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Abstract—The problem of active diagnosis arises in several applications such as disease diagnosis and fault diagnosis in computer

networks, where the goal is to rapidly identify the binary states of a set of objects (e.g., faulty or working) by sequentially selecting, and

observing, potentially noisy responses to binary valued queries. Previous work in this area chooses queries sequentially based on

Information gain, and the object states are inferred by maximum a posteriori (MAP) estimation. In this work, rather than MAP

estimation, we aim to rank objects according to their posterior fault probability. We propose a greedy algorithm to choose queries

sequentially by maximizing the area under the ROC curve associated with the ranked list. The proposed algorithm overcomes

limitations of existing work. When multiple faults may be present, the proposed algorithm does not rely on belief propagation, making it

feasible for large scale networks with little loss in performance. When a single fault is present, the proposed algorithm can be

implemented without knowledge of the underlying query noise distribution, making it robust to any misspecification of these noise

parameters. We demonstrate the performance of the proposed algorithm through experiments on computer networks, a toxic chemical

database, and synthetic datasets.

Index Terms—Active diagnosis, active learning, Bayesian network, persistent noise, area under the ROC curve

Ç

1 INTRODUCTION

THE problem of diagnosis appears in various applications
such as medical diagnosis [1], fault diagnosis in nuclear

plants [2], computer networks [3], [4], and power-delivery
systems [5], and decoding of messages sent through a noisy
channel. In these problems, the goal is to identify the binary
states X ¼ ðX1; . . . ; XMÞ of M different objects based on the
binary outcomes Z ¼ ðZ1; . . . ; ZNÞ of N distinct queries/
tests, where the query responses are noisy. Moreover, the
query noise is persistent in that repeated querying results in
the same query response. For example, in the problem of
medical diagnosis, the goal is to identify the presence/
absence of a set of diseases based on the noisy outcomes of
medical tests. Similarly, in a fault diagnosis problem, the
goal is to identify the state (faulty/working) of each
component based on noisy alarm/probe responses. For
simplicity, we will refer to an object with state 1 as a fault in
the rest of this paper.

In recent years, this problem has been formulated as an
inference problem on a Bayesian network, with the goal of
assigning most probable states to unobserved object nodes
based on the outcome of the query nodes. An important
issue in diagnosis is the tradeoff between the cost of

querying (uncovering the value of some Zj) and the
achieved accuracy of diagnosis. It is often too expensive
or time consuming to obtain responses to all queries.

In this paper, we study the problem of active diagnosis,
where the queries are selected sequentially to maximize the
accuracy of diagnosis. We study active diagnosis in two
different settings. First, we consider the case where multiple
faults could be present, as mentioned in applications stated
above. Then, we consider a special case where only one
fault could be present (i.e., only one object can be in state 1).
This special scenario arises in applications such as pool-
based active learning [6], [7], toxic chemical identification
[8], image processing [9], computer vision [10], job schedul-
ing [11], and the adaptive traveling salesperson problem
[12]. For example, in the context of pool-based active
learning, there is an unknown hypothesis (belonging to a
known, finite hypothesis class) that could accurately
classify all of the unlabeled data points, and the goal is to
identify this hypothesis by obtaining (noisy) labels for as
few data points as necessary.

Though the problem of active diagnosis has been studied
in the literature, there are still several limitations with
existing methods. We will now briefly mention some of the
popular approaches to active diagnosis in these two settings
and state their limitations. These existing approaches will be
described in more detail in the following sections.

In the multiple fault scenario, Zheng et al. [4] proposed
the use of reduction in conditional entropy (equivalently,
mutual information) as a measure to select the most
informative subset of queries. They proposed an algorithm
that uses the belief propagation (BP) framework to select
queries sequentially based on the gain in mutual informa-
tion, given the observed responses to past queries. This
algorithm, which they refer to as BPEA, requires one run of
BP for each query selection. Finally, the objects are assigned
the most likely states based on the outcome of the selected
queries, using a maximum a posteriori (MAP) inference
algorithm. Refer to Section 4.1 for more details.
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However, there are two limitations with this approach.
First, the MAP estimate may not equal the true state vector X,
either due to noise in the observed query responses or
due to suboptimal convergence of the MAP algorithm.
This leads to false alarm and miss rates that may not be
tolerable for a given application.

The second issue is that BPEA does not scale to large
networks because the complexity of computing the approx-
imate value of conditional entropy grows exponentially in
the maximum degree of the underlying Bayesian network
(see Section 4.1 for details). As we show in Section 6, it
becomes intractable even in networks with a few thousand
objects. In addition, because this approach relies on BP, it
may suffer from the limitations of BP such as slow
convergence or oscillation of the algorithm, especially when
the prior fault probability is small [13]. As we discuss
below, the prior fault probability is indeed very low in most
real-world diagnosis problems. These factors render BPEA
impractical in many large scale, real-world applications.

The problem of active diagnosis in the single fault
scenario has been extensively studied in the literature. It has
often been assumed that queries can be resampled such that
repeated querying results in independent query responses
[14], [15]. However, in most diagnosis problems, the query
noise persists in that repeated querying results in the same
query response. This is a more restricted noise model
known as persistent query noise. Persistent noise has been
considered earlier in the context of pool-based active
learning [7], where it is assumed that the query set is large
enough (possibly infinite) such that the unknown object
(e.g., hypothesis) could be identified with great certainty.
However, in most diagnosis problems, the query set is
finite, making these approaches inapplicable.

Alternatively, Rish et al. [3] and Geman and Jedynak [10]
considered the use of gain in mutual information as a
criterion for active diagnosis in the single fault scenario.
Unlike the multiple fault case, information gain can be
computed efficiently in the single fault scenario, thus
making it a tractable approach (refer to Section 4.2 for
more details). However, one other limitation with the use of
information gain as a query selection criterion is that it
requires knowledge of the full data model. In particular, it
requires knowledge of the probability of query errors, and
can be sensitive to discrepancies in these values.

In this paper, we propose a novel rank-based approach
to active diagnosis that addresses the above limitations.1

First, to address the limitation of the MAP estimate, we
propose to output a ranked list of objects rather than their
most likely states, where the ranking is based on their
posterior fault probability. Given such a ranked list, the
object states can be estimated by choosing a threshold t,
where the top t objects in the ranked list are declared as
faults (i.e., state 1) and the remaining as 0. Varying the
threshold t leads to a series of estimators with different
false alarm and miss rates, giving rise to a receiver
operating characteristic (ROC) curve. The quality of the
obtained ranking is then measured in terms of the area
under this ROC curve (AUC). We show how to choose

queries greedily such that the AUC, and thus the quality
of diagnosis, is maximized.

