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Abstract—There are many systems for counting photons such
as gamma–rays emitted from radioactive sources. Many of these
systems are also position–sensitive, which means that the system
provides directional information about recorded events. This
paper investigates whether or not the additional information
provided by position–sensitive capability improves the perfor-
mance of detecting a point–source in background. We analyze
the asymptotic performance of the generalized likelihood ratio
test (GLRT) and a test based on the maximum–likelihood (ML)
estimate of the source intensity for systems with and without
position–sensitive capability. When the background intensity is
known and detector sensitivity is spatially uniform, we prove that
position–sensitive capability increases the area under the receiver
operating characteristic curve (AUC). For cases when detector
sensitivity is nonuniform or background intensity is unknown, we
provide numerical results to illustrate the effect of the parameters
on detection performance.

Index Terms—Detection, generalized likelihood ratio test
(GLRT), asymptotic

I. I NTRODUCTION

The ability to detect radioactive material is important for
security and nuclear nonproliferation. For security applica-
tions, the goal is to screen passengers and cargo for nuclear
explosives or other potentially harmful materials. For nonpro-
liferation applications, the goal is to assess the amount of
different isotopes present at a nuclear reactor to ensure that
the facility is not producing weapons materials. One means of
detecting radioactive sources is to count gamma–ray photons
emitted from it. Such a detector, hereafter called a counting
detector, is limited by its inability to determine the direction or
other attributes of incoming photons. In contrast, a position–
sensitive detector provides some information in addition to
the number of counts. It is reasonable to hypothesize that
directional information can improve detection capabilityby
distinguishing between photons from a localized source and
photons from a distributed background.

There is a wide body of literature on the problem of gamma–
ray source detection. A common assumption in the field of
security imaging is that sources of radiation are small, so
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they appear point–like to a detector [1]. There are many
gamma–ray detection modalities including stationary radiation
portal monitors [1], coded aperture imaging systems [2], arrays
of scintillating detectors [3], and position–sensitive Compton
detectors [4], [5]. Some detection algorithms are specific to
certain modalities, such as using images reconstructed from a
coded aperture system to detect a point–source [2]. A mean
difference test (MDT) statistic was applied to scintillating
arrays in [3]. In this paper, we analyze the detection perfor-
mance of two tests that are based on the likelihood: one is
the generalized likelihood ratio test (GLRT), and the otheris
the ML estimate of the source intensity. We refer to the latter
as the source intensity test (SIT). We compare the asymptotic
performance of the GLRT and SIT to the MDT presented in
[3].

When performing detection using the GLRT with a
position–sensitive Compton imaging detector in a known back-
ground, a particular experiment found that position informa-
tion did not significantly improve detection performance over
merely counting received photons [6]. In light of the numerous
modalities that provide information beyond the number of
received counts, we seek to show theoretically how position–
sensitive capability affects detection performance. The goals
of this work are to explain previous empirical results, suchas
those contained in [6], and to help guide the design of future
detectors.

The question of whether or not imaging capability im-
proves detection performance was addressed in [7] in the
context of coded–aperture imaging systems. Reference [7]
shows that if the background intensity is unknown, imaging
may improve SNR [7] and thus detection performance by
providing a means to separate the otherwise indistinguishable
source and background photons. The analysis in this paper
differs from that of [7] because we treat the problem from
a detection task–based point of view [8]. We analyze the
task of source detection using the asymptotic performance of
various test statistics applied to detectors with and without
position–sensitive capability. Our treatment of detection differs
from that in [7] because SNR does not capture the additional
information received on a per–photon basis by a position–
sensitive detector.

In this work, we quantify detection performance using the
area under the receiver operating characteristic curve (AUC).
This metric is independent of any particular threshold value
and is a measure of the overall detectability [9].

The novel contribution of this work is the task–based
analysis of the asymptotic performance of the GLRT and SIT
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for detecting a single source in background using detectors
with and without position–sensitive capability. We prove The-
orem 1, which states that in a known background, a uniform–
sensitivity position–sensitive detector always has equalor
better detection performance asymptotically, in terms of AUC,
than a counting detector of equal sensitivity. Our analysisalso
provides an expression that quantifies how much position–
sensitive capability increases the AUC.

We compare the AUCs of position–sensitive and counting
detectors when the assumptions of Theorem 1 do not hold. For
the case of known background and nonuniform sensitivity, we
numerically evaluate the asymptotic AUC of the GLRT and
SIT for a simple position–sensitive detector of nonuniform
sensitivity. Our results show that, unlike the uniform sensitivity
case, a position–sensitive detector with nonuniform sensitivity
can have a smaller AUC than a uniform–sensitivity counting
detector of equal area for some source positions, particularly
for a position–sensitive detector with poor sensitivity and poor
position resolution. However, as sensitivity and resolution im-
prove, the position–sensitive detector can have better detection
performance. We use examples of various detectors to show
how nonuniformity and other detector properties relate to
detection performance, which could help in practical design
problems.

