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When estimating finite mixture models, it is common to make as-
sumptions on the mixture components, such as parametric assump-
tions. In this work, we make no distributional assumptions on the
mixture components and instead assume that observations from the
mixture model are grouped, such that observations in the same group
are known to be drawn from the same mixture component. We pre-
cisely characterize the number of observations n per group needed
for the mixture model to be identifiable, as a function of the number
m of mixture components. In addition to our assumption-free anal-
ysis, we also study the settings where the mixture components are
either linearly independent or jointly irreducible. Furthermore, our
analysis considers two kinds of identifiability – where the mixture
model is the simplest one explaining the data, and where it is the
only one. As an application of these results, we precisely characterize
identifiability of multinomial mixture models. Our analysis relies on
an operator-theoretic framework that associates mixture models in
the grouped-sample setting with certain infinite-dimensional tensors.
Based on this framework, we introduce a general spectral algorithm
for recovering the mixture components.

1. Introduction. A finite mixture model P is a probability measure
over a space of probability measures where P ({µi}) = wi > 0 for some finite
collection of probability measures µ1, . . . , µm and

∑m
i=1wi = 1. A realization

from this mixture model first randomly selects some mixture component
µ ∼ P and then draws from µ. Mixture models have seen extensive use in
statistics and machine learning.

A central theoretical question concerning mixture models is that of identi-
fiability. A mixture model is said to be identifiable if there is no other mixture
model that defines the same distribution over the observed data. Classi-
cally mixture models were concerned with the case where the observed data
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X1, X2, . . . are iid with Xi distributed according to some unobserved random

measure µi with µi
iid∼ P. This situation is equivalent to Xi

iid∼
∑m

j=1wjµj . If
we impose no restrictions on the mixture components µ1, . . . , µm one could
easily concoct many choices of µj and wj which yield an identical distribu-
tion on Xi. Because of this, most previous work on identifiability assumes
some sort of structure on µ1, . . . , µm, such as Gaussianity [3, 9, 25]. In this
work we consider an alternative scenario where we make no assumptions
on µ1, . . . , µm and instead have access to groups of samples that are known
to come from the same component. We will call these groups of samples
“random groups.” Mathematically a random group is a random element Xi

where Xi = (Xi,1, . . . , Xi,n) with Xi,1, . . . , Xi,n
iid∼ µi and µi

iid∼ P.
In this setting identifiability is now concerned with the distribution over

Xi and the value of n, the number of samples in each random group. We
call a mixture of measures P n-identifiable if it is the simplest mixture
model (in terms of number of mixture components) that yields the observed
distribution on Xi. We also introduce a concept which is stronger than
identifiability. We call P n-determined if it is the only mixture model that
yields the observed distribution on Xi.

In this paper we show that every mixture model with m components is
(2m − 1)-identifiable and 2m-determined. Furthermore we show that any
mixture model with linearly independent components is 3-identifiable and
4-determined, and any mixture model with jointly irreducible components
is 2-determined. These results, presented in Section 4, hold for any mix-
ture model over any space and cannot be improved. The operator theoretic
framework underlying our analysis is presented in Section 5, and selected
proofs of our main results appear in Section 6, with the rest appearing in
Supplemental Material. In Section 7, we apply our main results to demon-
strate some new and old results on the identifiability of multinomial mixture
models. Section 8 describes a spectral algorithm for the recovery of the mix-
ture components and weights, and experimental results on simulated data
are presented in Section 9. Related work, the problem formulation, and a
concluding discussion are offered in Sections 2, 3, and 10, respectively.

To keep the paper length reasonable, many of the proofs have been omit-
ted and can be found in Supplemental Material. Supplemental Material also
contains an in-depth description of the application of our spectral algorithm
to categorical data (including a consistency proof) and additional technical
details regarding the experiments in Section 9.

2. Previous Work. In classical mixture model theory identifiability
is achieved by making assumptions about the mixture components. Some
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assumptions which yield identifiability are Gaussian or binomial mixture
components [9, 24]. If one makes no assumptions on the mixture components
then one must leverage some other type of structure in order to achieve iden-
tifiability. An example of such structure exists in the context of multiview
models. In a multiview model samples have the form Xi = (Xi,1, . . . , Xi,n)

and the distribution of Xi is defined by
∑m

i=1wi
∏n
j=1 µ

j
i . In [1] it was shown

that if µji are probability distributions on R with µj1, . . . , µ
j
m linearly inde-

pendent for all j and n ≥ 3, then the model is identifiable. In [7] the authors
perform a smoothed analysis of tensor decompositions. They demonstrate
that, with high probability, a tensor’s components are both identifiable and
can be recovered using a polynomial time algorithm, provided the compo-
nent dimensionality is sufficiently high. In that paper the authors go on to
apply the result to multiview models, demonstrating bounds on identifiabil-
ity.

The setting which we investigate is a special case of the multiview model

where µji = µj
′

i for all i, j, j′. If the sample space of the µi is finite then this
problem is exactly the topic modelling problem with a finite number of topics
and one topic for each document. In topic modelling each µi is a “topic” and
the sample space is a finite collection of words. This setting is well studied
and it has been shown that one can recover the true topics provided certain
assumptions on the topics are satisfied [1, 2, 4, 5]. This problem was studied
for arbitrary topics in [22]. In this paper the authors introduce an algorithm
that recovers any mixture of m topics provided 2m−1 words per document.
They also show, in a result analogous to our own, that this 2m − 1 value
cannot be improved. Our proof techniques are quite different than those
used in [22], hold for arbitrary sample spaces, and are less complex.

In Lemma 7.1 we show that, when restricted to finite sample spaces, the
grouped sample setting introduced in this paper is equivalent to a multi-
nomial mixture model. Fundamental bounds on the identifiability of multi-
nomial mixture models can be found in [17, 12]. We will reproduce these
results (and develop some new results) using techniques developed in this
paper. Additional connections to previous work are given later.

3. Problem Setup. We treat this problem in a general setting. For
any measurable space we define δx as the Dirac measure at x. For Υ a set,
σ-algebra, or measure, we denote Υ×a to be the standard a-fold product
associated with that object. Let N be the set of integers greater than or
equal to zero and N+ be the integers strictly greater than 0. For k ∈ N+,
we define [k] to be those elements in N+ which are less than or equal to k.
Let Ω be a set containing more than one element. This set is the sample
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space of our data. Let F be a σ-algebra over Ω. Assume F 6= {∅,Ω}, i.e.
F contains nontrivial events. We denote the space of probability measures
over a measurable space (Ψ,G) as D (Ψ,G). The space D (Ω,F) will be
shortened to D for brevity. We equip D with the σ-algebra 2D so that
each Dirac measure over D is unique. Define ∆ (D) , span ({δx : x ∈ D}).
This is the ambient space where our mixtures of probability measures live.
Let P =

∑m
i=1wiδµi be a probability measure in ∆ (D). Let µ ∼ P and

X1, . . . , Xn
iid∼ µ and denote X = (X1, . . . , Xn). Here X is a random group

sample, which was described in the introduction.
We now derive the probability distribution of X. Let A ∈ F×n. Letting

P reflect both the draw of µ ∼P and X1, . . . , Xn
iid∼ µ, we have

P (X ∈ A) =
m∑
i=1

P (X ∈ A|µ = µi)P (µ = µi)(1)

=
m∑
i=1

wiµ
×n
i (A) .(2)

The second equality follows from Lemma 3.10 in [16]. So the probability
distribution of X is

m∑
i=1

wiµ
×n
i .(3)

We want to view the probability distribution of X as a function of P in
a mathematically rigorous way, which requires a bit of technical buildup.
Let Q ∈ ∆ (D). From the definition of ∆ (D) it follows that Q admits a
representation

Q =
r∑
i=1

αiδνi .

From the well-ordering principle there must exist some representation with
minimal r and we define this r as the order of Q. We can show that the
minimal representation of any Q ∈ ∆ (D) is unique up to permutation of
its indices.

Lemma 3.1. Let Q ∈ ∆ (D) and admit minimal representations Q =∑r
i=1 αiδνi =

∑r
j=1 α

′
jδν′j . There exists some permutation ψ : [r]→ [r] such

that νψ(i) = ν ′i and αψ(i) = α′i for all i.

Proofs of most of the lemmas in this paper are omitted and can be found
in Supplemental Material. The only lemma proved in this paper is Lemma
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6.5 since it is nontrivial and quite crucial for showing some of our bounds
are tight.

Henceforth when we define an element of ∆ (D) with a summation we
will assume that the summation is a minimal representation.

Definition 3.1. We call P =
∑m

i=1wiδµi a mixture of measures if it is
a probability measure in ∆ (D). The elements µ1, . . . , µm, are called mixture
components.