The rank-based approach is motivated by the fact that in
many applications there is a domain expert who makes the
final decision on the objects’ states. Such a ranking can be
extremely useful to a domain expert who will use domain
expertise and other sources of information to choose a
threshold t that may lead to a permissible value of false
alarm and miss rates for a given application. Note that even
in a single fault scenario, the object with the highest
posterior fault probability (i.e., the top-ranked object) need
not be the true object, especially in situations of moderate to
high noise. Hence, a ranked list of the objects can be useful
to a domain expert who could use other sources of
information to further determine the unknown object.

Second, to address the issue of scalability in the multiple
fault scenario, we circumvent the use of BP in the query
selection stage by making a single fault approximation. To
be clear, we still intend to apply our algorithm when
multiple faults are present; the single fault approximation is
used in the design of the algorithm. This approximation is
reasonable because the prior fault probability is quite low in
many applications. For example, in the problem of fault
diagnosis in computer networks, the prior probability of a
router failing in any given hour is on the order of 10�6 [18].
Similarly, in the disease diagnosis problem of QMR-DT, the
prior probability of a disease being “present” is typically on
the order of 10�3 [13].

Under the single fault approximation, the computational
complexity of both the proposed AUC criterion and the
information gain-based criterion reduces significantly,
making them both feasible on large datasets. However, as
we show in Section 5.1, when multiple faults are present,
the AUC criterion under a single fault approximation still
makes a good choice of queries, and performs significantly
better than the queries selected using the information gain-
based criterion under the single fault approximation.

Further, in the scenario where only one fault is present,
we note that both these methods perform equally well
when the underlying query noise model (i.e., the values of
the noise parameters) is completely known. However, as
we show in Section 5.2, any minor discrepancies in the
values of these noise parameters could significantly reduce
the performance of the information gain-based criterion,
while the proposed AUC criterion can be implemented
without any knowledge of the underlying noise parameters
by using a tight upper bound that is independent of the
noise parameters.

Finally, we demonstrate through experiments that the
proposed query selection criterion can achieve performance
close to that of BPEA in a multifault setting, while having a
computational complexity that is of orders less than BPEA
(near quadratic versus the exponential complexity of
BPEA). In addition, in the single fault scenario, we
demonstrate its competitive performance to information
gain-based query selection, despite not having knowledge
of the underlying query noise. In summary, the proposed
rank-based framework is a fast, robust, and reliable
approach for active diagnosis in large-scale, real-world
diagnosis problems.
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1.1 Additional Related Work

The problem of active diagnosis in the single fault scenario

has been widely studied in the literature. In the noise-free

case, this problem has been referred to as binary testing or

object/entity identification [19]. The goal of object identifi-

cation is to construct an optimal binary decision tree, where

each internal node is associated with a query and each leaf

node corresponds to an object where optimality is often

with respect to the average depth of the leaf nodes. This

problem of finding an optimal decision tree is known to be

NP-complete [20]. However, there exists an efficient, greedy

algorithm known as the splitting algorithm or generalized

binary search (GBS) that achieves a logarithmic approxima-

tion to the optimal solution [6].
The problem of active learning in the presence of query

noise has been studied in [14], [15], where the noise is

assumed to be independent in that posing the same query

twice may yield different responses. This assumption

suggests repeated selection of a query as a possible strategy

to overcome query noise. The algorithms presented in [14],

[15] are based on this principle. However, in applications

such as fault diagnosis in computer networks, resampling

or repeating a query does not change the query response,

thereby confining an active diagnosis algorithm to non-

repeatable queries.
This more stringent noise model where queries cannot be

resampled is known as persistent noise [7], [21]. It has been

studied earlier in the situation where the number of

persistent errors is restricted such that unique identification

of the faulty object is still possible [22], [23]. In particular, let

each object i be associated with a bit string of length N

corresponding to the responses of the N queries if object i is

in state 1. Then, the number of query errors is restricted to

being less than half of the minimum Hamming distance

between any two object bit strings. However, this is often

not reasonable as the minimum Hamming distance could be

very small.
Finally, the problem of active diagnosis under persistent

noise with no restriction on the number of query errors has

been studied in the context of pool-based active learning in

the Probably Approximately Correct (PAC) model [7].

However, here the query set is assumed to be large enough

(possibly infinite) such that it is possible to get arbitrarily

close to the optimal classifier for any given noise level.

1.2 Outline

The rest of the paper is structured as follows: In Section 2,

we describe the data model, and formulate the problem of

active diagnosis in Section 3. In Section 4, we briefly

describe information gain-based active query selection in

both the multiple fault and single fault settings, and discuss

its limitations in each of these settings in more detail. In

Section 5, we propose our rank-based active query selection

algorithm, and describe how the AUC criterion overcomes

the limitations of mutual information. Finally, in Section 6,

we demonstrate the performance of the proposed rank-

based approach through experiments on computer net-

works, a toxic chemical database, and synthetic networks.

2 DATA MODEL

We will represent a diagnosis problem by a bipartite graph
between a set of M different objects and a set of N distinct
queries. This graph will be referred to as a bipartite
diagnosis graph (BDG). The edges represent the relation
or the interactions between the two entities. For example, in
a fault diagnosis problem, the objects correspond to
components and queries to alarms, where an edge indicates
that a particular component-alarm pair is connected.
Similarly, in a disease diagnosis problem, objects may
correspond to diseases and queries to symptoms, where an
edge indicates that a particular symptom is exhibited by a
disease. Fig. 1 demonstrates a toy BDG.

We denote the state of each object (e.g., presence/absence
of a disease) with a binary random variable Xi and the state
of each query (i.e., the observed response to a query) by a
binary random variable Zj. Then, X ¼ ðX1; . . . ; XMÞ is a
binary random vector denoting the states of all the objects,
and Z ¼ ðZ1; . . . ; ZNÞ is a binary random vector denoting the
responses to all the queries. We let x 2 f0; 1gM and z 2
f0; 1gN correspond to realizations of X and Z, respectively.