We also show how relaxing the assumption of a known
background impacts detection performance in terms of AUC
through numerical examples. We use simple detectors to
show that the degradation in detection performance caused
by an unknown background is related to uncertainty in the
source position estimate. The information that a position–
sensitive detector records allows it to distinguish sourceand
background photons when the source and background have
different spatial distributions but identical energies. Acounting
detector does not have this capability when the source and
background photons are of the same energy, so it is difficult
to directly compare position–sensitive and counting detectors
in an unknown background. More specifically, one cannot set
the appropriate threshold for a test using a counting detector.
In our analysis, we assume that the operator of a counting
detector sets the threshold with a randomly chosen background
intensity and examine how the distribution of the chosen
background intensity affects the difference in AUC between
the counting and position–sensitive detectors. The specific
examples are meant to be a guide in analyzing and comparing
particular systems.

II. M ATHEMATICAL BACKGROUND

The model described in this section is general enough to
describe any system that records a Poisson–distributed number
of measurements or events, where the events are independent
and each event is described by a vector of recorded attributes.
This model accurately describes position–sensitive Compton
detectors, coded aperture detectors, and scintillator arrays. The
model is based on [8] and [10]. It assumes a fixed scan time,
thus the number of recorded events is random.

A. Measurement Model

Following the notation of [8], letr̃ = (r1, r2, . . . , rJ )
denote a list ofJ recorded attribute vectors from photon
interaction events. Each elementri of r̃ is itself a vector of
attributes describing theith event. An example of a detector
that one can describe with this model is a position–sensitive
Compton detector. A Compton detector records a Poisson–
distributed numberJ of gamma–ray photons. Each detected
photon interacts one or more times inside the detector and
the detector records these interaction locations and possibly
other attributes such as deposited energy. We assume that
distinct attribute vectors are statistically independent, which is
reasonable provided the count rates are low enough to avoid
dead time effects [8].

In the detection problem considered here, the goal is to
decide whether or not a point–source is present in an envi-
ronment with some background. Denote the source intensity
by α ∈ [0,∞) with units of countsemitted per unit time.
The probability distribution of recorded attribute vectors r for
events that originate at the source may depend on parameters
other than the source intensity, and we denote the vector of
additional parameters byφ ∈ Φ. In the 3D far–field when the
source and background are of the same energy, an example
for the setΦ is [0, 2π] × [0, π], which represents all possible
source positions in terms of azimuthal and polar angle in
space. If a detector is energy–sensitive and the source and
background energy spectra differ, the source energy could also
be an element ofφ.

We model the background as a linear combination of a
finite number of fixed, known distributions. We parameterize
the background by the rateλb in counts recorded per unit
time and a vector of mixture coefficientsβ, such that the
probability distribution of recorded events given that they
originated from background is a mixture of the distributions
of recorded attributes given that they came from each object
[10]. For this linear model, the background count rate,λb, is
not a function ofβ.

We define the vectorθ to be the vector of all unknown
parameters. When the source and background intensities and
position parameters are all unknown,

θ = (α,φ, λb,β). (1)

A similar parameterization of a far–field point source is given
in [3].

Let D be the event that a photon is recorded andG be
the event that a photon passes through the detector. We define
the sensitivity, which is the probability of recording a photon
given that it came from directionφ, to be

s(φ)
△
= p (D;φ) = p(D|G;φ)p(G;φ), (2)

where p (D|G;φ) is the intrinsic sensitivity, which depends
on the detector shape and attenuation, andp(G;φ) is the
geometric sensitivity, which depends on the fraction of emitted
photons that pass through the detector [11, p. 65]. In 3D,
the geometric sensitivity is the solid angle subtended by
the detector in a spherical coordinate system centered at the
source.
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Let p(r|D;θ) denote the distribution of recorded attributes
r ∈ R, whereR is the set of all possible event attributes.
Let pS(r|D;φ) and pB(r|D;β) denote the distributions of
recorded event attributesr given that they are detected and
come from the source and background, respectively. The
overall distribution of recorded attributes (given that anevent
is detected) is a mixture ofpS(r|D;φ) andpB(r|D;β) given
by [10]

p(r|D;θ) =
λbpB(r|D;β) + αs(φ)pS(r|D;φ)

λb + αs(φ)
. (3)

As shown in [8], the likelihood ofθ is

p(r̃;θ) =

J
∏

i=1

p(ri|D;θ)e−J̄(θ)J̄(θ)J/J !, (4)

and the number of recorded photons obeys the Poisson distri-
bution

J ∼ Poisson
(

J̄(θ)
)

, (5)

with mean given by

J̄(θ)
△
= E [J ] = τ (λb + αs(φ)) , (6)

whereτ denotes the known measurement recording time.
We can make the concept of a counting detector more

concrete by the following definition:

Definition 1. A detector is acountingdetector if and only if
pS(r|D;φ) = pB(r|D;β) almost everywhere1 for all φ ∈ Φ
and mixture coefficientsβ.

Definition 1 says that in a counting detector, the distribution
of event attributes is independent of whether or not the event
originated from the source. Otherwise we call it an position–
sensitive detector. By this definition, a detector that is energy–
sensitive but not does not record interaction locations is not a
counting detector. In such a detector, the recorded energies
can produce some position information, so we treat spec-
trometers that do not record interaction locations similarly to
spectrometers that do. The asymptotic expressions in this paper
allow one to compare the asymptotic detection performance of
particular spectrometers that do and do not record interaction
locations. We refer to detectors that are not counting detectors
as position–sensitivedetectors, although a position–sensitive
detector does not necessarily record interaction locations.