Any minimal representation of a mixture of measures P with m com-
ponents satisfies P =

∑m
i=1wiδµi with wi > 0 for all i and

∑m
i=1wi = 1.

Hence any mixture of measures is a convex combination of Dirac measures
at elements in D.

For a measurable space (Ψ,G) we define M (Ψ,G) as the space of all
finite signed measures over (Ψ,G). We can now introduce the operator Vn :
∆ (D)→M (Ω×n,F×n). For a minimal representation Q =

∑r
i=1 αiδνi , we

define Vn, with n ∈ N+, as

Vn(Q) =

r∑
i=1

αiν
×n
i .(4)

This mapping is well defined as a consequence of Lemma 3.1. From this
definition we have that Vn (P) is simply the distribution of X which we
derived earlier. In the following definitions, two mixtures of measures are
considered equal if they define the same measure.

Definition 3.2. We call a mixture of measures, P, n-identifiable if
there does not exist a different mixture of measures P ′, with order no greater
than the order of P, such that Vn (P) = Vn (P ′).

Definition 3.3. We call a mixture of measures, P, n-determined if
there exists no other mixture of measures P ′ such that Vn (P) = Vn (P ′).

Definitions 3.2 and 3.3 are central objects of interest in this paper. Given a
mixture of measures, P =

∑m
i=1wiδµi then Vn(P) is equal to

∑m
i=1wiµ

×n
i ,

the measure from which X is drawn. If P is not n-identifiable then we know
that there exists a different mixture of measures that is no more complex (in
terms of number of mixture components) than P which induces the same
distribution on X. Practically speaking this means we need more samples in
each random group X in order for the full richness of P to be manifested
in X. A stronger version of n-identifiability is n-determinedness where we
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enforce the requirement that our mixture of measures be the only mixture
of measures (of any order) that admits the distribution on X.

A quick note on terminology. We use the term “mixture of measures”
rather than “mixture model” to emphasize that a mixture of measures should
be interpreted a bit differently than a typical mixture model. A “mixture
model” connotes a probability measure on the sample space of observed data
Ω, whereas a “mixture of measures” connotes a probability measure on the
sample space of the unobserved latent measures D.

4. Main Results. The first result is a bound on the n-identifiability of
all mixtures of measures with m or fewer components. This bound cannot
be uniformly improved.

Theorem 4.1. Let (Ω,F) be a measurable space. Mixtures of measures
with m components are (2m− 1)-identifiable.

Theorem 4.2. Let (Ω,F) be a measurable space with F 6= {∅,Ω}. For
all m ≥ 2, there exists a mixture of measures with m components that is not
(2m− 2)-identifiable.

We mention again that the previous two theorems had been previously
found in [22] for finite sample spaces, using techniques different from our
own. To be explicit, a “finite sample space” in our problem setting is the
assumption that |Ω| < ∞ and F = 2Ω, which implies that the mixture
components are categorical distributions. The following lemmas convey the
unsurprising fact that n-identifiability is, in some sense, monotonic.

Lemma 4.1. If a mixture of measures is n-identifiable then it is q-
identifiable for all q > n.

Lemma 4.2. If a mixture of measures is not n-identifiable then it is not
q-identifiable for any q < n.

Viewed alternatively these results say that n = 2m − 1 is the smallest
value for which Vn is injective over the set of mixtures of measures with m
or fewer components.

We also present an analogous bound for n-determinedness. This bound
also cannot be improved.

Theorem 4.3. Let (Ω,F) be a measurable space. Mixtures of measures
with m components are 2m-determined.
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Theorem 4.4. Let (Ω,F) be a measurable space with F 6= {∅,Ω}. For
all m, there exists a mixture of measures with m components that is not
(2m− 1)-determined.

Again n-determinedness is monotonic in the number of samples per group.

Lemma 4.3. If a mixture of measures is n-determined then it is q-
determined for all q > n.

Lemma 4.4. If a mixture of measures is not n-determined then it is not
q-determined for any q < n.

This collection of results can be interpreted in an alternative way. Con-
sider some pair of mixtures of measures P,P ′. If n ≥ 2m and either mixture
of measures is of order m or less, then Vn (P) = Vn (P ′) implies P = P ′.
Furthermore n = 2m is the smallest value of n for which the previous state-
ment is true for all pairs of mixtures of measures.

Our definitions of n-identifiability, n-determinedness, and their relation to
previous works on identifiability deserve a bit of discussion. Some previous
works on identifiability contain results related to what we call “identifiabil-
ity” and others contain results related what we call “determinedness.” Both
of these are simply called “identifiability” in these works. For example in
[25] it is shown that different finite mixtures of multivariate Gaussian distri-
butions will always yield different distributions, a result which we could call
“determinedness.” Alternatively, in [24] it is demonstrated that mixtures
of binomial distributions, with a fixed number of trials n for every mixture
component, are identifiable provided we only consider mixtures with m mix-
ture components and n ≥ 2m − 1. In this result allowing for more mixture
components may destroy identifiability and thus this is what we would call
an “identifiability” result. The fact that the value 2m − 1 occurs in both
the previous binomial mixture model result and Theorem 4.1 is not a coin-
cidence. We will demonstrate a new determinedness result for multinomial
mixtures models later in the paper, under the assumption that n ≥ 2m. We
will prove these results using Theorems 4.1 and 4.3. To our knowledge our
work is the first to consider both identifiability and determinedness.

Finally we also include results that are analogous to previously shown
results for the finite sample space setting. We note that our proof techniques
are markedly different than the previous proofs for the finite sample space
case.

Theorem 4.5. If P =
∑m

i=1wiδµi is a mixture of measures where
µ1, . . . , µm are linearly independent then P is 3-identifiable.
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This bound is tight as a consequence of Theorem 4.2 with m = 2 since
any pair of distinct measures must be linearly independent.

A version of this theorem was first proven in [1] by making use of Kruskal’s
Theorem [18]. Kruskal’s Theorem demonstrates that order 3 tensors over Rd
admit unique decompositions (up to scaling and permutation) given certain
linear independence assumptions. The linear independence assumption in
Theorem 4.5 is stronger than that contained in Kruskal’s Theorem and thus
yields a simple proof which does not invoke Kruskal’s Theorem. An efficient
algorithm for recovering linearly independent mixture components for finite
sample spaces with 3 samples per random group is described in [2]. Interest-
ingly, with one more sample per group, these mixtures of measures become
determined.

Theorem 4.6. If P =
∑m

i=1wiδµi is a mixture of measures where
µ1, . . . , µm are linearly independent then P is 4-determined.

This bound is tight as a result of Theorem 4.4 with m = 2.
Our final result is related to the “separability condition” found in [11].

The separability condition in the finite sample space setting requires that,
for each mixture component µi, there exists Bi ∈ F such that µi (Bi) > 0
and µj (Bi) = 0 for all i 6= j. There exists a generalization of the separability
condition, known as joint irreducibility.

Definition 4.1. A collection of probability measures µ1, . . . , µm are said
to be jointly irreducible if

∑m
i=1wiµi being a probability measure implies

wi ≥ 0.

In other words, any probability measure in the span of µ1, . . . , µm must be
a convex combination of those measures. It was shown in [8] that separability
implies joint irreducibility, but not visa-versa. In that paper it was also
shown that joint irreducibility implies linear independence, but the converse
does not hold.

Theorem 4.7. If P =
∑m

i=1wiδµi is a mixture of measures where
µ1, . . . , µm are jointly irreducible then P is 2-determined.

A straightforward consequence of the corollary of Theorem 1 in [11] is
that any mixture of measures on a finite sample space with jointly irre-
ducible components is 2-identifiable. The result in [11] is concerned with
the uniqueness of nonnegative matrix factorizations and Theorem 4.7, when
applied to a finite sample space, can be posed as a special case of the result
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in [11]. In the context of nonnegative matrix factorization the result in [11]
is significantly more general than our result. In another sense our result is
more general since it applies to spaces where joint irreducibility and the
separability condition are not equivalent. Furthermore [11] only implies that
the mixture of measures in Theorem 4.7 are identifiable. The determined-
ness result is, as far as we know, totally new. It is worth mentioning that,
in finite sample spaces, the separability condition assumption yields efficient
algorithms for nonnegative matrix factorization [4, 5], whereas we are not
aware of analogous algorithms which are applicable to the more general joint
irreducibility setting.

5. Tensor Products of Hilbert Spaces. Our proofs will rely heavily
on the geometry of tensor products of Hilbert spaces which we will introduce
in this section.

5.1. Overview of Tensor Products. First we introduce tensor products of
Hilbert spaces. Instead of a rigorous primer to the subject, we will simply
state some basic facts about tensor products of Hilbert spaces and hopefully
instill some intuition for the uninitiated by way of example. A thorough
treatment of tensor products of Hilbert spaces can be found in [15].