In addition, for any subset of queries A � f1; . . . ; Ng, we
denote by ZA the random variables associated with those
queries, e.g., if A ¼ f1; 4; 7g, then ZA ¼ ðZ1; Z4; Z7Þ. Also,
for any query j, let paj denote the objects that are connected
to it in the BDG. Then, Xpaj denotes the states of all the
objects connected to query j, e.g., for query 2 in Fig. 1,
Xpa2

¼ ðX2; X3Þ.
We need to specify the joint distribution of ðX;ZÞ and,

more generally, ðX;ZAÞ for any A, which can be defined in
terms of a prior probability distribution on X and a
conditional distribution on ZA given X. To define the prior
probability distribution on X, we make the standard
assumption that the object states are marginally indepen-
dent, i.e., PrðX ¼ xÞ ¼

QM
i¼1 PrðXi ¼ xiÞ. Similarly, to define

the conditional distribution on ZA given X, we make the
standard assumption that the observed responses to queries
are conditionally independent given the states of the objects
connected to them, i.e.,

PrðZA ¼ zAjX ¼ xÞ ¼
Y
j2A

PrðZj ¼ zjjxpajÞ:

These assumptions hold reasonably well in many practical
applications. For example, in a fault diagnosis problem, it
can be reasonable to assume that the components fail
independently and that the alarm responses are condition-
ally independent given the states of the components they
are connected to, as justified in [3] and [18]. These
dependencies can be encoded by a Bayesian network, as
shown in Fig. 1.
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Fig. 1. (a) A toy BDG, where the circled nodes denote the objects and

the square nodes denote queries. (b) A Bayesian network correspond-

ing to the given BDG.



In the ideal case when there is no noise, the observed
response Zj to query j is deterministic given the binary
states of the objects in paj. Specifically, it is given by the OR
operation of the binary variables in Xpaj , i.e., Zj ¼
1()9 i 2 paj s.t. Xi ¼ 1. More generally, it is a noisy OR
operation [24], where the conditional distribution of Zj
given xpaj can be defined using standard noise models such
as the Y-model [25] or the QMR-DT model [1].

We derive the AUC-based active diagnosis algorithm
under this general probability model, and in Section 6, we
demonstrate the performance of the proposed algorithm
through experiments on both synthetic and real datasets
under the QMR-DT noise model, where

PrðXi ¼ xÞ :¼ ð�iÞxð1� �iÞ1�x; and

PrðZj ¼ 0jxpajÞ :¼ ð1� �0jÞ
Y
k2paj

�xkkj :

Here, �i is the prior fault probability, and �kj and �0j are the
so-called inhibition and leak probabilities, respectively.

3 ACTIVE DIAGNOSIS

The goal of active diagnosis is to find a set of queries A,
subject to a constraint on the number of queries made, such
that the expected value of a function fðX; ZAÞ is max-
imized, i.e.,

argmaxA�f1;...;NgIEZA ½fðX; ZAÞ�
s:t: jAj � k;

ð1Þ

where fðX; ZAÞ corresponds to the quality of the estimate of
X based on the responses to queries in A. The quality
function fðX; ZA ¼ zAÞ would implicitly involve an ex-
pectation over X. Finding an optimal solution to this
problem is typically not computationally feasible [3].
Instead, the queries can be chosen sequentially by greedily
maximizing the quality function, i.e., given the observed
responses to the past queries, the next best query is chosen
to be

j� :¼ argmax
j62A

IEZj ½fðX; ZA [ ZjÞ � fðX; ZAÞjZA ¼ zA�; ð2Þ

where ZA [ Zj denotes the random variables associated
with queries in A [ fjg.

4 INFORMATION GAIN-BASED ACTIVE QUERY

SELECTION

Mutual information has been traditionally chosen as a
function to measure the quality of the estimate of the
object states X based on the responses to queries in A. The
expression for the quality function fðX; ZAÞ is then given
by fðX; ZAÞ ¼ IðX; ZAÞ :¼ HðXÞ �HðXjZAÞ. However,
the optimization problem in (1) with mutual information
as the quality function is NP-hard [3]. Alternatively, the
greedy approach can be used to choose queries sequen-
tially where, given the observed responses zA to pre-
viously selected queries in A, the next best query is chosen
to be the one that maximizes the expected information
gain, as shown below,

j� ¼ argmax
j 62A

IEZj ½IðX; ZA [ ZjÞ � IðX; ZAÞjZA ¼ zA�

¼ argmin
j62A

X
z¼0;1

PrðZj ¼ zjzAÞHðXjzA; zÞ:
ð3Þ

Note that information gain-based greedy query selection
reduces to choosing a query that minimizes the expected
conditional entropy of the object states X. Hence, in the
rest of this paper, we will refer to this approach as
entropy-based active query selection. Below, we will
describe how this greedy strategy has been implemented
under the multiple fault and the single-fault settings,
along with their limitations.

4.1 Multiple Fault Scenario

In the multiple fault scenario, the conditional entropy is
given by

HðXjzA; zÞ ¼ �
X

x2f0;1gM
PrðxjzA; zÞ log2 PrðxjzA; zÞ:

Note that direct computation of this expression is intract-
able. However, Zheng et al. [4] note that under the
independence assumptions of Section 2, the conditional
entropy can be simplified such that the query selection
criterion in (3) is reduced to

argmin
j62A

"
�
X
xpaj

;z

Prðxpaj ; zjzAÞ log2 PrðZj ¼ zjxpajÞ

þ
X
z¼0;1

PrðZj ¼ zjzAÞ log2 PrðZj ¼ zjzAÞ þ const

#
:

In addition, they propose an approximation algorithm
that uses the loopy BP infrastructure to compute the
above expression, which they refer to as belief propaga-
tion for entropy approximation (BPEA). Interestingly, this
algorithm requires only one run of loopy BP for each
query selection. After observing responses zA to a set of
queries in A, the object states are then estimated to be
xMAP :¼ argmaxx2f0;1gM PrðX ¼ xjzAÞ, where the MAP es-
timator is obtained using a loopy version of the max-
product algorithm. As far as we know, BPEA is the best
known solution to the problem of active query selection in
the multiple fault scenario.

However, this approach does not scale to large networks
as BPEA involves a term whose computation grows
exponentially in the number of parents to a query node. If
m denotes the maximum number of parents to any query
node, i.e., m :¼ maxj2f1;...;Ngjpajj, then the computational
complexity of choosing a query using BPEA is OðN2mÞ,
thus making it intractable in networks where m is greater
than 25 or even less, especially when real-time query
selection is desired.

