays in [3]. In this paper, we analyze the Qetgctlon perfor_
known and detector sensitivity is spatially uniform, we prove that Mance of two tests that are based on the likelihood: one is
position—sensitive capability increases the area under the receiv  the generalized likelihood ratio test (GLRT), and the otiser
operating characteristic curve (AUC). For cases when detector the ML estimate of the source intensity. We refer to the fatte
sensitivity is nonuniform or background intensity is unknown, we 55 the source intensity test (SIT). We compare the asyroptoti
provide numerical results to illustrate the effect of the parametes -
on detection performance. Fse]rformance of the GLRT and SIT to the MDT presented in
When performing detection using the GLRT with a
position—sensitive Compton imaging detector in a knowrkbac
ground, a particular experiment found that position infarm
. INTRODUCTION tion did not significantly improve detection performanceov
The ability to detect radioactive material is important fomerely counting received photons [6]. In light of the numeso
security and nuclear nonproliferation. For security a@pli modalities that provide information beyond the number of
tions, the goal is to screen passengers and cargo for nuclesreived counts, we seek to show theoretically how position
explosives or other potentially harmful materials. For pron  sensitive capability affects detection performance. Thalg
liferation applications, the goal is to assess the amount of this work are to explain previous empirical results, sash
different isotopes present at a nuclear reactor to ensate tthose contained in [6], and to help guide the design of future
the facility is not producing weapons materials. One medns detectors.
detecting radioactive sources is to count gamma-ray pBotonThe question of whether or not imaging capability im-
emitted from it. Such a detector, hereafter called a cogntiproves detection performance was addressed in [7] in the
detector, is limited by its inability to determine the ditiea or context of coded-aperture imaging systems. Reference [7]
other attributes of incoming photons. In contrast, a pos#i shows that if the background intensity is unknown, imaging
sensitive detector provides some information in addition tmay improve SNR [7] and thus detection performance by
the number of counts. It is reasonable to hypothesize th@bviding a means to separate the otherwise indistingbleha
directional information can improve detection capabilily source and background photons. The analysis in this paper
distinguishing between photons from a localized source adiffers from that of [7] because we treat the problem from
photons from a distributed background. a detection task—based point of view [8]. We analyze the
There is a wide body of literature on the problem of gammaask of source detection using the asymptotic performafce o
ray source detection. A common assumption in the field ofrious test statistics applied to detectors with and witho
security imaging is that sources of radiation are small, smsition—sensitive capability. Our treatment of detectidfers
_ , o _ from that in [7] because SNR does not capture the additional
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for detecting a single source in background using detectdks Measurement Model
with and without position—sensitive capability. We provieet Following the notation of [8], letF = (ry,7rs,...,7J)
orem 1, which states that in a known background, a uniforganote a list ofJ recorded attribute vectors from photon
sensitivity position-sensitive detector always has equal inieraction events. Each element of 7 is itself a vector of
better detection performance asymptotically, in terms OCA  4irinytes describing théth event. An example of a detector
than a counting detector of equal sensitivity. Our analg® hat one can describe with this model is a position—sesitiv
provides an expression that quantifies how much positioggmpton detector. A Compton detector records a Poisson—
sensitive capability increases the AUC. distributed numbet/ of gamma-ray photons. Each detected
We compare the AUCs of position-sensitive and countinghoton interacts one or more times inside the detector and
detectors when the assumptions of Theorem 1 do not hold. kigé detector records these interaction locations and tggssi
the case of known background and nonuniform sensitivity, Wgher attributes such as deposited energy. We assume that
numerically evaluate the asymptotic AUC of the GLRT angistinct attribute vectors are statistically independertich is
SIT for a simple position—sensitive detector of nonuniformeasonable provided the count rates are low enough to avoid
sensitivity. Our results show that, unlike the uniform s&vity  dead time effects [8].
case, a position—sensitive detector with nonuniform $eitgi In the detection problem considered here, the goal is to
can have a smaller AUC than a uniform—sensitivity Countir@bcide whether or not a point_source is present in an envi-
detector of equal area for some source positions, partlgularonment with some background. Denote the source intensity
for a position—sensitive detector with poor sensitivitglgwor by o e [0, 00) with units of countsemitted per unit time.
position resolution. However, as sensitivity and resoluiim-  The probability distribution of recorded attribute vesterfor
prove, the position—sensitive detector can have bettectieh events that originate at the source may depend on parameters
performance. We use examples of various detectors to shgider than the source intensity, and we denote the vector of
how nonuniformity and other detector properties relate #yditional parameters by € ®. In the 3D far—field when the
detection performance, which could help in practical desigource and background are of the same energy, an example
problems. for the set® is [0, 27] x [0, 7], which represents all possible
We also show how relaxing the assumption of a knowspurce positions in terms of azimuthal and polar angle in
background impacts detection performance in terms of AUpace. If a detector is energy—sensitive and the source and
through numerical examples. We use simple detectors background energy spectra differ, the source energy cdsid a
show that the degradation in detection performance caudsglan element o.
by an unknown background is related to uncertainty in the We model the background as a linear combination of a
source position estimate. The information that a positiorfinite number of fixed, known distributions. We parameterize
sensitive detector records allows it to distinguish sowand the background by the rat&, in countsrecorded per unit
background photons when the source and background héiwee and a vector of mixture coefficieni8, such that the
different spatial distributions but identical energiesc@unting probability distribution of recorded events given thatythe
detector does not have this capability when the source amiginated from background is a mixture of the distribuon
background photons are of the same energy, so it is difficolt recorded attributes given that they came from each object
to directly compare position—sensitive and counting detsc [10]. For this linear model, the background count ratg, is
in an unknown background. More specifically, one cannot sett a function ofg3.
the appropriate threshold for a test using a counting datect We define the vectoP to be the vector of all unknown
In our analysis, we assume that the operator of a countipgrameters. When the source and background intensities and
detector sets the threshold with a randomly chosen backdrowposition parameters are all unknown,
intensity and examine how the distribution of the chosen
background intensity affects the difference in AUC between 6 = (@, 9, v, B). @)
the counting and position-sensitive detectors. The Speci similar parameterization of a far—field point source isegiv
examples are meant to be a guide in analyzing and comparjﬁq3]_
particular systems. Let D be the event that a photon is recorded amdbe
the event that a photon passes through the detector. We define
the sensitivity, which is the probability of recording a pdio