Let H and H ′ be Hilbert spaces. From these two Hilbert spaces the “sim-
ple tensors” are elements of the form h ⊗ h′ with h ∈ H and h′ ∈ H ′. We
can define an inner product on the simple tensors by setting〈

h1 ⊗ h′1, h2 ⊗ h′2
〉

= 〈h1, h2〉
〈
h′1, h

′
2

〉
.(5)

Let H0 be the inner product space spanned by the simple tensors. The tensor
product of H and H ′ is the completion of H0 and is denoted H⊗H ′. To avoid
potential confusion we note that the notation just described is standard in
operator theory literature. In some literature our definition of H0 is denoted
as H ⊗H ′ and our definition of H ⊗H ′ is denoted H⊗̂H ′.

As an illustrative example we consider the tensor product L2 (R)⊗L2 (R).
It can be shown that there exists an isomorphism between L2 (R) ⊗ L2 (R)
and L2(R2) that maps the simple tensors to separable functions [15], f⊗f ′ 7→
f(·)f ′(·). We can demonstrate this isomorphism with a simple example. Let
f, g, f ′, g′ ∈ L2 (R). Taking the L2(R2) inner product of f(·)f ′(·) and g(·)g′(·)
gives us∫ ∫ (

f(x)f ′(y)
) (
g(x)g′(y

)
)dxdy =

∫
f(x)g(x)dx

∫
f ′(y)g′(y)dy(6)

= 〈f, g〉
〈
f ′, g′

〉
(7)

=
〈
f ⊗ f ′, g ⊗ g′

〉
.(8)
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Beyond tensor product we will need to define tensor power. To begin we
will first show that tensor products are, in a certain sense, associative. Let
H1, H2, H3 be Hilbert spaces. Proposition 2.6.5 in [15] states that there is
a unique unitary operator, U : (H1 ⊗ H2) ⊗ H3 → H1 ⊗ (H2 ⊗ H3), that
satisfies the following for all h1 ∈ H1, h2 ∈ H2, h3 ∈ H3,

U ((h1 ⊗ h2)⊗ h3) = h1 ⊗ (h2 ⊗ h3) .(9)

This implies that for any collection of Hilbert spaces, H1, . . . ,Hn, the Hilbert
space H1 ⊗ · · · ⊗Hn is defined unambiguously regardless of how we decide
to associate the products. In the space H1 ⊗ · · · ⊗ Hn we define a simple
tensor as a vector of the form h1⊗ · · · ⊗ hn with hi ∈ Hi. In [15] it is shown
that H1 ⊗ · · · ⊗ Hn is the closure of the span of these simple tensors. To
conclude this primer on tensor products we introduce the following notation.
For a Hilbert space H we denote H⊗n = H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸

n times

and for h ∈ H,

h⊗n = h⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
n times

.

5.2. Tensor Rank. A tool we will use frequently in our proofs is tensor
rank, which is similar to matrix rank.

Definition 5.1. Let h ∈ H⊗n where H is a Hilbert space. The rank of h
is the smallest natural number r such that h =

∑r
i=1 hi where hi are simple

tensors.

In an infinite dimensional Hilbert space it is possible for a tensor to have
infinite rank. We will only be concerned with finite rank tensors.

5.3. Some Results for Tensor Product Spaces. We present some technical
results concerning tensor product spaces that will be useful for the rest of
the paper. These lemmas are similar to or are straightforward extensions of
previous results which we needed to modify for our particular purposes. The
following lemma is used in the proof of Lemma 5.2 (Supplemental Material)
and Lemma 6.5.

Lemma 5.1. Let H1, . . . ,Hn, H
′
1, . . . ,H

′
n be a collection of Hilbert spaces

and U1, . . . , Un a collection of unitary operators with Ui : Hi → H ′i for all i.
There exists a unitary operator U : H1⊗· · ·⊗Hn → H ′1⊗· · ·⊗H ′n satisfying
U (h1 ⊗ · · · ⊗ hn) = U1(h1)⊗ · · · ⊗ Un(hn) for all h1 ∈ H1, . . . , hn ∈ Hn.

Let (Ψ,G, γ) be a σ-finite measure space. We have the following lemma
that connects tensor power of a L2 space to the L2 space of the product
measure.
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Lemma 5.2. There exists a unitary transform U : L2 (Ψ,G, γ)⊗n →
L2 (Ψ×n,G×n, γ×n) such that, for all f1, . . . , fn ∈ L2 (Ψ,G, γ),

U (f1 ⊗ · · · ⊗ fn) = f1(·) · · · fn(·).(10)

A statement of the following lemma for Rd can be found in [10]. We present
our own proof for the Hilbert space setting in Supplemental Material.

Lemma 5.3. Let n > 1 and let h1, . . . , hn be elements of a Hilbert space
such that no elements are zero and no pairs of elements are collinear. Then
h⊗n−1

1 , . . . , h⊗n−1
n are linearly independent.

The following lemma is a Hilbert space version of a well known property
for positive semi-definite matrices.

Lemma 5.4. Let h1, . . . , hm be elements of a Hilbert space. The rank of∑m
i=1 h

⊗2
i is the dimension of span ({h1, . . . , hm}).

6. Proofs of Theorems. With the tools developed in the previous
sections we will now prove a few, selected, theorems. Due to space constraints
we only prove Theorems 4.1 to 4.4 in this document. These proofs give a good
overview of the general techniques used to prove the other identifiability
and determinedness results, which can be found in Supplemental Material.
These theorems are proved for general measure spaces which introduces a
fair amount of mathematical overhead. There are two basic components to
these proofs, transforming the measure problem into and out of a tensor
framework, and using the tensor framework as a means to manipulate these
objects geometrically. For concreteness it can be helpful to consider the
situation where Ω = {1, 2, . . . , d}, i.e. a finite sample space. In this situation
a mixture component µ can be directly associated with a probability vector
p ∈ Rd where [p]i = µ ({i}) and the tensor p⊗m represents the density of m
iid samples of µ:[

p⊗m
]
i1,...,im

= [p]i1 [p]i2 · · · [p]im(11)

= µ ({i1})µ ({i2}) · · ·µ ({im})(12)

= µ×m ({(i1, i2, . . . , im)}) .(13)

In essence all of our results directly parallel this setting once transformed
into the tensor space.

Before we begin our proofs we need to introduce one additional piece of
notation. For a function f on a domain X we define f×k as simply the



12 VANDERMEULEN AND SCOTT

product of the function k times on the domain X×k,

f×k = f(·) · · · f(·)︸ ︷︷ ︸
k times

.(14)

For a set, σ-algebra, or measure the notation continues to denote the stan-
dard k-fold product.

In these proofs we will be making extensive use of various L2 spaces.
These spaces will be equivalence classes of functions which are equal almost
everywhere with respect to the measure associated with that space. When
considering elements of these spaces, equality will always mean almost ev-
erywhere equality with respect to the measure associated with that space.
When performing integrals or other manipulations of elements in L2 spaces,
we will be performing operations that do not depend on the representative
of the equivalence class. The following lemma will be quite useful.

Lemma 6.1. Let γ1 . . . , γm, π1 . . . , πl be probability measures on a mea-
surable space (Ψ,G), a1 . . . , am, b1, . . . bl ∈ R, and n ∈ N+. If

m∑
i=1

aiγ
×n
i =

l∑
j=1

bjπ
×n
j(15)

then for all n′ ∈ N+ with n′ ≤ n we have that

m∑
i=1

aiγ
×n′
i =

l∑
j=1

bjπ
×n′
j .(16)

Proof of Theorem 4.1. We proceed by contradiction. Suppose there
exist m, l ∈ N+ with l ≤ m such that there two different mixtures of mea-
sures P =

∑m
i=1 aiδµi 6= P ′ =

∑l
j=1 bjδνj , and

m∑
i=1

aiµi
×2m−1 =

l∑
j=1

bjν
×2m−1
j .(17)

Clearly m > 1 otherwise we immediately arrive at a contradiction. By the
well-ordering principle there exists a minimal m such that the previous state-
ment holds. For that minimal m there exists a minimal l such that the pre-
vious statement holds. We will assume that the m and l are both minimal
in this way. This assumption implies that µi 6= νj for all i, j. To prove this
we will assume that there exists i, j such that µi = νj , and show that this
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assumption leads to a contradiction. Without loss of generality we will as-
sume that µm = νl. We will consider the three cases where am = bl, am > bl,
and am < bl.
Case 1. If am = bl then we have that

m−1∑
i=1

ai
1− am

µ×2m−1
i =

l−1∑
j=1

bj
1− bl

ν×2m−1(18)

and from Lemma 6.1 we have

m−1∑
i=1

ai
1− am

µ
×2(m−1)−1
i =

l−1∑
j=1

bj
1− bl

ν×2(m−1)−1.(19)