Recently, Cheng et al. [26] proposed a speed up to query
selection using BPEA by reducing the number of queries to
be investigated at each stage. However, the exponential
complexity still remains. Alternatively, we propose to
assume a single fault in the query selection stage. As
mentioned earlier, this approximation is motivated by the
fact that in most diagnosis problems, the prior fault
probability is very low. However, it is important for the
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query selection criterion to be robust to violations of the
single fault approximation, as multiple faults could be
present in practice. As we show in Section 5.1, entropy-
based query selection is not robust to such violations and
can perform poorly when multiple faults are present.

4.2 Single Fault Scenario

In this special case where only one object can be in state 1
(i.e., only a single fault is present), the object state vector X
belongs to the set fII1; . . . ; IIMg, where IIi is a binary vector
whose ith element is 1 and the remaining elements are 0.
This reduction in the state space of the object vector allows
for efficient computation of the conditional entropy term in
the query selection criterion of (3).

More specifically, the conditional entropy HðXjzA; zÞ ¼
�
PM

i¼1 PrðX ¼ IIijzA; zÞ log2 PrðX ¼ IIijzA; zÞ can be com-
puted in OðMÞ complexity given the posterior probabilities.
Moreover, using the conditional independence assumption
of Section 2 whereby PrðZjjX;ZAÞ ¼ PrðZjjXÞ, the poster-
ior probabilities can be updated efficiently in OðMÞ time
as follows:

PrðX ¼ IIijZA ¼ zA; Zj ¼ zÞ

¼ PrðX ¼ IIi; Zj ¼ zjZA ¼ zAÞ
PrðZj ¼ zjZA ¼ zAÞ

¼ PrðX ¼ IIi; Zj ¼ zjZA ¼ zAÞPM
k¼1 PrðX ¼ IIk; Zj ¼ zjZA ¼ zAÞ

¼ PrðX ¼ IIijZA ¼ zAÞPrðZj ¼ zjX ¼ IIiÞPM
k¼1 PrðX ¼ IIkjZA ¼ zAÞPrðZj ¼ zjX ¼ IIkÞ

:

ð4Þ

However, another critical limitation with the use of
entropy-based active query selection is that it requires
knowledge of the complete noise distribution or the
parameters in the noise model. In particular, these para-
meters are required for the computation of posterior
probabilities. As we show in Section 6, entropy-based active
query selection can be sensitive to any discrepancies in the
knowledge of these parameters.

In the next section, we derive a new query selection
criterion that sequentially chooses queries such that the
AUC of a rank-based output is maximized. We will show
how this query selection criterion overcomes the limitations
of entropy-based active query selection. In particular, we
will show that the computational complexity of greedily
choosing a query in the multiple fault scenario can be
significantly reduced (from exponential to near-quadratic)
using the proposed criterion, with little loss in performance.
In addition, we will also show that the proposed algorithm
can be implemented efficiently without knowledge of the
underlying noise distribution in the single fault setting.

5 AUC-BASED ACTIVE QUERY SELECTION

AUC has been used earlier as a performance criterion in the
classification setting with decision tree classifiers [27] and
boosting [28], in the problem of ranking [29], and in an
active learning setting [30]. In all the earlier settings, the
AUC of a classifier is estimated using the training data
whose binary labels are known. However, in our setting, the
object states (binary labels) are neither known nor does

there exist any training data. Hence, we propose a simple
estimator for the AUC based on the posterior probabilities
of the object states. Specifically, we propose three variants
of this estimator, and discuss some interesting properties of
each of these variants in the two settings.

Given the observed responses zA to queries in A, let the
objects be ranked based on their posterior fault probabil-
ities, i.e., PrðXi ¼ 1jzAÞ, where ties involving objects with
the same posterior probability are broken randomly. Then,
let r ¼ ðrð1Þ; . . . ; rðMÞÞ denote the rank order of the objects,
where rðiÞ denotes the index of the ith ranked object. For
example, a rank order corresponding to the toy example in
Fig. 2 is r ¼ ð3; 1; 2; 4; 5Þ. Also, note that r depends on the
queries chosen A and their observed responses zA, though
it is not explicitly shown in our notation.

Given this ranked list of objects, we get a series of
estimators fbxtgMt¼0 for the object state vector X, where bxt
corresponds to the estimator which declares the states of
the top t objects in the ranked list as 1 and the remainder
as 0. For example, bx2 ¼ ð1; 0; 1; 0; 0Þ for the toy example
shown in Fig. 2.

These estimators have different false alarm and miss
rates. The miss and false alarm rates associated with bxt are
given by

MRt ¼
P
fi:bxti¼0g IfXi ¼ 1gPM
i¼1 IfXi ¼ 1g

¼
PM

i¼tþ1 IfXrðiÞ ¼ 1gPM
i¼1 IfXi ¼ 1g

;

FARt ¼
P
fi:bxt

i
¼1g IfXi ¼ 0gPM

i¼1 IfXi ¼ 0g
¼
Pt

i¼1 IfXrðiÞ ¼ 0gPM
i¼1 IfXi ¼ 0g

;

where IfEg is an indicator function which takes the value 1
when the event E is true, and 0 otherwise.

However, because the true states of the objects are not
known, the false alarm and the miss rates need to be
estimated. Given the responses zA to queries in A, these two
error rates can be approximated by using the expected
value of the numerator and denominator conditioned on
these responses as shown below:

dMRtðzAÞ ¼
PM

i¼tþ1 PrðXrðiÞ ¼ 1jzAÞPM
i¼1 PrðXi ¼ 1jzAÞ

; ð5aÞ

dFARtðzAÞ ¼
Pt

i¼1 PrðXrðiÞ ¼ 0jzAÞPM
i¼1 PrðXi ¼ 0jzAÞ

: ð5bÞ

Note that these estimators are not the expected values for
the error rates, but rather an approximation to the expected
values. The complexity of computing the true expected
values is exponential in M, while the above approximations
can be computed in linear time. Moreover, as responses to
more queries are obtained, the posterior fault probabilities
tend to be close to either 0 or 1, thus making the above
estimates close to their true values, respectively.

