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Robust Contour Matching Via
the Order-Preserving
Assignment Problem

Clayton Scott and Robert Nowak

Abstract—A common approach to determining corresponding
points on two shapes is to compute the cost of each possible pairing
of points and solve the assignment problem (weighted bipartite
matching) for the resulting cost matrix. We consider the problem
of solving for point correspondences when the shapes of interest
are each defined by a single, closed contour. A modification of the
standard assignment problem is proposed whereby the correspon-
dences are required to preserve the ordering of the points induced
from the shapes’ contours. Enforcement of this constraint leads to
significantly improved correspondences. Robustness with respect
to outliers and shape irregularity is obtained by required only a
fraction of feature points to be matched. Furthermore, the min-
imum matching size may be specified in advance. We present effi-
cient dynamic programming algorithms to solve the proposed opti-
mization problem. Experiments on the Brown and MPEG-7 shape
databases demonstrate the effectiveness of the proposed method
relative to the standard assignment problem.

Index Terms—Assignment problem, contour matching, dynamic
programming, MPEG-7 shape database, shape descriptors.

I. INTRODUCTION

ACOMMON approach to shape matching proceeds as fol-
lows. First, extract a set of features points from each ob-

ject by, for example, running an edge detector over each image
and sampling from the edges. Second, determine pairs of corre-
sponding features in the two feature sets. Third, use the corre-
spondence information to find an aligning transformation such
as the least-squares transformation from a certain class (e.g.,
rigid, affine, thin-plate splines).

The second stage, determining point correspondences, has
been the subject of much research. An increasingly popular
approach is to build a cost matrix that records the dissimilarity
between all possible pairs of points on the two shapes. The dis-
similarity may be computed, for example, as a distance between
shape descriptors associated to the points on each shape. Point
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correspondences are then given by the solution to the assignment
problem (AP) for the constructed cost matrix. Typically, only a
fraction of points are assigned counterparts on the other shape,
to allow for outliers and irregularities. Recent papers demon-
strating the effectiveness of this approach include [1]–[4].

In this paper, we consider the special case where the shapes
of interest are defined by a single, closed contour. Our contribu-
tion is the formulation and solution of a modification of the stan-
dard assignment problem that requires the assignment of corre-
sponding points to preserve the cyclic ordering inherited from
the contour. Fig. 1(c) and (d) shows point correspondences that
do and do not preserve the ordering of the boundary points, re-
spectively. By enforcing this constraint, the accuracy and geo-
metric fidelity of the point matching is increased, leading, in
turn, to improved registration and shape similarity assessment.

We formulate the cyclic order-preserving assignment
problem (COPAP) which takes as input an cost matrix,
an outlier tolerance , and an optional minimum matching
size . We also present two dynamic programming algorithms
to solve COPAP. The first algorithm applies when the matching
size is unconstrained and has an imple-
mentation. The second algorithm applies when the matching
size is constrained , and has a worst case running
time of . Experiments with the Brown and MPEG-7
CE-Shape-1 databases demonstrate the improved performance
of COPAP versus the standard assignment problem. In our
experiments, we use the shape context as our shape descriptor
[1]. We find that COPAP leads to moderate improvements for
database retrieval, significant improvements for image registra-
tion, and, when , a faster algorithm when compared to the
standard assignment problem (which has cubic complexity).

We emphasize that we are not proposing a holistic approach to
shape matching, but rather a component of the shape matching
process. The input to our algorithm is a cost matrix and the
output is a matching. Thus, our method can be combined with
various edge detectors, shape descriptors, aligning transforma-
tions, and so on, provided the shapes are defined by a single con-
tour. MATLAB code (with compiled C-MEX subroutines for
COPAP and AP) for reproducing our experiments is available
at http://www.dsp.rice.edu/.

A. Related Work

The shape-matching problem has been considered in various
contexts, and a wide range of methodologies have been applied
to it. The order-preserving assignment problem developed in
this paper is most closely related to three areas of past work.

1057-7149/$20.00 © 2006 IEEE
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Fig. 1. (a) Two shapes in the form of binary images. (b) Representations
of those shapes by points sampled from the boundary. (c) Order-preserving
matching. (d) Nonorder-preserving matching.