B. Fisher Information

The asymptotic detection performances of the test statistics
examined in this work depend on the Fisher information matrix
F (θ). To facilitate the analysis ofF (θ), we define its block
components as follows:

F (θ) =









F[1,1] FT
[2,1] FT

[3,1] FT
[4,1]

F[2,1] F[2,2] FT
[3,2] FT

[4,2]

F[3,1] F[3,2] F[3,3] FT
[4,3]

F[4,1] F[4,2] F[4,3] F[4,4]









, (7)

1Throughout, “almost everywhere” means with respect to the distribution
of r in (3)

whereF[1,1] is 1× 1, F[2,1] is dim(φ)× 1, F[2,2] is dim(φ)×
dim(φ), F[3,1] is 1×1, F[3,2] is 1×dim(φ), F[3,3] is 1×1, F[4,1]

is dim(β)×1, F[4,2] is dim(β)×dim(φ), F[4,3] is dim(β)×1,
andF[4,4] is dim(β)× dim(β). In source detection problems,
the source positionφ, the background intensityλb, and the
background shape parametersβ are nuisance parameters.

A counting detector is neither capable of estimatingφ
nor distinguishing source and background events of the same
energy becausepS(r|D;φ) does not depend onφ by Defini-
tion 1. Because of this, for the purposes of defining the Fisher
information, we assume thatλb, β, and the value ofs(φ)
are known to a counting detector, so the Fisher information
is a scalar in this case. Using the model in (4) and (5), the
likelihood for the counting case isp (J ;θ) = J̄(θ)Je−J̄(θ)/J !,
for which the Fisher information is given by

Fc(θ)
△
=

τs2(φ)

λb + αs(φ)
. (8)

To help express the Fisher information matrix (7) for
a position–sensitive detector, we first define the following
functions ofr:

g1(r) = pS(r|D;φ)

g2(r) = ∇φ(s(φ)pS(r|D;φ))

g3(r) = pB(r|D;β)

g4(r) = ∇βpB(r|D;β),

where ∇β is the column gradient with respect toβ. Note
that g1, g3 : R → R, g2 : R → R

dim(φ), and g4 : R →
R

dim(β). Using (3), (4), and (5), one can show that the Fisher
Information for a position–sensitive detector is given by

F (θ) = Fc(θ)

















K[1,1]
αKT

[2,1]

s(φ)

K[3,1]

s(φ)

λbK
T
[4,1]

s(φ)

αK[2,1]

s(φ)

α2K[2,2]

s2(φ)

αKT
[3,2]

s(φ)

αλbK
T
[4,2]

s2(φ)

K[3,1]

s(φ)

αK[3,2]

s(φ)

K[3,3]

s2(φ)

λbK
T
[4,3]

s2(φ)
λbK[4,1]

s(φ)

αλbK[4,2]

s2(φ)

λbK[4,3]

s2(φ)

λ2
bK[4,4]

s2(φ)

















,

(9)
where

K[i,j]
△
= E

[

gi(r)g
T
j (r)

p2(r|D;θ)

]

, (10)

provided that the expectation and the gradient with respectto
the parameters are interchangeable. Appendix B gives sample
derivations of the block Fisher information elements.

In the case where the background intensities are known, we
remove the entries corresponding to the unknown background
and the Fisher information for a position–sensitive detector
simplifies to:

F (θ) = Fc(θ)

[

K[1,1]
α

s(φ)K
T
[2,1]

α
s(φ)K[2,1]

α2

s2(φ)K[2,2]

]

. (11)

The elements of the Fisher information appear prominently in
the detection analyses that follow.
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C. Test statistics for source detection

In the source detection problem, we would like to discern
between two hypotheses:

H0 : α = 0,
H1 : α > 0.

(12)

Based on the model (3) and (5), there are several reasonable
tests for this problem.

1) Generalized Likelihood Ratio Test (GLRT):The GLRT
is a common method of choosing between two hypotheses
when one or more of the hypotheses depends on unknown
parameters [12]. We can write the GLRT as

2 log ΛGLRT

H1

≷

H0

γ, (13)

where the GLRT test statistic is

ΛGLRT
△
=

maxα,φ,λb,β p(r̃; (α,φ, λb,β), H1)

maxφ,λb,β p(r̃; (α = 0,φ, λb,β), H0)
. (14)

To calibrate the test thresholdγ and analyze the perfor-
mance of the detector, one must determine the distribution
of ΛGLRT. If one uses a restricted ML estimator (MLE)
motivated by the one–sided hypothesis in (12), the distribution
of ΛGLRT is complicated because underH0, the parameterα
lies on the boundary of the parameter space [13]. To simplify
the analysis of the GLRT and give intuition, instead of (12),
we consider the two–sided test

H0 : α = 0
H1 : α 6= 0,

(15)

which is also the basis of the analysis in [14]. When the test is
treated with the two–sided formulation in (15) and the source
intensity is small, it is shown in [12, pp. 239-240] that the
asymptotic distribution of the test statistic is given by

2 log (ΛGLRT) ∼
{

χ2
1 (η) , H1

χ2
1 (0) , H0,

(16)

whereχ2
1(η) denotes the non–central chi-square distribution

with one degree of freedom and noncentrality parameterη.
AssumingF(θ) is invertible, for the model (4), the noncen-
trality parameter is

η = α2
(

F−1 (θ)[1,1]

)−1

. (17)

This asymptotic framework is also used to analyze a test of
whether one or two sources are present in [14].