Using these estimates, the ROC curve can then be
obtained by varying the threshold t from 0 to M leading
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to different false alarm and miss rates. For example, bx0,
which declares the states of all the objects to be equal to 0,
has a false alarm rate of 0 and a miss rate of 1. On the other
hand, bxM , which declares the states of all objects as 1, has a
false alarm rate of 1 with a miss rate of 0. The other
estimators have false alarm and miss rates that span the
space between these two extremes.

Finally, the AUC can be estimated using a piecewise

approximation with either lower rectangles, upper rectan-

gles, or a linear approximation, as shown in Fig. 3. As we

discuss later, each of these variants have some interesting

properties in different settings. The expressions related to

each of these approximations are

AlrðzAÞ ¼
XM�1

t¼0

ð1�dMRtÞðdFARtþ1 � dFARtÞ;

AurðzAÞ ¼
XM�1

t¼0

ð1�dMRtþ1ÞðdFARtþ1 � dFARtÞ; and

AlðzAÞ ¼
XM�1

t¼0

ð1�
dMRt þdMRtþ1

2
ÞðdFARtþ1 � dFARtÞ;

where we dropped the dependence of dMRt and dFARt on zA
to avoid cramping. Further, noting that dFARM ¼ 1 anddFAR0 ¼ 0, AlrðzAÞ can be rewritten

AlrðzAÞ ¼
XM�1

t¼0

ð1�dMRtÞðdFARtþ1 � dFARtÞ

¼ dFARM � dFAR0 �
XM�1

t¼0

dMRtðdFARtþ1 � dFARtÞ

¼ 1�
XM�1

t¼0

dMRtðdFARtþ1 � dFARtÞ;

ð6Þ

where
PM�1

t¼0
dMRt ðdFARtþ1 � dFARtÞ corresponds to an

estimate of the area above the ROC curve using lower

rectangles, which we denote by AlrðzAÞ. Similarly, the

estimates of the area above the ROC curve using upper

rectangles or a linear approximation are given by

AurðzAÞ ¼
XM�1

t¼0

dMRtþ1ðdFARtþ1 � dFARtÞ and

AlðzAÞ ¼
XM�1

t¼0

dMRt þdMRtþ1

2
ðdFARtþ1 � dFARtÞ:

Substituting the estimates for miss rate and false alarm
rate from (5a) and (5b), the corresponding approximations
for the area above the ROC curve are given by

AlrðzAÞ ¼
PM

i¼1

PM
j¼i Ni;jðzAÞ

DðzAÞ
; ð7aÞ

AurðzAÞ ¼
PM�1

i¼1

PM
j¼iþ1 Ni;jðzAÞ

DðzAÞ
; ð7bÞ

AlðzAÞ ¼
PM�1

i¼1

PM
j¼iþ1 Ni;jðzAÞ

DðzAÞ

þ
PM

i¼1 PrðXi ¼ 0jzAÞPrðXi ¼ 1jzAÞ
2DðzAÞ

;

ð7cÞ

where Ni;jðzAÞ ¼ PrðXrðiÞ ¼ 0jzAÞPrðXrðjÞ ¼ 1jzAÞ and

DðzAÞ ¼
PM

i¼1 PrðXi ¼ 1jzAÞ
PM

i¼1 PrðXi ¼ 0jzAÞ.
Using the AUC as a quality function, the goal of active

diagnosis is to maximize the accuracy of diagnosis given by
the estimate of AUC, subject to a constraint on the number
of queries made, i.e.,

max
A�f1;...;Ng

AðzAÞ

s:t: jAj � k;

where AðzAÞ corresponds to an estimate of the AUC using
any of the above approximations. More generically, in the
rest of this paper, we will use the terms AðzAÞ and AðzAÞ to
denote any of the above approximations for AUC and area
above the ROC curve, respectively.

Once again the above optimization problem is NP-hard.
Hence, we resort to the greedy strategy, where substituting
this quality function in (2), we get the criterion for greedily
choosing a query to be

j� ¼ argmax
j62A

IEZj ½AðZA [ ZjÞ �AðZAÞjZA ¼ zA�

¼ argmax
j62A

X
z¼0;1

PrðZj ¼ zjzAÞAðzA [ zÞ

¼ argmin
j62A

X
z¼0;1

PrðZj ¼ zjzAÞAðzA [ zÞ;

ð8Þ

where the second equality follows as AðZAÞ is independent
of Zj, and the last equality follows from (6), i.e.,
AðzAÞ ¼ 1�AðzAÞ.

5.1 Multiple Fault Scenario

Note that both the query selection criterion in (8) and the
different approximations to the quality function AðzAÞ in
(7) depend only on the posterior probabilities of unob-
served nodes given the states of the observed nodes. Since
these probabilities can be approximated using loopy BP, the
AUC-based active query selection can be performed using
loopy BP similar to the entropy-based active query selection
in BPEA.

However, a main focus of this paper is on active
diagnosis for large scale networks, where query selection
using loopy BP is slow and possibly intractable. Hence, we
make a single fault approximation to compute the poster-
ior probabilities during the query selection stage. Under

BELLALA ET AL.: A RANK-BASED APPROACH TO ACTIVE DIAGNOSIS 2083

Fig. 3. The different approximations for AUC.



this approximation, both the AUC and the entropy
criterion can be computed efficiently. However, as we
argue below, when multiple faults are present, the AUC
criterion under a single fault approximation still makes a
good choice of queries, and performs significantly better
than the queries selected using the entropy criterion under
a single fault approximation.

Under this approximation, the object state vector X is
restricted to belong to the set fII1; . . . ; IIMg in the query
selection stage. This reduction in the state space of the object
vector allows for query selection to be performed efficiently
without the need for loopy BP. More specifically, the
posterior probabilities required to choose queries sequen-
tially in (8) can be computed as described below.

Using the conditional independence assumption of
Section 2,

PrðZ ¼ zjzAÞ ¼
XM
i¼1

PrðZ ¼ zjX ¼ IIiÞPrðX ¼ IIijzAÞ;

where the posterior probabilities PrðX ¼ IIijzAÞ can be
updated efficiently in OðMÞ time as shown in (4). Also,
note that under a single fault approximation,

XM
i¼1

PrðXi ¼ 1jzAÞ ¼
XM
i¼1

PrðX ¼ IIijzAÞ ¼ 1; ð9aÞ

XM
i¼1

PrðXi ¼ 0jzAÞ ¼M � 1: ð9bÞ

Using these constraints, the estimates for the area above the
ROC curve in (7) can be equivalently expressed as shown in
the following proposition.