1. MATHEMATICAL BACKGROUND given that it came from direction, to be

A

The model described in this section is general enough to 5(®) =p(D;¢) = p(DIG; $)p(G: &), @
describe any system that records a Poisson—distributetderumwhere p (D|G; ¢) is the intrinsic sensitivity, which depends
of measurements or events, where the events are independenthe detector shape and attenuation, a€;¢) is the
and each event is described by a vector of recorded attsibutgeometric sensitivity, which depends on the fraction ofteedi
This model accurately describes position—sensitive Comptphotons that pass through the detector [11, p. 65]. In 3D,
detectors, coded aperture detectors, and scintillataysriThe the geometric sensitivity is the solid angle subtended by
model is based on [8] and [10]. It assumes a fixed scan timike detector in a spherical coordinate system centeredeat th
thus the number of recorded events is random. source.



Let p(r|D; @) denote the distribution of recorded attributesvhereF; 1 is 1 x 1, Fjg 1) is dim(¢) x 1, F3 o) is dim(¢) x
r € R, whereR is the set of all possible event attributesdim(¢), Fi3 1) is 1x1, Fi39) is 1xdim(¢), Fis 5 is 1x1, Fy
Let ps(r|D; @) and pp(r|D;3) denote the distributions of is dim(3) x 1, F4 9 is dim(3) x dim(¢), F g is dim(8) x 1,
recorded event attributes given that they are detected ancandF 4 4 is dim(3) x dim(3). In source detection problems,
come from the source and background, respectively. Ttee source positiorp, the background intensity,, and the
overall distribution of recorded attributes (given thatement background shape parametgtsare nuisance parameters.
is detected) is a mixture @fs(r|D; ¢) andpp(r|D; 3) given A counting detector is neither capable of estimatifg

by [10] nor distinguishing source and background events of the same
A D:3) + D: energy becauspgs(r|D; ¢) does not depend og by Defini-
p(r|D;0) = 5 (T] f) m ngzps(?“l ¢). (3) tion 1. Because of this, for the purposes of defining the Fishe
b information, we assume tha,, 3, and the value ofs(¢)
As shown in [8], the likelihood ob is are known to a counting detector, so the Fisher information
J is a scalar in this case. Using the model in (4) and (5), the
p(7;0) = H p(r:|D; 8)e=7©) J(0)” /]!, (4) likelihood for the counting case is(.J; ) = J(0)”e~7®) /],
=1 for which the Fisher information is given by
and the number of recorded photons obeys the Poisson distri- 2
: s 15°(9)
bution F.(0) = T as(@) (8)
J ~ Poissor(.J(8)) (5) b
with mean given by To _h_elp express the Fisher inf(_)rmatior_1 matrix (7) for
a position—sensitive detector, we first define the following
JO)2E[J] =1 (N +as(9)), (6) functions ofr:
wherer denotes the known measurement recording time. g1(r) = ps(r|D; 9)
We can make the concept of a counting detector more —v D-
concrete by the following definition: ga(r) #(s(P)ps(rD; 9))
Defintion 1. A d _ o  and onlv if g3(r) = pp(r|D; B)
efinition 1. etector is acountingdetector if and only i 9(r) = Vaps(r|D; B),

ps(r|D; @) = pr(r|D;3) almost everywhetefor all ¢ € ®

and mixture coefficients. where V is the column gradient with respect 18. Note

Definition 1 says that in a counting detector, the distrimuti that g1,95 : R — R, g2 : R — R¥™(®) andg, : R —
of event attributes is independent of whether or not the evéR™ ™. Using (3), (4), and (5), one can show that the Fisher
originated from the source. Otherwise we call it an positiorinformation for a position-sensitive detector is given by
sensitive detector. By this definition, a detector that isrgp—