The first area follows our general setup, but does not assume
the feature points are ordered in any way; see [1], [3], and the
references therein. These approaches are based on assigning to
each feature point a local shape descriptor that captures the spa-
tial relationships with other feature points. The method of [3]
uses labeled distance sets to capture information about the spa-
tial interrelations of features. The notion of a shape context,
based on log-polar histograms of feature points, is put forward
in [1] and extended in [5] as a robust method for capturing spa-
tial relationships. Labeled distance sets and shape contexts lead
naturally to a formulation of the feature correspondence task
as an assignment (or bipartite graph matching) problem. The
cyclic order-preserving assignment problem that we propose in
this paper can be interpreted as a constrained version of the as-
signment problem.

The second area concerns what can be described as “con-
tour matching” or “curve matching” methods [6]–[14]. These
methods are based on extracting features from contours and then
matching the features to gauge the degree of similarity between
the two shapes. The referenced approaches differ by the features
used to characterize each curve and by the matching algorithm
used to determine point correspondences. Typically, a dynamic
programming algorithm is used to preserve the ordering of fea-
tures along the contour. Where our work departs from these is
in our assumption that correspondences are derived from a cost
matrix and/or in our formulation and solution of the point cor-
respondence (assignment) problem.

A third related area includes “structural graph matching”
methods, e.g., [15], [16], and the references therein. A key
aspect of these methods is that an effort is made to preserve
the spatial interrelationships of feature points in the matching
process. This can be accomplished using graphical models in
conjunction with expectation-maximization or belief propaga-
tion algorithms. Our framework may be thought of as a linear
graphical model (along the contour) and spatial structure (cyclic
ordering) is enforced. Thus, the problem and algorithm in this
paper is a special case of structural graph matching which
happens to admit an optimal solution in polynomial-time.
The general cases [15], [16] require iterative algorithms and
convergence to an optimal solution is not guaranteed.

II. LEARNING POINT CORRESPONDENCES

FROM A COST MATRIX

In this section, we introduce notation and formulate the
problem. Let and denote points on the
first and second object, respectively. Assume without loss of
generality that . A cost matrix is an
matrix of nonnegative entries, where is a measure of dis-
similarity between and . One method of specifying cost
matrices is via shape descriptors. A shape descriptor may be
thought of as a mapping from the image domain to a high-di-
mensional vector that encodes shape information of points in
the feature set. The cost matrix is then defined by

where is a function that measures the distance between shape
descriptors.

The cost matrix is used to determine a matching of feature
points. To obtain robustness with respect to outliers, it is
common practice to allow some points to not be matched,
or, equivalently, to be matched to nonexistent “dummy
points.” Thus, for our purposes, a matching is a function

such that no value in
is assumed more than once. Here indicates

that the point is not paired with a point on the second shape.
Let , and let denote the set of all matchings of

size at least , i.e., having at least nondummy pairings. The
optimal (nonorder preserving) matching between the two point
sets is defined to be the solution of

(1)

where for all , and is a user-specified parameter. More
is said on choosing and below in Section III-B.

When , this problem is known as the assignment
problem, or the weighted bipartite graph matching problem. It is
well studied, and several algorithms exist that produce exact so-
lutions, most (including the fastest) having cubic running time
[17]. When or , one extends the cost matrix
to an matrix by padding with , where .
This effectively adds dummy points to each point set. The ex-
tended cost matrix is then input to the assignment problem, and
the resulting assignment, when restricted to correspondences
between nondummy points, provides a solution to (1).

III. CYCLIC ORDER-PRESERVING ASSIGNMENT PROBLEM

Our focus in this paper is a special case of the scenario just
described. In particular, we assume that the points in each point
set are arranged along a single, closed contour. Further assume
that each point set is labeled, starting at 1, in a clockwise manner.
We could also label the points counterclockwise, as long as both
point sets have the same orientation.1 The location of the first
point does not matter.

1For shape matching in the case where shapes are mirror images of each other,
in which case the contours need opposite orientations, we match the first image
to the second image and its mirror image and take the matching with smaller
cost.
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With this a priori information about the problem, it makes
sense to constrain the matching to preserve the ordering of the
contour. Let denote the set of all matching in that
preserve the cyclic ordering induced by the contours. Thus, if

and comprise the points not mapped to
0 by , then there exists such that

. We define the cyclic order-preserving as-
signment problem (COPAP) as

(2)

where, again, for all , as in (1).
The search space for COPAP is exponentially large. For each

, there are subsets of the first point set of

size subsets of the second point set of size , and cyclic

matchings between each such pair of point sets, for a total of

possible matchings to consider. For

a typical problem, say and , this number
is on the order of . Thus, a brute-force exhaustive search in
infeasible. Yet, the search space for COPAP is smaller than for
AP, which has an solution. This does not imply, however,
that it can be solved more quickly. Indeed, because of the special
structure of AP, it can be formulated as a special linear program
and solved efficiently via primal-dual or other algorithms [18].
We are unaware of any such reduction for COPAP. As we see
below, a faster (than cubic) algorithm exists for COPAP when

.