Proposition 1. Under the single fault approximation, the
estimates for the area above the ROC curve, in (7), can be
equivalently expressed as

AlrðzAÞ ¼
PM

i¼1 2iþ PrðXrðiÞ ¼ 0jzAÞ
� �

PrðXrðiÞ ¼ 1jzAÞ
2ðM � 1Þ ;

ð10aÞ

AlðzAÞ ¼
PM

i¼1 2i½ �PrðXrðiÞ ¼ 1jzAÞ
2ðM � 1Þ ; ð10bÞ

AurðzAÞ ¼
PM

i¼1 2i� PrðXrðiÞ ¼ 0jzAÞ
� �

PrðXrðiÞ ¼ 1jzAÞ
2ðM � 1Þ :

ð10cÞ

Proof. Refer to the supplemental material, which can be
found online in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2013.30 or in [31]. tu

Note from this result that given a ranked list of the
objects along with their posterior probabilities, the complex-
ity of estimating the area above the ROC curve AðzAÞ under
a single fault approximation is OðMÞ. Since the posterior
probabilities can also be updated efficiently in OðMÞ time,

the complexity of computing AðzAÞ is dominated by the
complexity of sorting, which is OðM logMÞ. Hence,
the computational complexity of choosing a query at each
stage using the AUC-based criterion under a single fault
approximation is OðNM logMÞ. This allows active query
selection to be tractable even in large networks.

However, multiple faults could be present in practice,
and hence, it is important for a query selection criterion
under a single fault approximation to be robust to violations
of that approximation. We will now provide an intuitive
explanation as to why the proposed AUC criterion makes a
robust choice of queries under a single fault approximation,
while the entropy-based criterion fails to do so. We will
demonstrate the same through extensive experiments in
Section 6.

The following result helps to explain why entropy-based
query selection under a single fault approximation per-
forms poorly in a multifault setting.

Proposition 2. Under the single fault approximation and the
conditional independence assumption of Section 2, the
entropy-based query selection criterion in (2) reduces to

j� :¼ argmin
j62A

XM
i¼1

PrðXi ¼ 1jzAÞHðPrðZj ¼ 0jXi ¼ 1ÞÞ

�HðPrðZj ¼ 0jzAÞÞ;
ð11Þ

where HðpÞ :¼ �p log2 p� ð1� pÞ log2ð1� pÞ denotes the
binary entropy function.

Proof. Refer to the supplemental material, available online
in the CSDL or at [31]. tu

As noted in (9a), under a single fault approximation, the
posterior fault probabilities are constrained to sum to 1.
Hence, objects with high posterior fault probability decrease
the posterior fault probabilities of the remaining objects.
Given this scenario, note from (11) in Proposition 2 that
both the terms in this query selection criterion are highly
dominated by the object(s) with high posterior fault
probabilities (even the second term, since PrðZj ¼ 0jzAÞ ¼PM

i¼1 PrðXi ¼ 1jzAÞPrðZj ¼ 0jXi ¼ 1Þ). Hence, at any given
stage, the query chosen according to this criterion is highly
biased toward objects that already have a high posterior
fault probability. This could lead to a poor choice of queries
as the objects with high posterior fault probability need not
have their true states as 1, especially in the initial stages.

On the other hand, the AUC-based criterion under a
single fault approximation chooses queries at each stage by
taking into account its effect on all the objects, leading to a
more balanced and informative choice of queries. This can
be observed from the expressions of the estimators for area
above the ROC curve in (10), where the object with the
highest posterior fault probability Xrð1Þ is assigned the least
weight, with monotonically increasing weights as the
posterior fault probability of the objects decreases. This
forces choosing a query that takes into consideration the
effect on all the objects.

Alternatively, the key difference between these two
approaches can also be explained using an exploitation
versus exploration terminology, where the entropy criterion
chooses queries by exploiting the objects with high posterior
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fault probabilities, whereas the AUC criterion chooses
queries that explore in the early stages, but exploit in the
later stages.

Though all three approximations for AUC are robust to
violations of the single fault approximation, for reasons
similar to the above and explained in detail in the
supplemental material [31], AUC approximated using upper
rectangles turns out to be a better choice for active diagnosis
of multiple faults under a single fault approximation.

5.2 Single Fault Scenario

In this section, we will consider a special case of the active
diagnosis problem where only one object can be in state 1.
Note that this is different from the above scenario, where
multiple faults could be present even though a single fault
approximation is made. Here, the object state vector X can
only take values from the set fII1; . . . ; IIMg. This scenario
arises in several applications, such as pool-based active
learning, job scheduling, image processing, and computer
vision. In applications where there can be no object in
state 1, the above set can be modified to include an all
zero vector.

Here, we will use some additional notation besides the
ones defined in Section 2. We will use an M �N binary
matrix B to denote the bipartite relationship between
objects and queries, where an entry bij in this matrix is 1
if there is an edge between object i and query j, and 0
otherwise. Also, we will use the vector � ¼ ð�1; . . . ; �MÞ to
denote the prior probability distribution of X, where �i :¼
PrðX ¼ IIiÞ and

P
i �i ¼ 1. Finally, in the single fault

scenario, we will denote the event X ¼ IIi by Xi ¼ 1.
We begin by noting that in this special scenario, the ROC

curve corresponding to the rank-based estimators reduces
to a step function. In particular, note that the miss rate of an
estimator can only take two values in this case, either 0 or 1,
as there is only one object whose true state is equal to 1.
Hence, the ROC curve corresponding to a ranked list of
objects is a step function, where the step corresponds to the
location of the faulty object (object with state 1) in the
ranked list. Thus, in this scenario, maximizing the AUC (or
minimizing the area above the ROC curve) corresponding
to a ranked list of objects is equivalent to minimizing the
rank of the faulty object.

In fact, note from (10b) that in a single fault scenario, the
estimate of the area above the ROC curve using a linear
approximation corresponds to the expected rank of the
faulty object in the ranked list. We will now introduce a
slight variation on this criterion that offers a key advantage
over entropy-based query selection in terms of not requir-
ing knowledge of the underlying noise parameters.