sensitive but not does not record interaction locationsoisan Kp “55%;1 f:(%] A’fff;”
counting detector. In such a detector, the recorded ersergie aKpy — o’Kpa oKy oMKl o
can produce some position information, so we treat SPEC(h) = F.(6) (o) s%(o) s(¢) AS;(?) ,
trometers that do not record interaction locations siryiles fé;i] "“ii’)ﬂ g[g’g; L
spectrometers that do. The asymptotic expressions in &pierp MK oMKl AeKus A K
allow one to compare the asymptotic detection performafce o () s%(e) s%(e) 5% () )
particular spectrometers that do and do not record interact

locations. We refer to detectors that are not counting tietec where r

as position—sensitivaletectors, although a position—sensitive Koo 2 9i(r)g; () (10)
detector does not necessarily record interaction location a1 = p%(r|D;0) |’

provided that the expectation and the gradient with resgect
the parameters are interchangeable. Appendix B gives sampl
The asymptotic detection performances of the test stistyjerivations of the block Fisher information elements.
examined in this work depend on the Fisher information matri |, {he case where the background intensities are known, we
F(6). To facilitate the analysis of (8), we define its block emoye the entries corresponding to the unknown background
components as follows: and the Fisher information for a position—sensitive detect

B. Fisher Information

Fuy Fhy Flay Flog simplifies to:
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1Throughout, “almost everywhere” means with respect to theibligion The elemgnts of the Fisher information appear prominently i
of r in (3) the detection analyses that follow.



C. Test statistics for source detection less than zero, one can fidg,;, by maximizing the likelihood
In the source detection problem, we would like to discerffVer the real line. Intuitively, a negative estimate of therse

between two hypotheses: intensity is strong evidence for the null hypothesis. Hithe
squaring or thresholding negative source intensity eséma
Hy : a=0, (12) at zero can reduce detection performance by reducing the
Hy : a>0. separability of the test statistic distributions under th®
Based on the model (3) and (5), there are several reasondbfeotheses, especially for weak sources. Our numerical re-
tests for this problem. sults do not include the Wald test since it is asymptotically

1) Generalized Likelihood Ratio Test (GLRTJhe GLRT €quivalent to the GLRT. _
is a common method of choosing between two hypotheses3) Source Intensity Test (SITBecause the squaring oper-
when one or more of the hypotheses depends on unkno@iPn In the Wald test statistic can degrade detection perfo

parameters [12]. We can write the GLRT as mance, we consider the following source intensity teststiat
VAN
H, Agit = .
2log AgLrT 2 7, (13) _ _ _ .
H, This test was also considered in the context of array protgss

o [15]. By the asymptotic normality of the MLE [12, p. 240],
where the GLRT test statistic is we have that asymptotically.
A INaXey p,\,,B p(":a (a7¢7>‘b7/6)5H1)

A = . 14 -

GLRT maxg x5 p(7: (@ = 0,6, A, B), Ho) (14) s N (0,F1 (00)[1,1]) , Hy
To calibrate the test thresholgd and analyze the perfor- N (a,F! (9)[1,1]>, Hy,
mance of the detector, one must determine the distribution . .
of A If one uses a restricted ML estimator (MLE)where 6y is the parameter vector under the null hypothesis
motiv(g;gg.by the one—sided hypothesis in (12), the diginbu With a = 0. The next section uses th(.e_asympto_ti_c distributi_ops
of Aaurr is complicated because und, the ,parametea in (16) and (19.) to show that position—sensitive capability

lies on the boundary of the parameter space [13]. To Simp"wproves detection performance.

the analysis of the GLRT and give intuition, instead of (12%t 4t) tl\_/legn lefererljcg T(;St ('\QD.T)The. mle art1 tdn‘ference test
we consider the two—sided test atistic is proposed in [3] and is equivalent to

Hy : a=0 AmpT é Jsre = Jbacks (20)

(15)
H1 e 7£ 0, )
where J;,. is the number of photons recorded on all source—
which is also the basis of the analysis in [14]. When the testdkposed surfaces of the detector afglx is the number of
treated with the two-sided formulation in (15) and the seurghotons recorded on all surfaces not exposed to the source.
intensity is small, it is shown in [12, pp. 239-240] that thgyhen the source position is unknown, one must estimate
asymptotic distribution of the test statistic is given by which surfaces are exposed to the source. The asymptotics
of the MDT are given in [3].

2
2log (AgLrr) ~ { "%
X% (O) ) HO;

(19)

(16)

[1l. EFFECT OFPOSITION-SENSITIVE CAPABILITY ON
where x?(n) denotes the non—central chi-square distribution DETECTION PERFORMANCE
with one degree of freedom and noncentrality parameter  As jllustrated in Figure 1, the AUC of the GLRT for (15) is
AssumingF (@) is invertible, for the model (4), the noncen-a monotone function of the noncentrality parametén (17),
trality parameter is so to show that position—sensitive capability improves AUC

N -1 it suffices to show that position—sensitive capability eases

n=a (F (9)[1,1]> : (A7) 4. Furthermore, if position-sensitive capability incresgdor

This asymptotic framework is also used to analyze a test ?Jq values ofa > 0, then position—sensitive papab|llty W'"
whether one or two sources are present in [14]. improve the performance of the SIT by reducing the variance