Setting P =
∑m−1

i=1
ai

1−am δµi and P ′ =
∑l−1

j=1
bj

1−bl δνj , we have that V2(m−1)−1 (P) =

V2(m−1)−1 (P ′) which contradicts the minimality of m.
Case 2. If am > bl then we have

m−1∑
i=1

ai
1− bl

µ×2m−1
i +

am − bl
1− bl

µ×2m−1
m =

l−1∑
j=1

bj
1− bl

ν×2m−1
j(20)

which contradicts the minimality of l by an argument similar to that in Case
1.
Case 3. If am < bl we have that

m−1∑
i=1

ai
1− am

µ×2m−1
i =

l−1∑
j=1

bj
1− am

ν×2m−1
j +

bl − am
1− am

ν×2m−1
l .(21)

Again we will use arguments similar to the one used in Case 1. If l = m then
swapping the mixtures associated with m and l gives us a pair of mixtures
of measures which violates the minimality of l. If l < m then from Lemma
6.1 we have that

m−1∑
i=1

ai
1− am

µ
×2(m−1)−1
i =

l−1∑
j=1

bj
1− am

ν
×2(m−1)−1
j +

bl − am
1− am

ν
×2(m−1)−1
l ,

(22)

which violates the minimality of m, thus completing Case 3.
We have now established that µi 6= νj , for all i, j. We will use the following

lemma to embed the mixture components in a Hilbert space.
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Lemma 6.2. Let γ1, . . . , γn be finite measures on a measurable space
(Ψ,G). There exists a finite measure π and non-negative functions f1, . . . , fn ∈
L1 (Ψ,G, π) ∩ L2 (Ψ,G, π) such that, for all i and all B ∈ G

γi(B) =

∫
B
fidπ.(23)

From Lemma 6.2 there exists a finite measure ξ and non-negative func-
tions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩ L2 (Ω,F , ξ) such that, for all
B ∈ F , µi(B) =

∫
B pidξ and νj(B) =

∫
B qjdξ for all i, j. Clearly no two

of these functions are equal (in the ξ-almost everywhere sense). If one of the
functions were a scalar multiple of another, for example p1 = αp2 for some
α 6= 1, it would imply

µ1 (Ω) =

∫
p1dξ =

∫
αp2dξ = α.(24)

This is not true so no pair of these functions are collinear.
We can use the following lemma to extend this new representation to a

product measure.

Lemma 6.3. Let (Ψ,G) be a measurable space, γ and π a pair of finite
measures on that space, and f a nonnegative function in L1 (Ψ,G, π) such
that, for all A ∈ G, γ (A) =

∫
A fdπ. Then for all n, for all B ∈ G×n we have

γ×n (B) =

∫
B
f×ndπ×n.(25)

Thus for any R ∈ F×2m−1 we have∫
R

m∑
i=1

aip
×2m−1
i dξ×2m−1 =

m∑
i=1

aiµ
×2m−1
i (R)(26)

=
l∑

j=1

bjν
×2m−1
j (R)(27)

=

∫
R

l∑
j=1

bjq
×2m−1
j dξ×2m−1.(28)

The following lemma is a well known result in real analysis (Proposition 2.23
in [13]), but it is worth mentioning explicitly.

Lemma 6.4. Let (Ψ,G, γ) be a measure space and f, g ∈ L1 (Ψ,G, γ).
Then f = g γ-almost everywhere iff, for all A ∈ G,

∫
A fdγ =

∫
A gdγ.
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From this lemma it follows that

m∑
i=1

aip
×2m−1
i =

l∑
j=1

bjq
×2m−1
j .(29)

Applying the U−1 operator from Lemma 5.2 to the previous equation yields

m∑
i=1

aip
⊗2m−1
i =

l∑
j=1

bjq
⊗2m−1
j .(30)

Since l +m ≤ 2m Lemma 5.3 states that

p⊗2m−1
1 , . . . , p⊗2m−1

m , q⊗2m−1
1 , . . . , q⊗2m−1

l(31)

are all linearly independent and thus ai = 0 and bj = 0 for all i, j, a contra-
diction.

Proof of Theorem 4.2. To prove this theorem we will construct a pair
of mixture of measures, P 6= P ′ which both contain m components and
satisfy V2m−2 (P) = V2m−2 (P ′). From our definition of (Ω,F) we know
there exists F ∈ F such that F and FC are nonempty. Let x ∈ F and
x′ ∈ FC . It follows that δx and δx′ are different probability measures on
(Ω,F). The theorem follows from the next lemma. We will prove the lemma
after the theorem proof.

Lemma 6.5. Let (Ψ,G) be a measurable space and γ, γ′ be distinct prob-
ability measures on that space. Let ε1, . . . , εt be t ≥ 3 distinct values in [0, 1].
Then there exist β1, . . . , βt, a permutation σ : [t]→ [t], and l ∈ N+ such that

l∑
i=1

βi
(
εσ(i)γ +

(
1− εσ(i)

)
γ′
)×t−2

=

t∑
j=l+1

βj
(
εσ(j)γ +

(
1− εσ(j)

)
γ′
)×t−2

(32)

where βi > 0 for all i,
∑l

i=1 βi =
∑t

j=l+1 βj = 1, and l, t− l ≥
⌊
t
2

⌋
.

Let ε1, . . . , ε2m ∈ [0, 1] be distinct and let µi = εiδx + (1− εi) δx′ for
i ∈ [2m]. From Lemma 6.5 with t = 2m there exists a permutation σ :
[2m]→ [2m] and β1, . . . , β2m such that

m∑
i=1

βiµ
×2m−2
σ(i) =

2m∑
j=m+1

βjµ
×2m−2
σ(j) ,(33)
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with
∑m

i=1 βi =
∑2m

j=m+1 βj = 1 and βi > 0 for all i.

If we let P =
∑m

i=1 βiδµσ(i) and P ′ =
∑2m

j=m+1 βjδµσ(j) , we have that
V2m−2 (P) = V2m−2 (P ′) and P 6= P ′ since µ1, . . . , µ2m are distinct.

For the next proof we will introduce some notation. For a tensor U ∈
Rd1 ⊗ · · · ⊗ Rdl we define Ui1,...,il to be the entry in the [i1, . . . , il] location
of U .

Proof of Lemma 6.5. From Lemma 6.2, there exists a finite measure
π and non-negative functions f, f ′ ∈ L1 (Ψ,G, π) ∩ L2 (Ψ,G, π) such that,
for all A ∈ G, γ (A) =

∫
A fdπ and γ′ (A) =

∫
A f
′dπ.

Let H2 be the Hilbert space associated with the subspace in L2 (Ψ,G, π)
spanned by f and f ′. Let (fi)

t
i=1 be non-negative functions in L1(Ψ,G, π)∩

L2(Ψ,G, π) with fi = εif + (1− εi) f ′. Clearly fi is a pdf over π for all
i and there are no pair in this collection which are collinear. Since H2

is isomorphic to R2 there exists a unitary operator U : H2 → R2. From
Lemma 5.1 there exists a unitary operator Ut−2 : H⊗t−2

2 → R2⊗t−2
, with

Ut−2 (h1 ⊗ · · · ⊗ ht−2) = U(h1) ⊗ · · · ⊗ U(ht−2). Because U is unitary it
follows that

Ut−2

(
span

({
h⊗t−2 : h ∈ H2

}))
= span

({
x⊗t−2 : x ∈ R2

})
.(34)

An order r tensor, Ai1,...,ir , is symmetric if Ai1,...,ir = Aiψ(1),...,iψ(r)
for any

i1, . . . , ir and permutation ψ : [r]→ [r]. A consequence of Lemma 4.2 in [10]
is that span

({
x⊗t−2 : x ∈ R2

})
⊂ St−2(C2), the space of all symmetric order

t−2 tensors over C2. Complex symmetric tensor spaces will always be viewed
as a vector space over the complex numbers and real symmetric tensor spaces
will be always be viewed as a vector space over the real numbers.

From Proposition 3.4 in [10] it follows that the dimension of St−2
(
C2
)

is(
2 + t− 2− 1

t− 2

)
= t− 1. From this it follows that dimSt−2

(
R2
)
≤ t− 1,

where St−2
(
R2
)

is the space of all symmetric order t − 2 tensors over R2.
To see this consider some set of linearly dependent tensors x1, . . . , xr ∈
St−2

(
C2
)

each containing only real valued entries, i.e. the tensors are in
St−2

(
R2
)
. Then it follows that there exists c1, . . . , cr ∈ C such that

r∑
i=1

cixi = 0.(35)

Let < denote the real component when applied to an element of C, and the
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real component applied entrywise when applied to a tensor. We have that

0 = <

(
r∑
i=1

cixi

)
=

r∑
i=1

< (cixi) =

r∑
i=1

< (ci)xi.(36)

Thus it follows that x1, . . . xr are linearly dependent in St−2
(
R2
)

and thus
the dimensionality bound holds, dimSt−2

(
R2
)
≤ t− 1.