Specifically, we replace the ranking rðiÞ defined pre-
viously with a worst-case ranking. Given the observed
responses zA to a set of queries in A, the worst-case rank of
object i is defined to be

rwcðijzAÞ ¼
XM
k¼1

IfPrðXk ¼ 1jzAÞ � PrðXi ¼ 1jzAÞg

¼
XM
k¼1

If�kPrðzAjXk ¼ 1Þ � �iPrðzAjXi ¼ 1Þg;

IfEg being the indicator function. If the posterior prob-
abilities are distinct, then rwcðijzAÞ coincides with the
previous definition. However, when multiple objects have
the same posterior fault probabilities, each of those objects
is assigned the worst-case rank, as shown in Fig. 4.

Given these rankings, the area above the ROC curve
estimated using a linear approximation in (10b) can be
upper bounded as shown below:

AlðzAÞ ¼
1

M � 1

XM
i¼1

i 	 PrðXrðiÞ ¼ 1jzAÞ

¼ 1

M � 1

XM
i¼1

rðiÞ 	 PrðXi ¼ 1jzAÞ

� 1

M � 1

XM
i¼1

rwcðijzAÞ 	 PrðXi ¼ 1jzAÞ ¼: AlðzAÞ:

Substituting this in (8), we get the criterion for greedily
choosing the next query to be

j� ¼ argmin
j 62A

X
z¼0;1

PrðZj ¼ zjzAÞAlðzA [ zÞ

¼ argmin
j 62A

1

M � 1

X
z¼0;1

XM
i¼1

�
PrðZj ¼ zjzAÞ

PrðXi ¼ 1jzA [ zÞrwcðijzA [ zÞ
�

¼ argmin
j 62A

1

M � 1

X
z¼0;1

XM
i¼1

"
�iPrðzA; zjXi ¼ 1Þ

PrðzAÞ
rwcðijzA [ zÞ

#

¼ argmin
j 62A

X
z¼0;1

XM
i¼1

�iPrðzA; zjXi ¼ 1ÞrwcðijzA [ zÞ;

ð12Þ

where (12) follows as 1=ðM � 1Þ and PrðzAÞ are constants
that do not depend on query j. In the noise-free case with
uniform prior, this greedy strategy reduces to GBS [6], as
shown in the supplemental material [31].

In the noisy case, given the knowledge of the prior
distribution � and the noise parameters such as the leak
and the inhibition probabilities in the QMR-DT noise
model, the greedy algorithm in (12) can be implemented
efficiently. However, these noise parameters are often not
known, and hence it is desirable for a greedy query
selection criterion to be robust to any discrepancies in the
knowledge of these parameters. As we show in Section 6,
entropy-based active query selection can be sensitive to
discrepancies in the noise parameters.

In the next two sections, we consider two special cases of
the noise model discussed in Section 2 that appear in many
applications, and present a noise independent estimate of
the query selection criterion in (12). Specifically, we take
advantage of the fact that this query selection criterion
depends on the noise parameters only through the like-
lihood function, and provide a good upper bound on the
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likelihood function that is independent of noise parameters.
This enables accurate prediction of the worst-case rank of
the objects without requiring knowledge of the true noise
parameters. Furthermore, we show that in some cases it is
possible to estimate the true ranks exactly with limited
knowledge on the query noise. The bound on the likelihood
function is based on the following lemma.

Lemma 1. Let h; k be integers with 0 � h � k and k � 1. Then,
for any 0 < p < 1,

phð1� pÞk�h � "hhð1� "hÞ
k�h; ð13Þ

where "h ¼ h
k . If it is known that p � p2 < 1, then (13) holds

with "h ¼ minfp2;
h
kg. If it is known that p � p1 > 0, then

(13) holds with "h ¼ maxfp1;
h
kg. If it is known that 0 < p1 �

p � p2 < 1, then (13) holds with "h ¼ minfp2;maxfp1;
h
kgg.

Proof. Refer to the supplemental material, which can be
found online in the CSDL or at [31]. tu

5.2.1 Constant Noise Level

We begin with the following special case of the noise model
described in Section 2, where 0 < �0j ¼ p < 1; 8j, and
�kj ¼ p=ð1� pÞ; 8k; j. This noise model has been used in
the context of pool-based active learning with a faulty oracle
[7], [15], experimental design [21], computer vision, and
image processing [9], where the responses to some queries
are assumed to be randomly flipped.

In this setting, PrðZj ¼ zjjXi ¼ 1Þ ¼ pjbij�zjjð1� pÞ1�jbij�zjj.
More generally, the likelihood function can be expressed as
shown below:

PrðZA ¼ zAjXi ¼ 1Þ ¼ p�i;Að1� pÞjAj��i;A ;

where �i;A ¼
P

j2A jbij � zjj is the local Hamming distance
between the true responses of object i to queries in A and
the observed responses zA. Note that the bipartite relation-
ship between the objects and queries or the binary matrix B

should be known to compute �i;A.
Using the result in Lemma 1, the above likelihood

function can then be upper bounded by

PrðzAjXi ¼ 1Þ :¼ �i;A
jAj

� ��i;A
1� �i;AjAj

� �jAj��i;A
:

The lemma also states that given an upper or lower bound on
the noise parameter p, this bound can be further improved.

Finally, let rwcðijzAÞ denote the estimated worst-case
rank of object i based on the upper bound on the likelihood
function:

rwcðijzAÞ :¼
XM
j¼1

If�jPrðzAjXj ¼ 1Þ � �iPrðzAjXi ¼ 1Þg:

ð14Þ

Then, the query selection criterion in (12) can be replaced by
the following noise-independent criterion:

argmin
j 62A

X
z¼0;1

XM
i¼1

�iPrðzA; zjXi ¼ 1ÞrwcðijzA [ zÞ: ð15Þ

The result in Proposition 3 presents conditions under which
the true rank can be estimated accurately. It states that,
under uniform prior on the objects, it suffices to know
whether p < 0:5 or p > 0:5, for the estimated ranks to be
exactly equal to the true ranks.

More generally, for any given prior � with � :¼ mini�i=
maxi�i, it suffices to know whether p < �

1þ� or p > 1
1þ� for the

estimated ranks to be equal to the true ranks. Even in the case
where �

1þ� � p < 0:5 or 0:5 < p � 1
1þ� , we observe through

experiments that the estimated ranks are equal to the true
ranks for most objects.

Proposition 3. Let zA be the observed responses to a sequence of
queries in A, under some unknown noise parameter p.
Let � :¼ mini�i=maxi�i. Given a p 2 ð0; �

1þ�Þ such that 0 <
p � p or a p 2 ð 1

1þ� ; 1Þ such that 1 > p � p, the estimated
ranks rwcðijzAÞ computed only with the knowledge of p or p
are equal to the true ranks rwcðijzAÞ, 8 1 � i �M.