2) Wald Test: The Wald test is a classical test for the
composite hypothesis problem and is known to be approxi-
mately asymptotically equivalent to the GLRT for small source
intensities [12, p. 188]. The Wald test for the source detection
problem is given by

ΛW = α̂2
ML

(

F−1
(

θ̂
)

[1,1]

)−1

, (18)

where θ̂ is the ML estimate ofθ. The Wald test is a non–
monotonic function ofα̂ML when α̂ML is the unrestricted
MLE of α. Although the source intensity cannot be physically

less than zero, one can find̂αML by maximizing the likelihood
over the real line. Intuitively, a negative estimate of the source
intensity is strong evidence for the null hypothesis. Either
squaring or thresholding negative source intensity estimates
at zero can reduce detection performance by reducing the
separability of the test statistic distributions under thetwo
hypotheses, especially for weak sources. Our numerical re-
sults do not include the Wald test since it is asymptotically
equivalent to the GLRT.

3) Source Intensity Test (SIT):Because the squaring oper-
ation in the Wald test statistic can degrade detection perfor-
mance, we consider the following source intensity test statistic

ΛSIT
△
= α̂ML.

This test was also considered in the context of array processing
[15]. By the asymptotic normality of the MLE [12, p. 240],
we have that asymptotically,

α̂ML ∼







N
(

0,F−1 (θ0)[1,1]

)

, H0

N
(

α,F−1 (θ)[1,1]

)

, H1,
(19)

where θ0 is the parameter vector under the null hypothesis
with α = 0. The next section uses the asymptotic distributions
in (16) and (19) to show that position–sensitive capability
improves detection performance.

4) Mean Difference Test (MDT):The mean difference test
statistic is proposed in [3] and is equivalent to

ΛMDT
△
= Jsrc − Jback, (20)

whereJsrc is the number of photons recorded on all source–
exposed surfaces of the detector andJback is the number of
photons recorded on all surfaces not exposed to the source.
When the source position is unknown, one must estimate
which surfaces are exposed to the source. The asymptotics
of the MDT are given in [3].

III. E FFECT OFPOSITION–SENSITIVE CAPABILITY ON

DETECTION PERFORMANCE

As illustrated in Figure 1, the AUC of the GLRT for (15) is
a monotone function of the noncentrality parameterη in (17),
so to show that position–sensitive capability improves AUC,
it suffices to show that position–sensitive capability increases
η. Furthermore, if position–sensitive capability increases η for
all values ofα ≥ 0, then position–sensitive capability will
improve the performance of the SIT by reducing the variance
of the test statistic under each hypothesis in (19).

A. Effect of Position–Sensitive Capability for a Uniform Sen-
sitivity Detector with Known Background

We first define the concept of a uniform–sensitivity detector:

Definition 2. A detector has uniform–sensitivity ifs(φ) = s0
for all φ ∈ Φ, wheres0 is a constant.

The main result of this section, given by Theorem 1, is that
the detection performance of a uniform–sensitivity position–
sensitive detector is greater than or equal to that of a uniform



5

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

Noncentrality parameter η

A
U

C

Fig. 1: AUC of GLRT (14) versus noncentraltity parameterη
of the asymptotic distribution of the GLRT.

sensitivity counting detector. The AUC of the GLRT applied
to a position–sensitive detector is greater than the AUC of
the GLRT applied to a counting detector if the noncentrality
parameter of the asymptotic distribution underH1 in (17)
is larger for a position–sensitive detector. As shown in [12,
p. 232], the asymptotic distribution of the GLRT is most
accurate for small source intensities because the derivation
of the asymptotic distribution assumes that the log–likelihood
evaluated atα = 0 is approximately equal to the second order
approximation of the log–likelihood about the value of the
source intensity estimatêαML. For the SIT, a detector with
position–sensitive capability performs better if the variances
in (19) are smaller for the position–sensitive detector. The
asymptotics of the SIT do not assume a small source intensity.
The above discussion leads to the sufficient condition that
position–sensitive capability improves the AUC of the GLRT
and SIT for anyθ ∈ Θ:

(F(θ)−1
[1,1])

−1 > Fc(θ). (21)

Theorem 1. For a uniform-sensitivity detector in a known
background,(F−1(θ)[1,1])

−1 ≥ Fc(θ), i.e the reciprocal of
the [1,1] component of the inverse Fisher Information Matrix
(11) for a position–sensitive detector is greater than or equal
to that of a counting detector (8). Therefore, the asymptotic
AUC for a position–sensitive detector is greater than or equal
to the asymptotic AUC of a counting detector in a known
background when the GLRT with a small source intensity or
the SIT is used.

The proof, which is given in Appendix A, shows that the
noncentrality parameters of the GLRT for position–sensitive
and counting detectors,ηi andηc, respectively, obey

ηi
ηc

=
(F−1(θ)[1,1])

−1

Fc(θ)
≥ 1. (22)

Furthermore, ifF−1(θ) is diagonal,
ηi
ηc

= K[1,1], (23)

so position–sensitive capability increases the noncentrality
parameterη in (17) by the factorK[1,1] in (9). In this case,
the inequality in Theorem 1 becomes strict.