From this we get that

dim
(
span

({
h⊗t−2 : h ∈ H2

}))
≤ t− 1.(37)

The bound on the dimension of span
({
h⊗t−2 : h ∈ H2

})
implies that(

f⊗t−2
i

)t
i=1

are linearly dependent. Conversely Lemma 5.3 implies that re-

moving a single vector from
(
f⊗t−2
i

)t
i=1

yields a set of vectors which are

linearly independent. It follows that there exists (αi)
t
i=1 with αi 6= 0 for all

i and

t∑
i=1

αif
⊗t−2
i = 0.(38)

There exists a permutation σ : [t]→ [t] such that ασ(i) < 0 for all i ∈ [l] and
ασ(j) > 0 for all j > l with l ≤

⌊
t
2

⌋
(ensuring that l ≤

⌊
t
2

⌋
may also require

multiplying (38) by −1). This σ appears in the lemma statement, but for
the remainder of the proof we will simply assume without loss of generality
that αi < 0 for i ∈ [l] with l ≤

⌊
t
2

⌋
.

From this we have

l∑
i=1

−αif⊗t−2
i =

t∑
j=l+1

αjf
⊗t−2
j .(39)

From Lemma 5.2 we have

l∑
i=1

−αif×t−2
i =

t∑
j=l+1

αjf
×t−2
j(40)

and thus ∫ l∑
i=1

−αif×t−2
i dπ×t−2 =

∫ t∑
j=l+1

αjf
×t−2
j dπ×t−2(41)

⇒
l∑

i=1

−αi =
t∑

j=l+1

αj .(42)
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Let r =
∑l

i=1−αi. We know r > 0 so dividing both sides of (39) by r gives
us

l∑
i=1

−αi
r
f⊗t−2
i =

t∑
j=l+1

αj
r
f⊗t−2
j(43)

where the left and the right side are convex combinations. Let (βi)
t
i=1 be

positive numbers with βi = −αi
r for i ∈ [l] and βj =

αj
r for j ∈ [t] \ [l]. This

gives us

l∑
i=1

βif
⊗t−2
i =

t∑
j=l+1

βjf
⊗t−2
j .(44)

We will now consider 3 cases for the value of t.
Case 1. If t = 3 then l = 1 and l, t− l ≥ b t2c is satisfied.
Case 2. If t is divisible by two then we can do the following,

l∑
i=1

βif
⊗ t

2
−1

i ⊗ f⊗
t
2
−1

i =
t∑

j=l+1

βjf
⊗ t

2
−1

j ⊗ f⊗
t
2
−1

j .(45)

Consider the elements in the last equation as order two tensors in

L2 (Ψ,G, π)
⊗ t

2
−1 ⊗ L2 (Ψ,G, π)

⊗ t
2
−1

. From Lemma 5.3 and Lemma 5.4 we
have that the RHS of the previous equation has rank at least t

2 and since
l ≤ t

2 it follows that l = t
2 . Again we have that l, t− l ≥ b t2c.

Case 3. If t is greater than 3 and not divisible by 2 then we can apply
Lemma 5.2 to get∫

Ψ

l∑
i=1

βif
×t−3
i fi(x)dπ(x) =

∫
Ψ

t∑
j=l+1

βjf
×t−3
j fj(y)dπ(y)(46)

⇒
l∑

i=1

βif
×t−3
i =

t∑
j=l+1

βjf
×t−3
j .(47)

Applying Lemma 5.2 again we get

l∑
i=1

βif
⊗t−3
i =

t∑
j=l+1

βjf
⊗t−3
j(48)

⇒
l∑

i=1

βif
⊗ t−1

2
−1

i ⊗ f⊗
t−1
2
−1

i =

t∑
j=l+1

βjf
⊗ t−1

2
−1

j ⊗ f⊗
t−1
2
−1

j .(49)
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Recall that
⌊
t
2

⌋
≥ l so we also have that⌊

t

2

⌋
− l ≥ 0(50)

⇒ t

2
− l ≥ −1

2
(51)

⇒ t− l ≥ t− 1

2
.(52)

From Lemma 5.3 and Lemma 5.4 we have that the RHS of (49) has rank at
least t−1

2 and thus l ≥ t−1
2 . From this we have that t− l, l ≥

⌊
t
2

⌋
once again,

which finishes Case 3.
So l, t− l ≥ b t2c for any t ≥ 3. Applying Lemma 5.2 to (44) we have

l∑
i=1

βif
×t−2
i =

t∑
j=l+1

βjf
×t−2
j .(53)

From Lemma 6.3 we have

l∑
i=1

βi
(
εiγ + (1− εi) γ′

)×t−2
=

t∑
j=l+1

βj
(
εjγ + (1− εj) γ′

)×t−2
.(54)

Proof of Theorem 4.3. Let P =
∑m

i=1 aiδµi and P ′ =
∑l

j=1 bjδνj be
mixtures of measures such that P ′ 6= P. We will proceed by contradiction.
Suppose that

∑m
i=1 aiµ

×2m
i =

∑l
j=1 bjν

×2m
j . From Theorem 4.1 we know

that P is 2m − 1-identifiable and therefore 2m-identifiable by Lemma 4.1.
It follows that l > m. From Lemma 6.2 there exists a finite measure ξ and
non-negative functions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ)∩L2 (Ω,F , ξ) such
that, for all B ∈ F , µi(B) =

∫
B pidξ and νj(B) =

∫
B qjdξ for all i, j. Using

Lemmas 6.3 and 6.4 we have

m∑
i=1

aip
×2m
i =

l∑
j=1

bjq
×2m
j .(55)

By Lemma 5.2 we have

m∑
i=1

aip
⊗2m
i =

l∑
j=1

bjq
⊗2m
j ,(56)
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and therefore

m∑
i=1

aip
⊗m
i ⊗ p⊗mi =

l∑
j=1

bjq
⊗m
j ⊗ q⊗mj .(57)

Consider the elements in the last equation as tensors in L2 (Ω,F , ξ)⊗m ⊗
L2 (Ω,F , ξ)⊗m. Since no pair of vectors in p1, . . . , pm are collinear, from
Lemma 5.3 and Lemma 5.4 we know that the LHS has rank m. On the
other hand, no pair of vectors q1, . . . , ql are collinear either, so Lemma 5.3
says that there is a subset of

{
q⊗m1 , . . . , q⊗ml

}
which contains at least m+ 1

linearly independent elements. By Lemma 5.4 it follows that the RHS has
rank at least m+ 1, a contradiction.

Proof of Theorem 4.4. To prove this theorem we will construct a pair
of mixture of measures, P 6= P ′ which contain m and m + 1 components
respectively and satisfy V2m−1 (P) = V2m−1 (P ′). From our definition of
(Ω,F) we know there exists F ∈ F such that F, FC are nonempty. Let
x ∈ F and x′ ∈ FC . It follows that δx and δx′ are different probability
measures on (Ω,F). Let ε1, . . . , ε2m+1 be distinct values in [0, 1]. Applying
Lemma 6.5 with t = 2m+ 1 and letting µi = εiδx + (1− εi) δx′ , there exists
a permutation σ : [2m+ 1] → [2m+ 1] and β1, . . . , β2m+1, with βi > 0 for
all i and

∑m
i=1 βi =

∑2m+1
j=m+1 βj = 1, such that

m∑
i=1

βiµ
×2m−1
σ(i) =

2m+1∑
j=m+1

βjµ
×2m−1
σ(j) .(58)

If we let P =
∑m

i=1 βiδµσ(i) and P ′ =
∑2m+1

j=m+1 βjδµσ(j) , we have that
V2m−1 (P) = V2m−1 (P ′).

7. Identifiability and Determinedness of Mixtures of Multino-
mial Distributions. Using the previous results we can show analogous
identifiability and determinedness results for mixtures of multinomial dis-
tributions. The identifiability of mixtures of multinomial distributions was
originally studied in [17] which contains a proof of Corollary 7.1 from this
paper. An alternative proof of this corollary can be found in [12]. These
results are analogous to identifiability results presented in this paper. Our
proofs (see Supplemental Material) use techniques which are very different
from those used in [17, 12]. Our techniques can also be used to prove a de-
terminedness style result, Corollary 7.2, which we have not seen addressed
elsewhere in the multinomial mixture model literature.
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Central to the results in this section is Lemma 7.1 which establishes an
equivalence between the grouped sample setting and multinomial mixture
models. A sample from a multinomial distribution can be viewed as to-
talling the outcomes from an iid sampling of a categorical distribution.
Consider some probability measure µ over a finite sample space and let
X = (X1, . . . , Xm) be a collection of m iid samples from µ. Here X has the
form of what we would call a “random group.” Because X contains iid sam-
ples no useful statistical information is contained in the order of the samples.
It follows that we can simply tally the number of results for each outcome
and not lose any useful statistical information. Lemma 7.1 formalizes this
intuition so that we can apply tools developed earlier in this paper to the
multinomial mixture model setting.