2) Wald Test: The Wald test is a classical test for theOf the test statistic under each hypothesis in (19).

composite hypothesis problem and is known to be approxi-
mately asymptotically equivalent to the GLRT for small ssmur A. Effect of Position—Sensitive Capability for a UniforrmSe
intensities [12, p. 188]. The Wald test for the source daiact sitivity Detector with Known Background

problem is given by We first define the concept of a uniform—sensitivity detector
—1
Ay = &2 <F1 (0) > (18) Definition 2. A detector has uniform—sensitivity if¢) = so
ME [1,1] ’ for all ¢ € @, wheres, is a constant.

where @ is the ML estimate of9. The Wald test is a non— The main result of this section, given by Theorem 1, is that
monotonic function ofay, when ayr, is the unrestricted the detection performance of a uniform—sensitivity positi
MLE of «. Although the source intensity cannot be physicallgensitive detector is greater than or equal to that of a tmifo



with side length2! to illustrate Theorem 1 and to explore

0.9} - the cases where Theorem 1 does not apply. The detectors
o 0.8} ; in this section do not necessarily represent any particular
2 o7t | detector technology and are used for illustrative purposes

only. The simplified detectors have tractable models for the

09 . . . recorded attributes, facilitating accurate calculatioh tie
0% 5 10 15 20 Fisher information.
Noncentrality parameter n For simplicity, we assume that these detectors record only
Fig. 1: AUC of GLRT (14) versus noncentraltity parameter Single photon interaction events and that the source and
of the asymptotic distribution of the GLRT. background energy spectra are identical. For each recorded

event, the detector records the position of the interagtion).
The attribute vector; is the interaction position of théh

i . ._event. Each attribute vecteg has length 2, so we compute the
sensitivity counting detector. The AUC of the GLRT apphe@ ' g P

" itive d : h he AUC ?mponents of the Fisher information (10) numerically gsin
to a position—sensitive detector Is greater than the Riemann approximation. This hypothetical system allows us

the GLRT ap;plir(]ed to a counting_ de_'ttjecfcor i thdeHno_nceln;rali% gain intuition on how detector nonuniformity and unknown
parameter of the asymptotic distribution undf in (17) background affect detection performance. This intuitioif w

'S Ig;gzer fﬁr a p03|t|on_—s%r_1$|t!\t/)e .detecftorr.] Aseigg_w.n n, [1%e useful when thinking about more realistic 3D detectors.
P- L tf N asyrlrllptotlc '?t” utl'o'n Ob the h '3 r.nos't For this analysis, we assume that the point—source is in the
accurate for small source intensities because the maq‘ar—field, s0¢ € [0,27) denotes the source position in the 2D

of the asymptotic _distributiqn assumes that the log—Iitadid plane. The density of recorded attributegy, y| D; 8) depends
evaluated atv = 0 is approximately equal to the second orde(5n the source position, so the parameter vecter in (1) is
approximation of the log-likelihood about the value of th%qual tog ’

source intensity estimatéy,. For the SIT, a detector with g, probability density of photon interaction locations is
posmon—sensmve capability perfqrms bett.e.r if the sades governed by the Beer-Lambert law for attenuation [16, pp.
in (19) are smaller for the position—sensitive detect_ore Ths4-56]. The density of interaction events at a particuldnpo

asymptotics of the SIT do not assume a small source Intensiiiqe the detector is a decreasing function of the length of

The. _above d|.s.cu35|on Iggdg to the sufficient condition tr"ﬁﬂraterial that a photon must pass through to reach that point.
position—sensitive capability improves the AUC of the GLRTThe number of photons, on average, that interact in a given

and SIT for anyd € ©: length of material is parameterized ly the material linear
(F(g)[—lll])*l > Fe(). (21) attenuation coefficient at the energy of incoming gammasray
o . ) which is assumed to be known. The attenuation coefficient
Theorem 1. For a uniform-sensitivity detector in a knowngenends on detector material and influences its positian res

background,(F~(8)(1,1)) ™" > Fc(8), i.e the reciprocal of |tion. The interaction probability distribution is givesy
the [1,1] component of the inverse Fisher Information Matri

(11) for a position—sensitive detector is greater than ov&q p(z,y|D;0) = I
to that of a counting detector (8). Therefore, the asymptoti L(@)p (D; )
AUC for a position—sensitive detector is greater than oraquwhered;(z, y; ¢) is the distance that the photon must travel in
to the asymptotic AUC of a counting detector in a knowthe directiong through the detector before interacting aty),
background when the GLRT with a small source intensity and (¢) is the largest distance between any two lines with
the SIT is used. slopetan(¢) that pass through the detector. These quantities
are illustrated in Figure 2.

e—pdi(m,y;@ (;p7y) € R7 (24)

The proof, which is given in Appendix A, shows that th
noncentrality parameters of the GLRT for position—sewnsiti

and counting detectors; andr., respectively, obey . gg:l':;e
»
_ F-1(0 -1 / di(x.y:9) .
m_ FOpy) 22) Py e
Tle FC(B) e (;y) é
Furthermore, ifF~1(6) is diagonal, 1(¢) ,/“w/‘/P
X
i
UL K, (23) \ o
T \ )
SO position—sensitive capability increases the noncliytra — 7
parametem in (17) by the factork[; ;) in (9). In this case, 1

the inequality in Theorem 1 becomes strict. ) ) o
Fig. 2: Diagram of square detector with side length

IV. SETUP FORNUMERICAL CALCULATIONS

In §V, we numerically evaluate the Fisher information (9) It is difficult to define the intrinsic position resolution of
for 2D circular detectors of radius and 2D square detectorsthese systems, so we report the angular uncertainty measure



by the square root of the Cramer—Rao lower bound on th 0.9r

position estimate,/(F(8)~1)}2,2;, where F(8) is defined in
(9).