IV. SETUP FORNUMERICAL CALCULATIONS

In §V, we numerically evaluate the Fisher information (9)
for 2D circular detectors of radiusr and 2D square detectors

with side length2l to illustrate Theorem 1 and to explore
the cases where Theorem 1 does not apply. The detectors
in this section do not necessarily represent any particular
detector technology and are used for illustrative purposes
only. The simplified detectors have tractable models for the
recorded attributes, facilitating accurate calculation of the
Fisher information.

For simplicity, we assume that these detectors record only
single photon interaction events and that the source and
background energy spectra are identical. For each recorded
event, the detector records the position of the interaction(x, y).
The attribute vectorri is the interaction position of theith
event. Each attribute vectorri has length 2, so we compute the
components of the Fisher information (10) numerically using
Riemann approximation. This hypothetical system allows us
to gain intuition on how detector nonuniformity and unknown
background affect detection performance. This intuition will
be useful when thinking about more realistic 3D detectors.

For this analysis, we assume that the point–source is in the
far–field, soφ ∈ [0, 2π) denotes the source position in the 2D
plane. The density of recorded attributes,p(x, y|D;θ) depends
on the source positionφ, so the parameter vectorφ in (1) is
equal toφ.

The probability density of photon interaction locations is
governed by the Beer-Lambert law for attenuation [16, pp.
54-56]. The density of interaction events at a particular point
inside the detector is a decreasing function of the length of
material that a photon must pass through to reach that point.
The number of photons, on average, that interact in a given
length of material is parameterized byµ, the material linear
attenuation coefficient at the energy of incoming gamma-rays,
which is assumed to be known. The attenuation coefficient
depends on detector material and influences its position reso-
lution. The interaction probability distribution is givenby

p(x, y|D;θ) =
1

l(φ)p (D;φ)
µe−µdi(x,y;φ) (x, y) ∈ R, (24)

wheredi(x, y;φ) is the distance that the photon must travel in
the directionφ through the detector before interacting at(x, y),
and l(φ) is the largest distance between any two lines with
slopetan(φ) that pass through the detector. These quantities
are illustrated in Figure 2.

Fig. 2: Diagram of square detector with side length2l.

It is difficult to define the intrinsic position resolution of
these systems, so we report the angular uncertainty measured
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by the square root of the Cramer–Rao lower bound on the
position estimate

√

(F(θ)−1)[2,2], whereF(θ) is defined in
(9).

V. NUMERICAL RESULTS

We first consider uniform–sensitivity position–sensitiveand
counting detectors in a known background to illustrate the
results of Theorem 1 and to explore under what conditions
position information is most beneficial. Next, we consider
a square position–sensitive detector, which has nonuniform
sensitivity, and compare its performance to a uniform counting
detector of equal area. We then examine the performance
of uniform–sensitivity detectors in unknown background. We
exclude the case of a nonuniform sensitivity detector in
an unknown background because its analysis requires many
assumptions.

A. Uniform Sensitivity Detector with Known Background

A circular detector with radiusr has inherent uniform
sensitivity due to its circular symmetry. Figure 3a shows the
AUC, the position–sensitive gain factorK[1,1] from (9), and
the angular uncertainty as a function of attenuation–radius
productµr for a circular detector. The quantityατ represents
the expected number of photons emitted from the source
during the scan andλbτ represents the expected number of
background photons recorded. The expected number of source
photons recorded is given byατs0, where s0 = s(φ) as
defined in (2). We denote the sensitivity bys0 to emphasize
that the sensitivity of a circular detector is not a functionof
source position in the far field. In this section, we consideronly
source photons that pass through the detector, i.e.,p(G;φ) = 1
in (2). As guaranteed by Theorem 1, the AUC of the position–
sensitive detector always exceeds that of the the counting
detector for each test.

The AUC of the SIT exceeds that of the GLRT for this
experiment. This performance difference comes from the fact
that the GLRT is asymptotically equivalent to the Wald test
statistic, which involves a square of the source activity esti-
mate. When one uses an unrestricted MLE of the source in-
tensity, this squaring operation reduces the separation between
test statistic values under the two hypotheses.

Figure 3d showss0 as a function ofµr to aid interpreting
Figure 3a. For this experiment, the Fisher information matrix
is diagonal, soK[1,1] is the multiplicative improvement in
the noncentrality parameter of the asymptotic distribution of
the GLRT underH1, as expressed in (23). Asµr increases,
the angular uncertainty decreases and the difference in AUC
between the detectors with and without position–sensitive
information increases. Figures 3a and 3b illustrate that asthe
detector provides more precise position–sensitive information,
the improvement in detection performance due to position–
sensitive information increaseseven when the background is
known.

Figure 4 shows the AUC for a circular uniform–sensitivity
detector as a function of source intensity for a fixed back-
ground intensity. The AUC values for the position–sensitive
and counting detectors differ the most for source intensities
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Fig. 3: Various quantities for a circular uniform–sensitivity
detector withατ = 10, λbτ = 100, and geometric sensitivity
p(G|φ) = 1.

near the background intensity. For low source–to–background
ratios, the source is difficult to detect with either detector, and
when the source–to–background ratio is large, the source is
so easily detected that position–sensitive capability provides
little additional benefit. Again, the position–sensitive detector
always has higher AUC than the counting detector as expressed
in Theorem 1, and the SIT performs better than the GLRT.

The next section considers the detection performance of
nonuniform–sensitivity detectors, to which Theorem 1 does
not apply, but which can be more practical to build than
uniform sensitivity detectors.
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Fig. 4: AUC versus expected source counts for a circular
uniform–sensitivity detector withλbτ = 100 andµr = 5.