A. Linear Order-Preserving Assignment Problem

The basic strategy for solving COPAP involves repeated
application of the linear order-preserving assignment problem
(LOPAP), defined as follows. Take to be the collection of
all that preserve the linear order of the original point
sets. In other words, if and comprise the
points not mapped to 0 by , then .
Then, LOPAP is the problem

(3)

where, as before, for all . Although we omit a formal
argument, it should be clear that for some cyclic “shift” of the
feature points on the first contour, COPAP and LOPAP have the
same solution. Therefore, to solve COPAP, it suffices to solve
LOPAP for all such shifts (of which there are ), and take the
solution with smallest cost.

B. Choosing and

Consider matching with AP. When has a clear in-
terpretation: Only match pairs of points whose cost is less than
. Thus, is a threshold on the cost of allowed pairings. When

has the same interpretation, except that some pairings
whose costs exceed may be forced into the matching to meet
the constraint on matching size. Therefore, when the cost of a

Fig. 2. Dynamic programming graph for LOPAP when L = 0.

correct matching is expected to be in a certain range, it makes
sense to set and let the number of outliers (as controlled
by ) determine the matching size. In many applications, how-
ever, the cost of correct correspondences may vary over a wide
range, depending for example on the geometric similarity of
the objects. In this case, it makes sense to enforce a minimum
matching size . If the shapes of interest are expected to
be highly similar, it makes sense to let be a large percentage
of . If, on the other hand, shapes are expected to differ by oc-
cluded parts (for example), smaller may be in order.

With COPAP, the story changes in two respects. First, the
interpretation of as a threshold for outlier rejection is now only
approximate. For example, it can happen that all entries in the
cost matrix are less than 1, , and the solution to COPAP has
fewer than matchings. Although, perhaps, counter intuitive
at first, this results from cyclic order preservation: It may be
advantageous to absorb a few higher-cost dummy points into
the matching to allow for much lower cost points elsewhere.

Second, COPAP can be solved much more rapidly when
than when . In fact, for large-scale problems, is

the only realistic option. If the fast algorithm is necessary but a
minimum matching constraint is still desirable, larger matchings
can be obtained by increasing . Moreover, an iterative bisection
search over can be used to come very close to any desired
matching size. With this approach, however, one does lose the
interpretation of as an outlier tolerance.

For examples of how affects database retrieval performance
with AP and COPAP, see Fig. 7. Note that costs derived from
shape contexts are between 0 and 1.

IV. COPAP: UNCONSTRAINED MATCHING SIZE

There are two reasons why COPAP is faster when
compared to the case . The first is that LOPAP can be
solved in only operations compared to for

. The algorithm amounts to finding the minimum cost
path, from the upper left corner to the lower right corner, through
an directed graph as illustrated in Fig. 2. In the
graph, vertical edges are assigned a cost of , diagonal edges are
assigned entries from the cost matrix, and horizontal edges
are weighted by zero. The optimal path can easily be found via
dynamic programming. The algorithm is essentially equivalent,
except for the way in which costs are assigned to edges in the
graph, to a wwll-known dynamic program for minimizing the
“edit distance” between two strings. Note that when ,
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Fig. 3. Grid representation of LOPAP with m = 9; n = 7; and L = 4.
(a) Four dots represent one possible linear order-preserving matching. (b) Notice
the L = 4 bold boxes. The k-th box contains all squares that could possibly be
the k-th point in a lengthL path. Each box is (m�L+1)�(n�L+1) = 6�4.
The shaded squares could not possibly be part of a length L path.

this approach fails because it does not guarantee a minimum
matching size.

The second reason why COPAP is faster when is that,
when solving LOPAP at different shifts, previous solutions to
LOPAP may be used to constrain the search space. If

and LOPAP has been solved at shifts and
of the first point set, then an optimal solution at shift must lie
between the two optimal paths at shifts and . This allows
for a rapid bisection strategy for solving LOPAP at all shifts,
and COPAP may be solved in time. For a more
thorough explanation and justification of this strategy, see Maes
[21], who proposed the idea for rapid cyclic matching of strings
with respect to edit distance.