Before stating our results we must first introduce some definitions and
notation. Any multinomial distribution is completely characterized by pos-
itive integers n and q and a probability vector in Rq, p = [p1, . . . , pq]

T .The
value q represents the number of possible outcomes of a trial, p is the like-
lihood of each outcome on a trial, and n is the number of trials. For whole

numbers k, l we define Ck,l =
{
x ∈ N×l :

∑l
i=1 xi = k

}
. These are vectors of

the form [x1, . . . , xl]
T where

∑l
i=1 xi = k. Using the values n and q above,

the multinomial distribution is a probability measure over Cn,q. If Q is a
multinomial distribution with parameters n, p, q as defined above then its
probability mass function is

Q
({

[x1, . . . , xq]
T
})

=
n!

x1! · · ·xq!
px11 · · · p

xq
q(59)

for x ∈ Cn,q. We will denote this measure as Qn,p,q. Let

(60) M (n, q) , {Qn,p,q : p is a probability vector in Rq} ,

i.e. the space of all multinomial distributions with n and q fixed.
At the heart of our multinomial mixture model identifiability and de-

terminedness results is the construction of a linear operator Tn,q from

span
(
D
(
Cn,q, 2

Cn,q
))

to span
(
D
(

[q]×n , 2[q]×n
))

and its use to show that

non-identifiable mixtures of multinomial distributions yield non-identifiable
mixtures of measures and non-determined mixtures of multinomial distribu-
tions yields non-determined mixtures of measures.

Since Cn,q is a finite set, the vector space of finite signed measures on(
Cn,q, 2

Cn,q
)

is a finite dimensional space and the set {δx : x ∈ Cn,q} is a
basis for this space. Note that {δx : x ∈ Cn,q} is the set of all point masses
on Cn,q, not vectors in the ambient space of Cn,q. Thus, to completely define
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the operator Tn,q, we need only define Tn,q (δx) for all x ∈ Cn,q. To this
end let x ∈ Cn,q. We define the function Fn,q : Cn,q → [q]×n as Fn,q (x) =
1×x1 × · · · × q×xq , where the exponents represent Cartesian powers. The
definition of Fn,q is a bit dense so we will do a simple example. Suppose

n = 6, q = 4 and x = [1, 0, 3, 2]T then Fn,q (x) = [1, 3, 3, 3, 4, 4]T . Intuitively
the Fn,q operator undoes the totalling which transforms a collection of trials
from a categorical distribution into a draw from a multinomial distribution;
Fn,q returns these trials in nondecreasing order. Let Sn be the symmetric
group on n symbols. We define our linear operator as follows

Tn,q (δx) =
1

n!

∑
σ∈Sn

δσ(Fn,q(x)),(61)

where σ is permuting the entries of Fn,q (x). This operator is similar to the
projection operator onto the set of order n symmetric tensors [10]. The fol-
lowing lemma makes the crucial connection between the space of multinomial
distributions and the probability measures of grouped samples.

Lemma 7.1. Let Qn,p,q ∈M (n, q), then

Tn,q (Qn,p,q) = Vn

(
δ∑q

i=1 piδi

)
.(62)

This lemma allows us to make some assertions about the identifiability of
mixtures of multinomial distributions.

In the following we will assume that all multinomial mixture models un-
der consideration have only nonzero summands and distinct components. In
the context of multinomial mixture models, a multinomial mixture model∑m

i=1 aiQn,pi,q is identifiable if it being equal to a different multinomial mix-
ture model,

m∑
i=1

aiQn,pi,q =

s∑
j=1

bjQn,rj ,q,(63)

with s ≤ m implies that s = m and there exists some permutation σ such
that ai = bσ(i) and Qn,pi,q = Qn,rσ(i),q for all i. The mixture model is deter-
mined if the previous statement holds without the restriction s ≤ m.

Multinomial mixture models are identifiable if the number of components
m and the number of trials in each component n satisfy n ≥ 2m− 1.

Corollary 7.1. Let m ∈ N+, n ≥ 2m − 1, and fix q ∈ N+. Let
Qn,p1,q, . . . , Qn,pm,q, Qn,r1,q, . . . , Qn,rs,q ∈ M (n, q) with Qn,p1,q, . . . , Qn,pm,q
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distinct, Qn,r1,q, . . . , Qn,rs,q distinct, and s ≤ m. If

m∑
i=1

aiQn,pi,q =
s∑
j=1

bjQn,rj ,q(64)

with ai > 0, bi > 0 for all i and
∑m

i=1 ai =
∑s

j=1 bj = 1, then s = m and
there exists some permutation σ such that ai = bσ(i) and pi = rσ(i).

Alternatively this corollary says that, given two different finite mixtures
with components in M (n, q), one mixture with m components and the other
with s components, if n ≥ 2m− 1 and n ≥ 2s− 1 then the mixtures induce
different measures. Additionally multinomial mixture models are determined
if the number of components m and the number of trials in each component
n satisfy n ≥ 2m.

Corollary 7.2. Let n ≥ 2m and fix q ∈ N. Let Qn,p1,q, . . . , Qn,pm,q and
Qn,r1,q, . . . , Qn,rs,q be elements of M (n, q) with Qn,p1,q, . . . , Qn,pm,q distinct
and Qn,r1,q, . . . , Qn,rs,q distinct. If

m∑
i=1

aiQn,pi,q =

s∑
j=1

bjQn,rj ,q(65)

with ai > 0, bi > 0 for all i and
∑m

i=1 ai =
∑m

j=1 bi = 1, then m = s and
there exists some permutation σ such that ai = bσ(i) and pi = rσ(i).

Using the proof techniques employed in the proofs of these corollar-
ies (see Supplemental Material) one could establish additional identifiabil-
ity/determinedness style results for multinomial mixture models along the
lines of Theorems 4.5, 4.6, and 4.7. Furthermore it seems likely that one
could use the algorithm described in the next section or from [2, 4, 22] to
recover these components, using the transform Tn,q.

8. Algorithm. Here we present an algorithm for the recovery of mix-
ture components and proportions from data. The algorithm is quite general
and can be applied to any measurable space. Supplemental Material contains
a detailed description and analysis of the algorithm applied to categorical
data, including a consistency proof.

Let
∑m

i=1wiδµi be an arbitrary mixture of measures on some measur-
able space (Ω,F) which we are interested in recovering. Let p1, . . . , pm be
square integrable densities with respect to a dominating measure ξ, with∫
A pidξ = µi (A) for all i ∈ [m] and A ∈ F . A measure ξ and densities
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p1, . . . , pm satisfying these properties are guaranteed to exist as a conse-
quence of Lemma 6.2.

We will consider the situation where we have 2m−1 samples per random
group and have access to the tensors

∑m
i=1wip

⊗2m−1
i and

∑m
i=1wip

⊗2m−2
i .

In a finite sample space, estimating these tensors is equivalent to estimating
moment tensors of order 2m−1 and 2m−2. For measures over Rd dominated
by the Lebesgue measure, one could estimate these tensors using a kernel
density estimator in Rd(2m−1) and Rd(2m−2) using each sample group as
a kernel center. We will also assume that p1, . . . , pm have distinct norms.
Note that it is still possible to recover the mixture components if they do
not have distinct norms. One way to do this is to choose ξ so that the
norms are distinct. In Supplemental Material we describe a method which
is guaranteed to do this when (Ω,F) is a finite sample space by choosing
ξ randomly. We term this method “random dominating measure” in the
experiments and supplement. Alternatively, if one is capable of choosing
an element in span ({p1, . . . , pm}) in an appropriate random way, one could
recover the mixture components using a variation of Jenrich’s algorithm.

To describe the algorithm we will need to make use of bounded linear
operators on Hilbert spaces. Given a pair of Hilbert spaces H,H ′ we de-
fine L(H,H ′) as the space of bounded linear operators from H to H ′ and
L(H) , L(H,H). An operator, T , is in this space if there exists a nonneg-
ative number C such that ‖Tx‖H′ ≤ C ‖x‖H for all x ∈ H. The space of
bounded linear operators is a Banach space when equipped with the norm

‖T‖ , sup
x 6=0

‖Tx‖
‖x‖

.(66)

In addition we will need to make use of tensor products of bounded linear
operators. The following lemma is exactly Proposition 2.6.12 from [15].