B. Nonuniform Sensitivity Detector with Known Background

For implementation and manufacturing reasons, current
position–sensitive Compton imaging detectors are often box–
shaped [4]. We examined the performance of the GLRT
and SIT applied to the 2D square detector in Figure 2 to
gain insight into the performance of nonuniform sensitivity
detectors.

In the case of a position–sensitive detector, the maximum–
likelihood estimate of the source intensity depends ons(φ),
but a counting detector, by definition, gives no information
aboutφ. To compute the ML estimate of the source intensity
with a counting detector, one would need to assume a par-
ticular value ofs(φ) becauses(φ) appears in the likelihood
and is a function of the unobservable positionφ. Substituting a
fixed value fors(φ) will result in a likelihood model that does
not match the true distribution, so the estimator based on that
model can be biased. Since the asymptotic analysis considered
in this work does not apply when the parameter estimators
are biased, we compare the square position–sensitive detector
to a circular uniform–sensitivity counting detector of equal
area with radiusr = 2l/

√
π. This comparison constrains the

amount of detector material and explores whether the position–
sensitive square or the counting circle has better detection
performance using the SIT and GLRT.

Figure 5a shows the AUC of the square position–sensitive
and the circular counting detectors as a function of source
position for both the GLRT and SIT. Forµl = 0.5, the
square position–sensitive detector performs worse than the
circular counting detector. However, the detector withµl = 5
outperforms the counting detector for all source positions. As
in the uniform–sensitivity case, the SIT outperforms the GLRT.

To aid in visualization, we present the sensitivity of the
square relative to that of a circular detector of equal area.To
compute the relative sensitivity in Figure 5b, we normalized
the geometric sensitivity of the square detector in (2) by that
of a circular detector of the same area, so in this case,

p(G|φ) = 2l (| cosφ|+ | sinφ|)
4l√
π

.

By using the relative sensitivity instead of the absolute sensi-
tivity, the source intensityα has units of counts impinging on
the detector per unit time. This figure, along with Figure 5a,
shows that the detection performance of the square is better
when the sensitivity is larger, and that detection performance
is better for source positions where the slope of the sensitivity

curve is small. In practice, one could generate similar plots
with the appropriate sensitivity for a particular application.

Figure 5c shows the angular uncertainty as a function of
source position. The AUC in Figure 5a is largest when the
angular uncertainty is largest nearφ = 45◦, but this is not
contradictory because the sensitivity, shown in Figure 5b,
is approximately uniform nearφ = 45◦. Because of this,
the Fisher information matrix is approximately diagonal for
source positions nearφ = 45◦, which means that the position
nuisance parameter has little effect on the[1, 1] component of
F (θ).
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Fig. 5: AUC, relative sensitivity, and angular uncertaintyfor
square position–sensitive and circular counting detectors of
equal area (r = 2l/

√
π) vs.φ with µl = 0.5 (left) andµl = 5

(right), andατ = λbτ = 10.

Whether a nonuniform sensitivity position–sensitive de-
tector is better than a counting detector depends on the
characteristics of the counting detector used for comparison.
A position–sensitive detector provides information aboutthe
source position, whereas a counting detector does not. For
some applications, the position information could outweigh a
smaller AUC for some source positions.
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C. Uniform Sensitivity Detector with Spatially–Uniform Un-
known Background

We analyze the detection performance of a 2D uniform–
sensitivity circular position–sensitive detector with attenuation
µ and radiusr with a point source in a spatially uniform
background ofunknown intensity λb, with the goal of ex-
amining how not knowing the background affects detection
performance. We use the[1, 1] element of the inverse of the
3×3 block Fisher information matrix in (9). We remove the4th
row and column ofF (θ) because there is noβ to parameterize
the background mixture in this model. We then use (17) to
quantify the AUC.

Figure 6 shows the AUC for a position–sensitive detector
in a uniform background of known and unknown intensity
as a function of the true background intensity. As the true
background intensity increases, the difference between the
AUCs of known and unknown background increases for each
particular test statistic. As in the known background case,
the SIT outperforms the GLRT. In Figure 6, we also show
the performance of the MDT [3]. The MDT, as presented in
[3] assumes a spherical array of detectors, and the detectors
considered in this work record interactions in the interior
of the detector. As the attenuation coefficientµ of these
detectors increases, they behave more like a circular array
of scintillators. To evaluate the performance of the MDT
for finite–attenuation detectors, we computed the asymptotic
mean number of counts recorded in the semicircles facing and
opposite the source. The MDT performs better than the GLRT
and worse than the SIT for low source–to–background ratios in
this experiment. We assumed that the MDT knows the source
position, so that the boundary between the two semicircles is
not estimated. Although this is not a fair comparison, it gives
the MDT the advantage.
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Fig. 6: AUC vs. λbτ for spatially uniform background of
known and unknown intensity background whereµr = 10
andατ = 10.