V. COPAP: CONSTRAINED MATCHING SIZE

Recall that COPAP reduces to solving LOPAP at circular
shifts of the first point set. For simplicity, we first present the
solution to LOPAP in the case . Observe that under this
assumption the optimal matching size must be exactly . This
case is later extended to .

A. LOPAP: the Case

We provide an alternate characterization of LOPAP that aids
in visualizing the algorithm. Consider an grid as depicted
in Fig. 3(a). A black dot at square denotes that point on
the first contour is matched to point on the second contour.
We refer to a path of length as a collection of black dots that
progress down and to the right, as in the figure. Paths are denoted
by . Let each square on the grid be associated with the cost
at the corresponding position in the cost matrix . The total cost
of a path, denoted , is the sum of the over points in the
path. Observe that paths are in one-to-one correspondence with
linear order-preserving matchings. Thus, LOPAP (when )
entails finding the path of length having minimum cost.

The last point in a path, i.e., the point that is furthest down
and to the right, is called the terminal point of the path. Let
denote the path with the smallest cost among all paths of length

that terminate at point (note that is undefined if
or .) Then, the solution of LOPAP is , where

Thus, we can solve LOPAP if we can determine for each
possible and . Fortunately, may be computed recur-
sively. The base of the recursion is simple: For
and is the point . For
is determined as follows: Let denote the predecessor to

in the path . Observe that

Then, is simply with the point appended.
In the above formulation, determining requires a

search over all points above and to the left of , which,
in general, requires considering different options.
However, it is possible to limit the scope of the search to three
options, thus giving rise to a much faster algorithm. The reader
not interested in these details may skip the next paragraph.

We know that terminates at point on the grid, by
definition. There are three possibilities for : (a)
and ; (b) and ; and (c)

and . It is not important that cases (b) and
(c) are not mutually exclusive. The value of is de-
termined by these three cases as follows: (a)

; (b) ; and
(c) . We can determine
which case holds by finding the smallest of these three expres-
sions (which are based on previously computed quantities). If
(a) is smallest, then . If (b) is smallest,
then is the predecessor of in . If (c) is
smallest, then is the predecessor of in .
If both (b) and (c) are minimal, the same value of will
usually be the same, and even if not, the cost of the final path
will be unchanged.

B. Computational Complexity

The complexity of the above algorithm is dominated by the
computation of for , and

. At first glance, there appear to be such quanti-
ties to compute. However, is defined only for certain com-
binations of and . For example, the last point in any path
of length can be no fewer than rows from the top of
the grid, and no fewer than columns from the left side of
the grid. Thus, we need only compute for
and . In general, we need to compute for

and . These re-
gions are represented by the boxes in Fig. 3(b).

This gives a reduction from to
in the number of updates of . Each such update takes a
fixed amount of processing, so the overall runtime of LOPAP
is . Thus, when is very close
to and , the running time can be as low as . If is a
fixed fraction of and , the reduction does not affect the order
of the computational complexity, although it does significantly
decrease the leading constant.
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Fig. 4. Trellis representation of LOPAP with m = n = 4 and L = 3.
(a) Enumeration of grid. (b) Trellis showing all possible length three paths.
LOPAP seeks the path through this trellis with smallest cost.

In practice, with and , COPAP is
solved in about 0.45 s on a 3-GHz processor. This compares with
about 10 ms to solve the standard assignment problem using
the algorithm of Jonker and Volgenant \cite{jonker}. The
large discrepancy is due in large part to the memory
requirements of COPAP. When , the faster algorithm of
Section IV executes in 10 ms, about the same as AP. This algo-
rithm is faster than AP for larger and .

C. Trellis Formulation

The algorithm for LOPAP may be viewed as the
Viterbi algorithm on a certain trellis. Fig. 4 shows a simple ex-
ample. Each node in the trellis corresponds to a square on the
grid, and, hence, to a particular pair of points on the two shapes.
In particular, the nodes in the -th column of the trellis corre-
spond precisely with those squares in the grid representa-
tion such that and . These
are the same points described by the bold boxes in Fig. 3(b), al-
though the dimensions of the problem are different there.

Suppose and are pairings corresponding to nodes
in columns and of the trellis. Then, there is a link between
those two nodes if and only if and . A path through
the trellis thus corresponds to a path on the grid, and to a linear
order-preserving assignment. With this setup, LOPAP may be
viewed as finding the shortest (or least expensive) path through
the trellis, where the cost of the path is the cost of the corre-
sponding assignment. The Viterbi algorithm is a wwll-known
dynamic programming procedure for determining shortest paths
through trellises [20]. A brief inspection reveals that our algo-
rithm coincides with the Viterbi algorithm on this trellis.