Lemma 8.1. Let H1, . . . ,Hn, H
′
1, . . . ,H

′
n be Hilbert spaces and let Ui ∈

L (Hi, H
′
i) for all i ∈ [n]. There exists a unique

U ∈ L
(
H1 ⊗ · · · ⊗Hn, H

′
1 ⊗ · · · ⊗H ′n

)
,(67)

such that U (h1 ⊗ · · · ⊗ hn) = U1 (h1)⊗· · ·⊗Un (hn) for all h1 ∈ H1, . . . , hn ∈
Hn.

Definition 8.1. The operator constructed in Lemma 8.1 is called the
tensor product of U1, . . . , Un and is denoted U1 ⊗ · · · ⊗ Un.

Finally we will need to employ Hilbert-Schmidt operators which are a
subspace of the bounded linear operators.
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Definition 8.2. Let H,H ′ be Hilbert spaces and T ∈ L (H,H ′). T is
called a Hilbert-Schmidt operator if

∑
x∈J ‖Tx‖

2 < ∞ for an orthonormal
basis J ⊂ H. We denote the set of Hilbert-Schmidt operators in L (H,H ′)
by H S (H,H ′).

This definition does not depend on the choice of orthonormal basis: the
sum

∑
x∈J ‖T (x)‖2 will always yield the same value regardless of the choice

of orthonormal basis J .
Finally we will also need to utilize the equivalence between tensor prod-

ucts and linear operators ([15] Proposition 2.6.9).

Lemma 8.2. Let H,H ′ be Hilbert spaces. There exists a unitary operator
U : H⊗H ′ →H S (H,H ′) such that, for any simple tensor h⊗h′ ∈ H⊗H ′,
U (h⊗ h′) = 〈h, ·〉h′.

Before we introduce the algorithm we will discuss an important point re-
garding computational implementation and Lemmas 8.2 and 8.1. For the re-
mainder of this paragraph we will assume that Euclidean spaces are equipped
with the standard inner product. Vectors in a space of tensor products of
Euclidean spaces, for example Rd1⊗· · ·⊗Rds are easily represented on com-
puters as elements of Rd1×···×ds [10]. Linear operators from some Euclidean
tensor space to another can also be easily represented. Furthermore the
transformation in Lemma 8.2 and the construction of new operators from
Lemma 8.1 can be implemented in computers by “unfolding” the tensors
into matrices, applying common linear algebraic manipulations and “fold-
ing” them back into tensors. The inner workings of these manipulations are
beyond the scope of this paper and we refer the reader to [14] for details.
Practically speaking this means the manipulations mentioned in Lemmas 8.2
and 8.1 are straightforward to implement with a bit of tensor programming
know-how. Implementation may also be streamlined by using programming
libraries that assist with these tensor manipulations such as the NumPy
library for Python.

Because of the points mentioned in the previous paragraph, the following
algorithm is readily implementable for estimating categorical distributions,
where the measures can be represented as probability vectors on a Euclidean
space. Similarly, we expect that these techniques could be extended to prob-
ability densities on Euclidean space using kernel density estimators with a
kernel function with easily computable L2 inner products (for example Gaus-
sian kernels) although we suspect that implementation of such an algorithm
may be significantly more involved.
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To begin our description of the abstract algorithm we will apply the trans-
form from Lemma 8.2 to

∑m
i=1wip

⊗2m−2
i to get the operator

C =
m∑
i=1

wip
⊗m−1
i

〈
p⊗m−1
i , ·

〉
=

m∑
i=1

√
wip
⊗m−1
i

〈√
wip
⊗m−1
i , ·

〉
.(68)

Here C is a positive semi-definite (PSD) operator in L
(
L2 (Ω,F , ξ)⊗m−1

)
.

Let C† be the (Moore-Penrose) pseudoinverse of C and W =
√
C†.

Now W is an operator that whitens
√
w1p

⊗m−1
1 , . . . ,

√
wmp

⊗m−1
m . That is,

W
√
w1p

⊗m−1
1 , . . . ,W

√
wmp

⊗m−1
m are orthonormal vectors. Using the opera-

tor construction from Lemma 8.1 we can construct I ⊗W ⊗W where, for
all simple tensors in L2 (Ω,F , ξ)⊗2m−1 we have,

(I ⊗W ⊗W ) (x1 ⊗ · · · ⊗ x2m−1)

= x1 ⊗W (x2 ⊗ · · · ⊗ xm)⊗W (xm+1 ⊗ · · · ⊗ x2m−1) .(69)

Applying I ⊗W ⊗W to
∑m

i=1wip
⊗2m−1
i yields

A ,
m∑
i=1

wipi ⊗W
(
p⊗m−1
i

)
⊗W

(
p⊗m−1
i

)
(70)

=
m∑
i=1

pi ⊗W
(√
wip
⊗m−1
i

)
⊗W

(√
wip
⊗m−1
i

)
.(71)

From Lemma 8.2 we can transform the tensor A into the operator T ,

T =
m∑
i=1

pi ⊗W
(√
wip
⊗m−1
i

) 〈
W
(√
wip
⊗m−1
i

)
, ·
〉
.(72)

Because W is a whitening operator, the operator TTH is

TTH =
m∑
i=1

pi ⊗W
(√
wip
⊗m−1
i

)〈
W
(√
wip
⊗m−1
i

)
, · · ·(73)

m∑
j=1

W
(√

wjp
⊗m−1
j

)〈
pj ⊗W

(√
wjp

⊗m−1
j

)
, ·
〉〉

=
m∑
i=1

pi ⊗W
(√
wip
⊗m−1
i

) 〈
pi ⊗W

(√
wip
⊗m−1
i

)
, ·
〉

(74)

which is a PSD operator. We set S , TTH .
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For i 6= j it follows that pi ⊗W
√
wip
⊗m−1
i ⊥ pj ⊗W

√
wjp

⊗m−1
j . To see

this 〈
pi ⊗W

√
wip
⊗m−1
i , pj ⊗W

√
wjp

⊗m−1
j

〉
(75)

= 〈pi, pj〉
〈
W
√
wip
⊗m−1
i ,W

√
wjp

⊗m−1
j

〉
(76)

= 〈pi, pj〉 0(77)

= 0.(78)

Also note that∥∥pi ⊗W√wip⊗m−1
i

∥∥2
=
〈
pi ⊗W

√
wip
⊗m−1
i , pi ⊗W

√
wip
⊗m−1
i

〉
(79)

= 〈pi, pi〉
〈
W
√
wip
⊗m−1
i ,W

√
wip
⊗m−1
i

〉
(80)

= ‖pi‖2 .(81)

If p1, . . . , pm have distinct norms then it follows that

m∑
i=1

pi ⊗W
√
wip
⊗m−1
i

〈
pi ⊗W

√
wip
⊗m−1
i , ·

〉
(82)

is the unique spectral decomposition of S since the vectors p1 ⊗
W
√
w1p

⊗m−1
1 , . . . , pm ⊗W

√
wmp

⊗m−1
m are orthogonal, have distinct norms,

and thus distinct positive eigenvalues. Given an eigenvector of S, pi ⊗
W
√
wip
⊗m−1
i , we need only view it as a linear operator pi

〈
W
√
wip
⊗m−1
i , ·

〉
and apply this operator to some vector z which is not orthogonal to
W
√
wip
⊗m−1
i , thus yielding pi scaled by

〈
W
√
wip
⊗m−1
i , z

〉
. Were the norms

of p1, . . . , pm not distinct, then there would not be a spectral gap between
some of the eigenvalues in S, and a spectral decomposition of S may contain
some eigenvectors that are not p1 ⊗W

√
w1p

⊗m−1
1 , . . . , pm ⊗W

√
wmp

⊗m−1
m ,

but are instead linear combinations of these vectors.
The following is a concise summary of the main points of the full algo-

rithm:

1. Let C =
∑m

i=1wip
⊗m−1
i

〈
p⊗m−1
i , ·

〉
by transforming

∑m
i=1wip

⊗2m−2
i .

2. Let W =
√
C†.

3. Let A = I ⊗W ⊗W
(∑m

i=1wip
⊗2m−1
i

)
. Note that

I ⊗W ⊗W

(
m∑
i=1

wip
⊗2m−1
i

)
=

m∑
i=1

pi ⊗W
(√
wip

⊗m−1
i

)
⊗W

(√
wip

⊗m−1
i

)
by direct evaluation and rearrangement of coefficients.
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4. Let T =
∑m

i=1 pi ⊗W
(√
wip
⊗m−1
i

) 〈
W
(√
wip
⊗m−1
i

)
, ·
〉

by transform-
ing A.

5. Performing spectral decomposition on TTH gives us eigenvectors{
pi ⊗W

(√
wip
⊗m−1
i

)}m
i=1

, up to scaling.

6. For all i, let p̃i = pi
〈
W
(√
wip
⊗m−1
i

)
, z
〉

by transforming the eigen-
vectors into linear operators and selecting z to be any vector such that
the inner product does not evaluate to 0. Now p̃i is a scaled version of
pi.