V. NUMERICAL RESULTS

We first consider uniform—sensitivity position—sensitamd —©— Imaging (SIT)
counting detectors in a known background to illustrate th:  0.6f el'“moa'g”l‘:‘gg'('afg’
results of Theorem 1 and to explore under what condition No Imaging (GLRT)
position information is most beneficial. Next, we considel 05 > 7 5 3 10
a square position—sensitive detector, which has nonumifor pr
sensitivity, and compare its performance to a uniform ciognt (a) AUC versusur

detector of equal area. We then examine the performance

of uniform—sensitivity detectors in unknown backgrounde W 25
exclude the case of a nonuniform sensitivity detector it
an unknown background because its analysis requires ma
assumptions.

K[1v1]

A. Uniform Sensitivity Detector with Known Background . . . .
2 4 6 8 10

A circular detector with radiug: has inherent uniform ur
sensitivity due to its circular symmetry. Figure 3a shows th
AUC, the position-sensitive gain factds|; ;; from (9), and
the angular uncertainty as a function of attenuation—madit

(b) K11,1) versusur

& 80
productur for a circular detector. The quantityr represents %
the expected number of photons emitted from the sourc 3’560
during the scan and,r represents the expected number of §40-
background photons recorded. The expected number of sour 5
M — 20}
photons recorded is given byrsg, where s, = s(¢) as s
defined in (2). We denote the sensitivity by to emphasize 20 . . . .
o . . i g 2 4 6 8 10
that the sensitivity of a circular detector is not a functiah pr
source position in the far field. In this section, we consitdy (c) Angular Uncertainty versugr
source photons that pass through the detectorpi.€;,¢) = 1
in (2). As guaranteed by Theorem 1, the AUC of the position- 1
sensitive detector always exceeds that of the the countir
detector for each test. 0.9f
The AUC of the SIT exceeds that of the GLRT for this «°
experiment. This performance difference comes from the fa 08
that the GLRT is asymptotically equivalent to the Wald tes
statistic, which involves a square of the source activiti-es 0.7 > 7 6 P 10
mate. When one uses an unrestricted MLE of the source i ur
tensity, this squaring operation reduces the separatitwelea (d) so versuspur

test statistic values under the two hypotheses.

Figure 3d shows, as a function ofur to aid interpreting
Figure 3a. For this experiment, the Fisher information matr
is diagonal, soK|; ) is the multiplicative improvement in
the noncentrality parameter of the asymptotic distributod
the GLRT underH,, as expressed in (23). Asr increases,
the angular uncertainty decreases and the difference in AW€ar the background intensity. For low source—to—backgtou
between the detectors with and without position—sensitivatios, the source is difficult to detect with either detectmd
information increases. Figures 3a and 3b illustrate thahas when the source—to—background ratio is large, the source is
detector provides more precise position—sensitive inftion, so easily detected that position—sensitive capabilityvipies
the improvement in detection performance due to positiofiittle additional benefit. Again, the position—sensitivetettor
sensitive information increasesen when the background isalways has higher AUC than the counting detector as exgtesse
known in Theorem 1, and the SIT performs better than the GLRT.

Figure 4 shows the AUC for a circular uniform—sensitivity The next section considers the detection performance of
detector as a function of source intensity for a fixed backonuniform—sensitivity detectors, to which Theorem 1 does
ground intensity. The AUC values for the position—sensitinot apply, but which can be more practical to build than
and counting detectors differ the most for source integsitiuniform sensitivity detectors.

Fig. 3: Various quantities for a circular uniform—sensttiv
detector withar = 10, A\, = 100, and geometric sensitivity

p(Glo) = 1.



— = ™ curve is small. In practice, one could generate similarsplot
0.9} it - with the appropriate sensitivity for a particular applioat
§ g.: t:\r:;alggri:;%i(nSng()SIT) | Figure 5c shows the angular uncertainty as a function of
. - - Imaging (GLRT) source posmon._ The_ AUC in Figure 5a is Iarges_t \_/vhen the
0.6 No Imaging (GLRT)| | angular uncertainty is largest near = 45°, but this is not
0.5%= 10 20 20 20 =0 contradictory because the sensitivity, shown in Figure 5b,
Expected Source Counts ot is approximately uniform neatp = 45°. Because of this,

g}e Fisher information matrix is approximately diagonat fo
source positions neap = 45°, which means that the position
nuisance parameter has little effect on thel] component of
F(6).

Fig. 4. AUC versus expected source counts for a circul
uniform—sensitivity detector with,7 = 100 and ur = 5.