D. LOPAP: The Case

It is straightforward to extend the algorithm proposed in Sec-
tion V-A to the general case . From that algorithm, we
know how to construct optimal paths of size .
Because of the recursive nature of the algorithm, computations
may be shared in computing these optimal paths. They may be
constructed in operations, the same as for computing
a single optimal path.

Having determined the optimal paths of size
, the solution to LOPAP with is given by

Recall that denotes the cost of a path/matching, i.e., the sum
of the costs of the individual pairings in the path. In sum, the

Fig. 5. (a) All shapes from the Brown database. (b) Representative shapes from
the MPEG-7 database.

general algorithm for COPAP is , or more precisely,
in light of the discussion in Section V-B,

.

VI. EXPERIMENTS

We conduct experiments on two shape databases. In each
experiment, we compare COPAP with the standard assignment
problem (AP) in two regards: Database retrieval performance
and usefulness in designing aligning transformations. Contours
were extracted using the MATLAB function contourc. If
multiple contours exist for a given shape, the largest is taken
and remaining points are discarded. For a shape descriptor,
we employ the rotationally invariant shape context [1].2 The
cost matrix is formed by computing the chi-squared distance
between pairs of shape contexts on the two contours, as in [1].
The (dis)similarity between shapes is defined to be the overall
cost of the optimal assignment.

A. Brown Shape Database

We present two experiments based on the collection of 25
shapes shown in Fig. 5(a) and obtained from the Brown com-
puter vision group web site [22]. Each row of the figure is con-
sidered to be a separate class. In both experiments, each shape in
the database is matched to every other shape, and a measure of
similarity is assigned. For each shape, the top three most similar
shapes are identified. Performance is evaluated by counting the
number of first-, second-, and third-ranked matches that belong
to the same class as the test pattern.

We uniformly sample 100 points from the contours of
each shape, enforce matchings of size , and set the
outlier parameter at . This experiment was performed
in [1] to demonstrate rotationally invariant shape matching
with shape contexts. The number of correct first-, second-,
and third-ranked matches achieved was and

(we have verified this result). We repeat this experiment,
using COPAP instead to compute the optimal assignment. Our
results are . Results of previous studies
are [22]; [8]; and

[5]. The improved performance of [5]
with respect to our method can be attributed entirely to the
shape descriptor; see the next section for further discussion.

2Here, rotationally invariant means that the log-polar histogram is oriented
with respect to the tangent of the contour.
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The above experiment indicates that, when using the assign-
ment cost for database retrieval, COPAP offers a modest im-
provement over the standard assignment problem. When we
take a closer look at the matchings found by the two methods,
however, the benefits of preserving the cyclic ordering are con-
siderably greater.

A second experiment repeats the one above, but uses a dif-
ferent measure of similarity that better captures the geometric
quality of the correspondences. In particular, we solve for the
optimal assignment between two shapes (as before) using AP
and COPAP, and estimate a geometric transformation based on
the matching. Instead of using the matching cost to quantify
similarity, we now use the average squared error between
transformed points on the first shape and their corresponding
points on the second. The transformation is the least squares
rigid body transformation (variable translation and rotation).
Using COPAP to determine point correspondences, the retrieval
numbers are . Using AP, the numbers are

. Nearly all of the errors when using AP
arise from classes that require rotational invariance (e.g., tools
and airplanes). See for example the matching produced by
COPAP and AP in Fig. 6.

We offer two possible explanations for this gap in perfor-
mance. First, rotation invariant shape matching with shape con-
texts requires the estimation of tangents to the contours, which
can be difficult for contours with corners. Second, several of the
shapes (e.g., tools and airplanes) possess symmetry, or “near-
symmetry.” In other words, some parts of a shape (e.g., the nose
of the airplane) look like other parts (e.g., the wing), as far as
the shape descriptor is concerned. This leads to the behavior in
Fig. 6(b), were AP assigns points on the nose of one airplane
to points on the nose and wing of the other. In contrast, such
a matching is impossible with COPAP. Neighboring points are
forced to match neighboring points, thus helping to overcome
problems arising from estimating tangents (in the case of shape
contexts) and “near-symmetries.”

As a final note, we remark that all of COPAP’s third rank
errors involved the pattern of the F-14 Tomcat [the rightmost
plane in Fig. 5(a)]. As illustrated in Fig. 6(a), this is not due to
a poor registration, but simply to the width of the aircraft. With
a more flexible transformation model, we might expect to avoid
this problem.