7. Normalize p̃i to get pi.

Once the mixture components p1, . . . , pm are recovered from the spectral
decomposition we can calculate the mixture proportions. From these mix-
ture components we can construct the tensors p⊗2m−2

1 , . . . , p⊗2m−2
m . These

tensors are linearly independent by Lemma 5.3. The tensor
∑m

i=1wip
⊗2m−2
i

is known. By the linear independence of the components there is exactly one
solution for a1, . . . , am in the equation

m∑
i=1

wip
⊗2m−2
i =

m∑
j=1

ajp
⊗2m−2
j ,(83)

so simply minimizing
∥∥∥∑m

i=1wip
⊗2m−2
i −

∑m
j=1 ajp

⊗2m−2
j

∥∥∥ over a1, . . . , am

will give us the mixture proportions.
In Supplemental Material we study this algorithm applied to finite sample

spaces in further detail. In the supplement we demonstrate how to recover
mixture components without the spectral gap assumption, how to construct
the estimator given data (which we evaluate experimentally in Section 9),
and prove that it is consistent.

Taking inspiration from [2] and [23] we can suggest yet another algo-
rithm. The previous papers demonstrate algorithms for recovering mixture
components which are measures on finite sample spaces and Rd, from ran-
dom groups of size 3, provided the mixture components are linearly in-
dependent. Given a mixture of measures P =

∑m
i=1wiδµi with density

functions p1, . . . , pm, the tensors p⊗m−1
1 , . . . , p⊗m−1

m are linearly independent.
Thus, with 3m− 3 samples per random group, we can estimate the tensors∑m

i=1wip
⊗3m−3
i and we can use the algorithms from the previous papers

to recover p⊗m−1
1 , . . . , p⊗m−1

m from which it is straightforward to recover
p1, . . . , pm.

9. Experiments. Here we will present some experimental results of
our algorithm applied to a simple synthetic dataset. The sample space for
the experiments is Ω = {0, 1, 2}. The mixture components of our dataset
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are µ1, µ2, µ3 with µ1 distributed according to a binomial distribution with
n = 2 and p = 0.2, µ2 is similar with p = 0.8 and µ3 = 1

3µ1 + 2
3µ2.

The component weights are w1 = 0.5, w2 = 0.3, w3 = 0.2. We chose these
mixture components so that they are not particularly nice. Specifically, the
mixture components are not linearly independent, and when considered as
vectors in R3, µ1 and µ2 have the same norm. Our mixture of measures
is P =

∑3
i=1wiδµi and our samples come from either V5 (P) or V6 (P)

depending on the algorithm used.
We construct our own performance measure which allows us to judge

the performance of the estimated components jointly. Let µ̂1, µ̂2, µ̂3 be
the three estimates for the mixture components from some algorithm. We
will view these estimates as vectors in R3. Our performance measure is
minσ∈S3

1
3

∑3
i=1

∥∥µi − µ̂σ(i)

∥∥
`1(R3)

. That is, we take the average of total vari-

ations of the best matching of the estimated mixture components to the true
components.

9.1. Proposed Algorithms. We include two different implementations of
our proposed algorithm, one where we use what we call a “random domi-
nating measure” and in the other we use what we call a “fixed dominating
measure.” In the following we describe the two implementations and the
rationale for presenting both of them.

In the description of our algorithm in Section 8 we make the assump-
tion that the mixture components, when represented as square integrable
densities over some dominating measure, have distinct L2 norms. This is
necessary to ensure that (82) admits a unique spectral decomposition. Be-
cause µ1 and µ2 have the same norm when considered as vectors in R3 this
assumption does not hold for the experiments we present here. We use the
aforementioned “random dominating measure” technique (details in Supple-
mental Material) which transforms the measure space so that the mixture
components have distinct norms. To do this we choose a dominating mea-
sure randomly so that, with probability one, the mixture components have
different norms when represented as densities over this measure space. We
theoretically demonstrate that this technique works in Supplemental Mate-
rial. In this paper we present experimental evidence that this technique also
works in practice.

The purpose of the random dominating measure is to create a spectral
gap between the mixture components. Intuitively, it seems reasonable that
if we choose the dominating measure “well” then we will end up with large
spectral gaps without making any of the component norms so diminutive
as to become unnoticeable. In the interest of exploring this idea we tested
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different dominating measures until we found one that improved algorithmic
performance significantly and include these experimental results as well.
We found that the dominating measure ξ with ξ ({0}) = 32, ξ ({1}) = 22

and ξ ({2}) = 1 improved performance significantly and we refer to this as
the “fixed dominating measure” implementation. These experimental results
indicate the possibility for significant improvements to our algorithm by
choosing the dominating measure intelligently. Additional specifics for these
proposed implementations can be found in Supplemental Material.

Both of these implementations were run on two experimental scenar-
ios, one with 50,000 random groups and the other with 10,000,000 random
groups, with all groups drawn from V5 (P). We repeated each experiment
20 times and report relevant statistics.

9.2. Competing Algorithms. As a baseline we compare our algorithm
against simply choosing 3 measures uniformly at random from the proba-
bilistic simplex. The randomly selected components algorithm was repeated
1000 times. We also compare our algorithm to a modified version of the algo-
rithm introduced in [2]. The algorithm in [2] is designed to work on random
groups with three samples and a mixture of measures with linearly indepen-
dent components. Because of this we apply the algorithm in [2] to random
groups from V6 (P) rather than V5 (P), with the adaptation described at
the end of Section 8. This algorithm was also run on experimental scenarios
with 50,000 and 10,000,000 random groups. Again these experiments were
repeated 20 times.

9.3. Results. The results are summarized in Table 1. Our algorithm
demonstrates a clear improvement as the number of random groups in-
creases. Our modification of the algorithm in [2] performs noticeably better
than the other algorithms, likely owing to the fact that it has more infor-
mation per group and/or the fact that it does not depend on the ”random
dominating measure” trick. Using the fixed dominating measure narrows
this gap considerably, and it seems likely that this gap could be further
improved with a better choice of dominating measure.

10. Discussion. In closing, we offer the following observations related
to our results.

10.1. Potential Statistical Test and Estimator. The results on deter-
minedness suggest the possibility of a goodness of fit test. Suppose we have
grouped samples from some mixture of measures P ′ =

∑m′

i=1w
′
iδµ′i . Further
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Table 1
Experimental Results

Method Performance

Random Dominating Measure, 50,000 samples Mean:0.1407, Variance:0.0169

Fixed Dominating Measure, 50,000 samples Mean:0.0524, Variance:0.0011

Anandkumar, et al. [2], 50,000 samples Mean:0.0503, Variance:0.0145

Random Dominating Measure, 10,000,000 samples Mean:0.0433, Variance:0.0062

Fixed Dominating Measure, 10,000,000 samples Mean:0.0037, Variance: 4e−6

Anandkumar, et al. [2], 10,000,000 samples Mean:0.0026, Variance: 4e−6

Randomly Selected Measures Mean:0.5323, Variance:0.0203

suppose some null hypothesis

H0 : P ′ = P ,
m∑
i=1

wiδµi .(84)

Given data from V2m (P ′) we may be able to reject the null hypothesis pro-
vided we have some way of estimating M ,

∑m
i=1wiµ

×2m
i from the groups

of samples. We will call such an estimator M̂ . If M̂ does not converge to M
then we can reject the null hypothesis. The implementation and analysis of
such an estimator would depend on the setting and is outside the scope of
this paper

One interesting observation from the proof of Theorem 4.3 is that, if
P =

∑m
i=1wiδµi is a mixture of measures, pi is a pdf for µi for all i, and

n > m, then the rank of
∑m

i=1 aip
⊗n
i ⊗ p

⊗n
i will be exactly m. This suggests

a statistical estimator for the number of mixture components. The form of
this tensor is amenable to spectral methods since it is a positive semi-definite
tensor of order 2, which is akin to a positive semi-definite matrix. Embedding
the data with the kernel mean mapping, using a universal kernel [19], seems
like a promising approach to constructing such a test or estimator.

10.2. Identifiability and the Value 2n − 1. The value 2n − 1 seems to
carry some significance for identifiability beyond the setting we proposed.
This value can also be found in results concerning metrics on trees [20],
hidden Markov models [21], and frame theory, with applications to signal
processing [6]. All of these results are related to identifiability of an object
or the injectivity of an operator. We can offer no further insight as to why
this value recurs, but it appears to be an algebraic phenomenon.

Acknowledgements. RV: Thanks to Marius Kloft for some interesting
discussions.
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SUPPLEMENTARY MATERIAL

Supplemental Material: Supplemental Material to An Operator
Theoretic Approach to Nonparametric Mixture Models
(doi: COMPLETED BY THE TYPESETTER; .pdf). Technical results and
additional algorithmic details.
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