B. Nonuniform Sensitivity Detector with Known Background
For implementation and manufacturing reasons, currert

position—sensitive Compton imaging detectors are oftea-bo F - rse~——ezio
shaped [4]. We examined the performance of the GLR 09 .. 0.9
and SIT applied to the 2D square detector in Figure 2 t 9 0.8 9 0.8
gain insight into the performance of nonuniform sensiivit < o.7 L0 —Tmrm 5T
detectors. N N _ 06l =" R Y | et S

In the case of a position—sensitive detector, the maximurr 05 05 No I maging (GLRT)
likelihood estimate of the source intensity dependss(), 0 45 90 0 45 90

@ (degrees) ¢ (degrees)

but a counting detector, by definition, gives no information
about¢. To compute the ML estimate of the source intensity
with a counting detector, one would need to assume a pe-
ticular value ofs(¢) becauses(¢) appears in the likelihood
and is a function of the unobservable positgnSubstituting a

(a) AUC versusp

fixed value fors(¢) will result in a likelihood model that does & c
not match the true distribution, so the estimator based an th ® 05 » 05
model can be biased. Since the asymptotic analysis coesidel —Square
in this work does not apply when the parameter estimatol 0 0 ___Circle
are biased, we compare the square position—sensitivetdetec 0 (p(de%?'ees) 90 0 (p(de‘g’rees) 90
to a circular uniform—sensitivity counting detector of afu (b) () versuse
area with radius- = 2l/\/7. This comparison constrains the
amount of detector material and explores whether the positi
sensitive square or the counting circle has better detectic 3 >
performance using the SIT and GLRT. ? 100 %100
Figure 5a shows the AUC of the square position—sensitiv. = g g
and the circular counting detectors as a function of sourc 5 50 5 50
position for both the GLRT and SIT. Foul = 0.5, the =2 =
square position—sensitive detector performs worse than tl < 9 < 9
circular counting detector. However, the detector with= 5 0 (p(de‘g?ees) %0 0 (p(de‘gsrees) %0

outperforms the counting detector for all source positidks

in the uniform—sensitivity case, the SIT outperforms theRGL _ ) o )
To aid in visualization, we present the sensitivity of th&19- 5 AUC, relative sensitivity, and angular uncertairity

square relative to that of a circular detector of equal dfea. SAuare position—sensitive and circular counting detectir
compute the relative sensitivity in Figure 5b, we normalize€9qual arear(= 2I/y/m) vs. ¢ with ul = 0.5 (left) and ul = 5
the geometric sensitivity of the square detector in (2) kgt th(fight), andar = A7 = 10.

of a circular detector of the same area, so in this case,

o(Gle) = 21 (|COS¢LZ—‘F \Sind)\).

(c) Angular Uncertainty versug

VT Whether a nonuniform sensitivity position—sensitive de-
By using the relative sensitivity instead of the absolutesse tector is better than a counting detector depends on the
tivity, the source intensityy has units of counts impinging on characteristics of the counting detector used for comparis
the detector per unit time. This figure, along with Figure 5& position—sensitive detector provides information abthe
shows that the detection performance of the square is betieurce position, whereas a counting detector does not. For
when the sensitivity is larger, and that detection perfaroea some applications, the position information could outvwieiy
is better for source positions where the slope of the seitgiti smaller AUC for some source positions.



C. Uniform Sensitivity Detector with Spatially—Uniform Un considers only the semicircle in which the interaction ooed.
known Background Notice that the difference in AUC between the known and
We analyze the detection performance of a 2D unifoer’—nk_”OW” background cases for each test statistic decraases
sensitivity circular position—sensitive detector witteauation #7 increases. Recall from Figure 3c that the angular uncer-
1 and radiusr with a point source in a spatially uniform tainty decreases gsr increases. As the angglar uncertal_nty
background ofunknownintensity \,, with the goal of ex- decreases, the variance of the background mFensny_etetlma_\
amining how not knowing the background affects detectidifcreases because the detector can more reliably distingui
performance. We use thg, 1] element of the inverse of the SOUICe and background photons. One could recover the AUC
33 block Fisher information matrix in (9). We remove tiia 0St" by not knowing the background by increasing the scan
row and column of (8) because there is n® to parameterize iMe somewhat.
the background mixture in this model. We then use (17) *

quantify the AUC. 1 [ == Known Background (SIT)
—E— Unknown Background (SIT)

Figure 6 shows the AUC for a position—sensitive detect Unknown Background (MDT)
. . . . 0.9 -~ Known Background (GLRT)
in a uniform background of known and unknown intensit Unknown Background (GLRT) N
as a function of the true background intensity. As the tr. 0.8
background intensity increases, the difference between 1 2