Figure 7 shows the AUC for a position–sensitive detector
in a spatially uniform background of known and unknown
intensity as a function of the attenuation–radius product.As
the µr product increases, the difference in AUC between the
known and unknown background case decreases for the SIT
and GLRT. Also, asµr increases, the SIT performs better
than the MDT. A possible explanation for this is that the SIT
considers the interaction location of each photon and the MDT

considers only the semicircle in which the interaction occurred.
Notice that the difference in AUC between the known and

unknown background cases for each test statistic decreasesas
µr increases. Recall from Figure 3c that the angular uncer-
tainty decreases asµr increases. As the angular uncertainty
decreases, the variance of the background intensity estimate
decreases because the detector can more reliably distinguish
source and background photons. One could recover the AUC
“lost” by not knowing the background by increasing the scan
time somewhat.

Fig. 7: AUC for spatially uniform background of known and
unknown intensity versus attenuation–radius product forατ =
10, λbτ = 100.

D. Position–Sensitive versus Counting Detectors with Un-
known Background

In practice, one can sometimes measure the background
prior to screening for sources of interest. Also, an experienced
operator of a counting detector could plausibly guess the
background with some degree of uncertainty. The detection
performance of such an operator depends on the accuracy
or distribution of such guesses. As a hypothetical example,
suppose that the operator of a counting detector applies the
GLRT for a “known background” hypothesis test using a
background ratěλb distributed according to the following
gamma distribution [17, p. 291]:

p
(

λ̌b;λb, ξ
)

= λ̌
λb
ξ
−1

b

e−λ̌b/ξ

Γ
(

λb

ξ

)

ξ
λb
ξ

, (25)

where ξ is a scale parameter that could represent the op-
erator’s accuracy andλb is the true background rate. Note
that E

[

λ̌b

]

= λb and Var
(

λ̌b

)

= λbξ. If ξ is small, then
the operator’s guesses are narrowly distributed about the
true background rate, and asξ increases, the guesses are
farther from the mean, on average. The gamma distribution
is a reasonable model for operator uncertainty because of its
nonnegativity, and there may be other models that are more
accurate in practice. Figure 8 shows the AUC of the GLRT
using an operator’s guess, for various scale parametersξ. Even
whenξ is small, the position–sensitive detector with largeµr
still performs better. This is because asξ → 0 andµr → ∞,
the AUCs of both detectors approach the known background
case, where Theorem 1 applies.
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Fig. 8: AUC vs.µr for position–sensitive and counting detec-
tors, where the counting detector uses a “guessed” background
rate in the “known background” GLRT.ατ = λbτ = 10.

VI. CONCLUSION AND FUTURE WORK

We investigated how position–sensitive capability impacts
the detection performance in photon counting detectors. Inthe
case of a uniform–sensitivity detector in known background,
we showed in Theorem 1 that position–sensitive capability
always improves detection performance in terms of asymptotic
AUC for the SIT and the GLRT when the source intensity is
small relative to the background intensity. We also showed
empirically that the SIT can outperform the GLRT in terms
of AUC.

In reality, detector sensitivity may be nonuniform. For
nonuniform–sensitivity detectors, the benefit of position–
sensitive capability depends on detector quality and the method
of comparison. For sufficiently largeµl, the square position–
sensitive detector outperformed a round counting detectorof
equal area, but for smallµl, the counting detector performed
better for some source positions. Also, for sufficiently high
µl, the position–sensitive detector can even outperform a hy-
pothetical counting detector that “knows” the source position.

An unknown background intensity is likely in practical
detection scenarios. As in the nonuniform sensitivity case, it is
difficult to compare position–sensitive and counting detectors.
We found that a position–sensitive detector that does not
know the background rateλb can outperform a counting
detector with an operator who has the ability to estimate
the background intensity accurately. However, the resultsin
the unknown background case are mixed because which type
of detector has a higher AUC depends on many factors,
such as detector size, detector attenuation, and the particular
background model.

To compare a nonuniform position–sensitive detector to a
counting detector in the case of an unknown background,
one must make assumptions about the operator of a counting
detector, as we did with the uniform–sensitivity detector in
unknown background. Alternatively, one could model the
background intensity with a prior distribution. The particular
application of the detection system will determine the best
method of comparison. Detection performance in this case is
governed by the combined effects of unknown background
and nonuniform sensitivity, which we studied separately. The
intuition from the separate analyses applies to the case of a

nonuniform detector in an unknown background.
This work addressed the benefits of position–sensitive capa-

bility in photon–counting detectors. In a practical setting, one
may wish to know whether or not position–sensitive capability
is worth the added cost. This is a complex issue due to
the variety of high–energy photon detection technologies.In
many technologies, such as scintillators or position–sensitive
Compton imaging systems, the position–sensitive capability
comes at little to no extra cost because they are designed to
be imaging systems. Furthermore, position–sensitive Compton
imaging is an emerging technology and its current price does
not reflect its true cost if it were to be mass–produced. In
practice, one could use the analysis framework of this paper
to perform a cost–benefit analysis of available technology.

This work focused on evaluating the detection performance
of position–sensitive detectors and comparing it to the per-
formance of counting detectors. Future work could extend
this analysis to networks of position–sensitive sensors. Since
counting sensors are typically much less expensive, future
work will lay the foundation for cost–benefit analysis for
use of position–sensitive detectors for networked applications.
The numerical calculations considered single a photon energy,
and future work should consider energy spectra [18]. The
numerical results were for single photon interaction detectors,
and future work will extend these results to Compton detectors,
which can record multiple interactions. In processing Compton
interactions, one often forms an approximate model for the
system response, e.g. [18]. Future work to evaluate the asymp-
totic detection performance of Compton detectors should ac-
count for the model mismatch introduced by approximations
to the system response function.