B. MPEG-7 Shape Database

Our second set of experiments look at the MPEG-7 shape
database for Core Experiment CE-Shape-1 part B [23], depicted
in Fig. 5(b). The database consists of 1400 shapes, 20 shapes
in 70 categories. Performance is measured by the so-called
“bullseye test”: Each shape is compared to every other shape
in the database, and the number of correct matches in the top
40 is counted. There are 20 possible correct matches per shape
queried. The retrieval rate is the total number of correct matches
divided by the total number possible, . Pre-
vious studies have obtained rates of 75.44% [9], 76.45% [23],
76.51% [1], 77.76% [24], 76.93% [25], 78.17% [11], 79.19%
[4], 80.03% [26], 78.38% [3], 58.50% [13], and 85.40% [5].

We uniformly sample 100 points from the contours of each
shape and take to allow the use of the fast algorithm of

Fig. 6. Aligning two airplanes. (a) Matching and registration produced by
COPAP. (b) Matching and registration produced by the standard assignment
problem. Unlike COPAP, neighboring points are not required to match
neighboring points.

Section IV. Since some of the shapes in the database exhibit
mirror symmetry, when comparing two shapes, we match to
the original image and its mirror image, and use the matching
with the smaller cost. Retrieval rates of COPAP and AP for
various are shown in Fig. 7. Fig. 8 shows recognition rate
(fraction of correct matches) as a function of similarity rank
for .

A clear trend emerges: As increases, COPAP improves
while AP performs worse. Recall that as increases, larger
matchings result. These results are explained by the fact, dis-
cussed in Section VI-A and again below, that COPAP is more
likely than AP to produce a geometrically faithful matching.
If a matching is geometrically faithful, increasing its size will
increase the discriminatory impact of the matching, whereas the
opposite effect results for a geometrically unfaithful matching.

Only one previous method outperforms our approach based
on rotationally invariant shape contexts together with COPAP.
Moreover, the better performance of [5] may be attributed to
the shape descriptor. To achieve their reported rate, they em-
ploy a modified shape context based on “inner distances.” Cyclic
matchings are enforced, but by means of a suboptimal variant
of the algorithm described in Section IV, wherein the optimal
linear assignment is computed at four equally spaced shifts. It
seems reasonable to expect that combining our algorithm for
exact cyclic matching with their shape descriptor would yield
even better results.

It is interesting to note that shape contexts with 100 points
and unconstrained matching outperforms the method of [1],
where shape contexts based on 300 points per shape are used
in conjunction with metrics based on appearance similarity and
deformation energy. Part of the reason may be that we use rota-
tionally invariant shape contexts, whereas [1] does not employ
the rotationally invariant option on this data set, but, perhaps,
a greater reason for the discrepancy is that AP does not always
yield geometrically plausible correspondences, This leads to
poor registration, and, hence, misleading costs due to appear-
ance and deformation energy. To test this hypothesis, we took
several pairs of shapes from the same class and computed the
least squares linear conformal transformation (variable trans-
lation, rotation, and scale) based on the optimal assignment.
The results (not shown) consistently resembled those of Fig. 6,
wherein COPAP produces an accurate registration while AP
produces nonsense.
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Fig. 7. Retrieval rates (in %) of COPAP and AP for the bullseye test on the MPEG-7 shape database.

Fig. 8. Average recognition rate as a function of similarity rank, when � = 0:4.

VII. SUMMARY AND CONCLUSION

We introduce and solve the cyclic order-preserving assign-
ment problem (COPAP), which can be used to find a cyclic
order-preserving matching between two point sets taken from
shapes defined by a single close contour. COPAP has two free
parameters, the minimum matching size and the cost as-
signed to outliers. The general algorithm has com-
plexity and involves solving a linear order-preserving assign-
ment problem (LOPAP) at different shifts. The algorithm for
LOPAP amounts to computing the shortest path through a cer-
tain trellis, and as such can be seen as an instance of the Viterbi
algorithm. In the case , a much faster algo-
rithm for COPAP exists, facilitating the use of cyclic matching
for large-scale problems.

Our experiments reveal the effectiveness of cyclic matchings.
Using the shape context as our shape descriptor, we demonstrate
improved performance versus nonorder-preserving matchings.
The improvement is moderate when using the cost of the optimal
assignment for database retrieval, but major when performing
image registration or using geometric transformations for data-
base retrieval. Indeed, the standard assignment problem can re-
sult in completely meaningless registrations, whereas COPAP
seems much less susceptible to this occurrence.
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