AUCSs of known and unknown background increases for ea %[

particular test statistic. As in the known background cas 06
the SIT outperforms the GLRT. In Figure 6, we also sho

the performance of the MDT [3]. The MDT, as presented i 0.5
[3] assumes a spherical array of detectors, and the detec! ur

considered in this work record interactions in the interiqgig 7: AUC for spatially uniform background of known and

of the det.ector. As the attenuation coeffﬁme;mto.f these | nknown intensity versus attenuation—radius productfior=
detectors increases, they behave more like a circular arr A7 = 100

of scintillators. To evaluate the performance of the MD

for finite—attenuation detectors, we computed the asynaptot
mean number of counts recorded in the semicircles facing and

opposite the source. The MDT performs better than the GLRT . . ) )

and worse than the SIT for low source—to-background rauios[i)' Position—Sensitive versus Counting Detectors with Un-

this experiment. We assumed that the MDT knows the sou#éréown Background

position, so that the boundary between the two semicirgles i In practice, one can sometimes measure the background
not estimated. Although this is not a fair comparison, itegiv prior to screening for sources of interest. Also, an expeeel

the MDT the advantage. operator of a counting detector could plausibly guess the

background with some degree of uncertainty. The detection
performance of such an operator depends on the accuracy
or distribution of such guesses. As a hypothetical example,

suppose that the operator of a counting detector applies the
GLRT for a “known background” hypothesis test using a

Q background rate), distributed according to the following
< gamma distribution [17, p. 291]:
Known Background (SIT)
—E— Unknown Background (SIT) xp 7;\b/§
Unki Back d (MDT) N v — e
0.6 S e e e p(Aidn,€) = A (25)
Unknown Background (GLRT)| 1" (&) é‘?b
0.5 - . 3
0 150

50 00
Background Cc’“”tsj)‘bT where ¢ is a scale parameter that could represent the op-

Fig. 6: AUC vs. \,~ for spatially uniform background of erator’'s accuracy and, is the true background rate. Note

known and unknown intensity background where = 10 thatE [As] = XA and Var (&) = A€ If ¢ is small, then
andar = 10. the operator’s guesses are narrowly distributed about the

true background rate, and &sincreases, the guesses are
farther from the mean, on average. The gamma distribution
Figure 7 shows the AUC for a position—sensitive detect@s a reasonable model for operator uncertainty becauses of it
in a spatially uniform background of known and unknowmonnegativity, and there may be other models that are more
intensity as a function of the attenuation—radius prodAst. accurate in practice. Figure 8 shows the AUC of the GLRT
the ur product increases, the difference in AUC between thesing an operator’s guess, for various scale paramgétérgen
known and unknown background case decreases for the 8iIfien¢ is small, the position—sensitive detector with layge
and GLRT. Also, asur increases, the SIT performs bettestill performs better. This is because &s+ 0 and ur — oo,
than the MDT. A possible explanation for this is that the SIThe AUCs of both detectors approach the known background
considers the interaction location of each photon and th& Mzase, where Theorem 1 applies.



1 : : : : nonuniform detector in an unknown background.

This work addressed the benefits of position—sensitive-capa
0.8 bility in photon—counting detectors. In a practical sejtione
OB T T T L T T T T may wish to know whether or not position—sensitive capshbili
S — Imaging Detector is worth the added cost. This is a complex issue due to
< 0.4 Counting Detector £=0.1 | 1 the variety of high—energy photon detection technologies.
-'- Counting Detector £=0.5 many technologies, such as scintillators or position-itieas
0.2r - Counting Detector &=1 ] Compton imaging systems, the position—sensitive capgabili
0 : - : : - comes at little to no extra cost because they are designed to

be imaging systems. Furthermore, position—sensitive Gomp
imaging is an emerging technology and its current price does
Fig. 8: AUC vs.pr for position—sensitive and counting detecnt reflect its true cost if it were to be mass—produced. In
tors, where the counting detector uses a “guessed” backdrow actice, one could use the analysis framework of this paper
rate in the “known background” GLR7 = A7 = 10. to perform a cost—benefit analysis of available technology.
This work focused on evaluating the detection performance
of position—sensitive detectors and comparing it to the per
VI. CONCLUSION AND FUTURE WORK formance Qf counting detectors'.'Future yvprk coulq extend
this analysis to networks of position—sensitive sensoirscesS
We investigated how position—sensitive capability impactounting sensors are typically much less expensive, future
the detection performance in photon counting detectorthén work will lay the foundation for cost-benefit analysis for
case of a uniform-sensitivity detector in known backgroungse of position—sensitive detectors for networked aptitina.
we showed in Theorem 1 that position—sensitive capabilifthe numerical calculations considered single a photonggner
always improves detection performance in terms of asyngptoand future work should consider energy spectra [18]. The
AUC for the SIT and the GLRT when the source intensity ifumerical results were for single photon interaction defsc
small relative to the background intensity. We also showeghd future work will extend these results to Compton detsgto
empirically that the SIT can outperform the GLRT in termgyhich can record multiple interactions. In processing Ctamp
of AUC. interactions, one often forms an approximate model for the
In reality, detector sensitivity may be nonuniform. Fobsystem response, e.g. [18]. Future work to evaluate the gsym
nonuniform—sensitivity detectors, the benefit of posiiontotic detection performance of Compton detectors should ac
sensitive capability depends on detector quality and thi@oee count for the model mismatch introduced by approximations
of comparison. For sufficiently largel, the square position— to the system response function.
sensitive detector outperformed a round counting deteaftor
equal area, but for smalll, the counting detector performed
better for some source positions. Also, for sufficiently thig
ul, the position—sensitive detector can even outperform a Hy- Proof of Theorem 1
pothetical counting detector that “knows” the source posit Proof: We first show the inequality (21). By the block
An unknown background intensity is likely in practicalmatrix inversion formula applied to the the Fisher inforinat
detection scenarios. As in the nonuniform sensitivity citsge  matrix (9),
difficult to compare position—sensitive and counting dites 1 1 T .
We found that a position—sensitive detector that does not F (@)p1)™" =Fe(6) (K[lvll ’K[2,1]K[2,2]K[271])’
know the background rate, can outperform a counting _ _ (26)
detector with an operator who has the ability to estimatBUs. to show (21), it suffices to show that
the background intensity accurately. However, the redults T 1
the unknown background case are mixed because which type ((K“*” -D- K[Q’”K@:?]K[Q*”) > 0. (27)