APPENDIX

A. Proof of Theorem 1

Proof: We first show the inequality (21). By the block
matrix inversion formula applied to the the Fisher information
matrix (9),

(F−1(θ)[1,1])
−1 = Fc(θ)

(

K[1,1] −KT
[2,1]K

−1
[2,2]K[2,1]

)

,

(26)
thus, to show (21), it suffices to show that

(

(K[1,1] − 1)−KT
[2,1]K

−1
[2,2]K[2,1]

)

> 0. (27)

To simplify notation, we introduce the following shorthand:
p = p(r|D;θ) andpS = pS(r|D;φ). Since the sensitivity is
uniform, let s(φ) = s0 for all φ ∈ Φ. Now,

K[1,1] − 1−KT
[2,1]K

−1
[2,2]K[2,1]

=K[1,1] − 1− 2KT
[2,1]K

−1
[2,2]K[2,1] +KT

[2,1]K
−1
[2,2]K[2,1]

=(K[1,1] − 1)− E

[

pS∇T
φ (s0pS)

p2

]

K−1
[2,2]K[2,1]

−KT
[2,1]K

−1
[2,2]E

[

pS∇φ (s0pS)

p2

]

(28)

+KT
[2,1]K

−1
[2,2]E

[

∇φ (s0pS)∇T
φ (s0pS)

p2

]

K−1
[2,2]K[2,1].
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Using the fact that

K[1,1] − 1 = E

[

p2S
p2

]

− 2E

[

pS

p

]

+ E

[

p2

p2

]

= E

[

(pS − p)2

p2

]

,

we can rewrite (28) as

K[1,1] − 1−KT
[2,1]K

−1
[2,2]K[2,1] = E

[

(pS − p)2

p2

]

−E

[

(pS − p)∇T
φ (s0pS)

p2
K−1

[2,2]K[2,1]

]

−E





(

∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)T
pS − p

p





+E

[(

∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)T

(

∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)]

(29)

= E

[(

pS − p

p
−

∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)2]

(30)

≥ 0. (31)

Equality holds whenpS(r|D;φ) = p(r|D;θ) because in
this case,

E

[

(

pS − p

p

)2
]

= E

[

(

pS − pS

pS

)2
]

= 0, (32)

and

K[2,1] = E

[∇φ (s0pS)

pS

]

= s0

∫

R
∇pS(r|D;φ)dr = 0,

(33)
where0 is the zero vector, so equality is attained in (27). Note
that (29) follows from (28) by the fact that when sensitivity
is uniform,

E

[

pS∇φ (s0pS)

p2

]

= E

[

(pS − p)∇φ (s0pS)

p2

]

, (34)

because

E

[

p∇T
φ (s0pS)

p2

]

= s0

∫

R
∇T

φpS(r|D;φ)dr = 0
T . (35)

B. Sample Derivations of Fisher Information

1) Derivation ofK[1,1]: The [1, 1] component of the Fisher
information is given by

F(θ)[1,1] = −E

[

∂2

∂α2
L (θ)

]

.

Substituting

∂2

∂α2
L (θ) = −

J
∑

i=1

(s(φ)pS(ri|D;φ))
2

(λbpB(ri|D;β) + αs(φ)pS(ri|D;φ))
2 ,

and using (3) with iterated expectation yields

F(θ)[1,1] = − s2(φ)

(λb + αs(φ))2
E





J
∑

j=1

p2S(ri|D;φ)

p2 (ri|D;θ)





=
s2(φ)

(λb + αs(φ))2
E [J ]E

[

p2S(r|D;φ)

p2(r|D;θ)

]

=
τs2(φ)

λb + αs(φ)
E

[

p2S(r|D;φ)

p2(r|D;θ)

]

=
τs2(φ)

λb + αs(φ)
K[1,1] = Fc(θ)K[1,1].

2) Derivation ofK[2,1]: The [2, 1] component of the Fisher
information is given by

F(θ)[2,1] = −E

[

∇φ

∂

∂α
L (θ)

]

.

Using the model in (4),

F(θ)[2,1]=τ∇φs(φ)−
E [J ]

λb + αs(φ)
E

[∇φ(s(φ)pS(r|D;φ))

p(r|D;θ)

]

+
E [J ]αs(φ)

(λb + αs(φ))2
E

[

pS(r|D;φ)∇φ(s(φ)pS(r|D;φ))

p2(r|D;θ)

]

=τ∇φs(φ)− τE

[∇φ(s(φ)pS(r|D;φ))

p(r|D;θ)

]

+
ταs(φ)

λb + αs(φ)
E

[

pS(r|D;φ)∇φ(s(φ)pS(r|D;φ))

p2(r|D;θ)

]

=
ταs(φ)

λb + αs(φ)
E

[

pS(r|D;φ)∇φ(s(φ)pS(r|D;φ))

p2(r|D;θ)

]

=
αFc(θ)

s(φ)
K[2,1],

where the third step follows because

E

[∇φ(s(φ)pS(r|D;φ))

p(r|D;θ)

]

=

∫

R
∇φs(φ)pS(r|D;φ)dr

= ∇φs(φ)

∫

R
pS(r|D;φ)dr = ∇φs(φ),

by the assumption that integration and differentiation are
interchangeable.

The other terms in (9) have similar derivations.
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