of detector has a higher AUC depends on many factorss simplify notation, we introduce the following shorthand
such as detector size, detector attenuation, and the yarticp — p(r|D;0) andpg = ps(r|D; ¢). Since the sensitivity is

background model. uniform, lets(¢) = s for all ¢ € ®. Now,
To compare a nonuniform position—sensitive detector to a o
counting detector in the case of an unknown background, Kpa =1 *K[2,1]K[2,2]K[2,1]
one must make assumptions about the operator of a counting:K[1 y-1- QK[E I}Kfl Kop+KP KL K
. . : L ) , ] 2,212 2,1] (2,1] 13 2,212 [2,1]
detector, as we did with the uniform—sensitivity detector i T
unknown background. Alternatively, one could model the —(Kjpy —1)—E PsVg (soPs)
background intensity with a prior distribution. The pauntar ’ p?
application of the detection system will determine the best [psV¢ (Sops)]

ur

APPENDIX

-1
K[Q,Q]K[QJ]

method of comparison. Detection performance in this case is —K§,1]K[§,12]E (28)
governed by the combined effects of unknown background
and nonuniform sensitivity, which we studied separatelye T +K[72“)1]K‘1 E

intuition from the separate analyses applies to the case of a (2,2]

p2
Vg (50ps) Vi (Sops)]

-1
p2 K[Q,Q]K[Zl]'
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Using the fact that

o - of3]-x 5] e 2
E [(Ps - p)

2
p2 }

we can rewrite (28) as

(ps — p)?
Ky - K[2 1]K[2 Q]KP y=E { p2
(ps — P)VZ; (sops)
—E l - K[Q}Q]K[Q,H
Vg (sops) 4 ! Ps — P
= P K[2,2]K[2 1] P
T
V5 (sops)
¢
+E ( 5 K[212]K[271]
VI (sops)
( ¢ P K[Q}Q]K[Q,l] (29)
2
ps—p Ve (s0pPs)
> 0. (31)
Equality holds wherps(r|D;¢) = p(r|D; ) because in
this case,
2 2
|5 el ]
s
and
Vo (s

Kp1=E [4;5);{35} 50/ Vps(r|D; ¢)dr =

that (29) follows from (28) by the fact that when sensitivity
is uniform,

E [M} e [(PS —p) Vs <50ps>] e
P p
because
vT
E pd’(jOPS)] :So/ V4ps(r|D; ¢)dr =0".  (35) t
P R
"o

B. Sample Derivations of Fisher Information

1) Derivation of K|, 1;: The[l, 1] component of the Fisher (3]
information is given by

52 [4]
Substituting
y (5]
| Z (¢)ps(ri|D; p))*
da? = (bl L|D B) + as(@)ps(ri|D; $))*’

F(0)2,1

(33) ) [

where0 is the zero vector, so equality is attained in (27). Note — = Vgs(¢)

and using (3) with iterated expectation yields

L 2g) % (r4|D; )
FO =~ s @R | 2 5 (D)
() o%(r[D: )
- (AzT as(@net E [p2<r|D; 6) ]
() {p%oﬂm;qs)}
S N as@ | prID0)
% _~_O([S() )Kl 1 = Fe(0) K1y

2) Derivation of K5 1;: The[2, 1] component of the Fisher
information is given by

F(0)1 = —E [w(,iuo)] .

Using the model in (4),

=TVg¢s(¢) —

ELUL g [TelldstriDio)]
N+ as(@) p(r|D;0)
¢

n E[J] as(9) E[PS(TD;¢)V¢(5( )PS(T|D;¢))}
(Ao + as(@))? p2(r|D; 0)
V(s(9)ps(r|D; ¢))
=7Vgs(¢) —TE [ o(r|D; 0) }
Tas(é) o [PS(T|D ;@) Ve (s(d)p S(T|D§¢))}
Ap + as(o) p2(r|D;0)
__Tas() E[ ps(r|D; ¢)V¢( (@)p S(T|D§¢)):|
Ao + as() p%(r|D; 0)
aF.(0)
= ) [2.1]

where the third step follows because

Ve(s(d)ps(r|D;o))| . .
p(r|D;0) } */qub (@)ps(r|D; p)d

ps(r|D; @)dr = V4s(9),

by the assumption that integration and differentiation are
interchangeable.
The other terms in (9) have similar derivations.
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