Proof. Refer to the supplemental material, which can be
found online in the CSDL or at [31]. tu

5.2.2 Response Dependent Noise

We now consider the noise model where the probability of
error depends on the true response to a query. When the
true response is 0, the probability of observing a noisy
response is given by �0, and by �1 when the true response is
1, i.e.,

PrðZj ¼ 0jXi ¼ 1Þ ¼ 1� �0; if bij ¼ 0;

and PrðZj ¼ 0jXi ¼ 1Þ ¼ �1; if bij ¼ 1:

For example, consider the following special case of the
QMR-DT noise model described in Section 2, where �0j ¼ �0,
8j, and �kj ¼ �, 8k 6¼ 0; j. This case reduces to the above
setting with �0 ¼ �0 and �1 ¼ ð1� �0Þ�, where 0 < �0; � < 1
are the leak and inhibition probabilities, respectively.

For any subset of indices A � f1; . . . ; Ng, let Ai0 ¼ fj 2
A : bij ¼ 0g and Ai1 ¼ fj 2 A : bij ¼ 1g be partitions of A for
each i ¼ 1; . . . ;M such that the true response bij of object i to
queries inAi0 is 0 and that inAi1 is 1. The likelihood function is
then given by

PrðZA ¼ zAjXi ¼ 1Þ ¼ �
�
i;Ai

0

0 ð1� �0Þ
jAi0j��i;Ai

0

� �
�
i;Ai

1
1 ð1� �1Þ

jAi1j��i;Ai
1 ;

where �i;Ai0 ¼
P

j2Ai0 j0� zjj and �i;Ai1 ¼
P

j2Ai1 j1� zjj are
the local Hamming distances between the true responses of
object i to queries in Ai0 and Ai1 and that of their observed
responses.

Once again, using Lemma 1, this likelihood function can
be upper bounded by

PrðZA ¼ zAjXi ¼ 1Þ ¼ 1�
�i;Ai0
jAi0j

 !jAi0j��i;Ai
0

�i;Ai0
jAi0j

 !�
i;Ai

0

� 1�
�i;Ai1
jAi1j

 !jAi1j��i;Ai
1 �i;Ai1
jAi1j

 !�
i;Ai

1

:

Hence, the ranks of the objects can be estimated using
(14) and the rank-based query selection can be performed
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using (15), without requiring any knowledge of the query
noise parameters.

Unfortunately, it is not possible to extend the result of
Proposition 3 to this case. Yet, the experimental results in
Section 6 demonstrate that the noise-independent rank-
based algorithm performs comparably to the entropy-based
algorithm, which requires knowledge of �0 and �1.

6 EXPERIMENTS

We compare the performance of the proposed rank-based
algorithm with that of entropy-based query selection and
random search in both the multiple fault and the single fault
scenarios. Random search serves as a baseline and is not
expected to perform well as it selects queries at random. We
compare their performance on two real diagnosis applica-
tions and several synthetic datasets. In particular, we
consider the problem of fault diagnosis in computer
networks, which is explained in more detail in Section 6.1.
In the single fault scenario, we also consider the emergency
response problem of toxic chemical identification, which is
described in more detail in Section 6.2. In both cases, we
also show experimental results on synthetic datasets
generated using random network models such as the
Erdös-Rényi (ER) and Preferential Attachment (PA) random
network models. For more details on how the random
networks and the computer networks were generated, refer
to the supplemental material [31].

6.1 Multiple-Fault Scenario

We consider the problem of fault diagnosis in computer
networks. In this application, the goal is to monitor a system
of networked computers for faults, where each computer
can be associated with a binary random variable Xi (0 for
working and 1 for faulty). It is not possible to test each
individual computer directly in a large network. Hence, a
common solution is to test a subset of computers with
a single test probe Zj, where a probe can be as simple as a
ping request or more sophisticated such as an e-mail
message or a webpage access request. Thus, there is a BDG
with each query (probe) connected to all the objects
(computers) it passes through. In these networks, certain
computers are designated as probe stations, which are
instrumented in sending out probes to test the response of
the networked elements. However, the available set of
probes Z is often very large, and hence, it is desirable to
minimize the number of probes required to identify the
faulty computers. Refer to Rish et al. [3] for further details.

We compare the performance of the proposed AUC
criterion under a single fault approximation (AUC+SF) with
that of the entropy criterion computed using BP (BPEA) and
under a single fault approximation (Entropy+SF), along
with random search. We have also implemented the AUC
criterion using BP. In all our experiments, we observed its
performance to be at least as good as BPEA, but not
significantly better. Hence, we elected not to include them
in the paper.

We compare the algorithms on one synthetic dataset and
two computer networks. Unlike Zheng et al. [4] and Cheng
et al. [26] who only considered networks of size up to 500
components and 580 probes, here we also consider a large

scale network. The first dataset is a random BDG generated
using the standard PA random graph model [32]. The
second and the third datasets are network topologies built
using the BRITE [33] and the INET [34] generators, which
simulate an Internet-like topology at the Autonomous
Systems level. To generate a BDG of components and
probes from these topologies, we used the approach
described by Rish et al. [3] and Zheng et al. [4].

For the random graph model considered, we generated
a random BDG consisting of 300 objects and 300 queries.
We generated a BRITE network consisting of 300 compo-
nents and around 400 probes, and an INET network
consisting of 4,000 components and 5,380 probes. We
consider the QMR-DT noise model described in Section 2;
parameters are given below. We compare the four query
selection criteria under two performance measures, AUC
and information gain.

Fig. 5 compares their performance as a function of the
number of queries inputted. Information gain is computed
using BPEA. To compute the AUC, we rank the objects
based on their posterior fault probabilities that are
computed using a single-fault approximation. Alterna-
tively, note that these posterior probabilities could be
computed using BP for the PA and BRITE networks (BP is
intractable on the INET). Using this alternate approach does
not change our conclusions.

We used the inference engines in the libDAI [35] package
for implementing BPEA and BP. However, BPEA (and BP)
became slow and intractable on the INET, with BP often not
converging and resulting in oscillations. Hence, on this
network, we only compare the performance of AUC+SF and
Entropy+SF based on the AUC criterion, which is computed
based on rankings obtained from posterior probabilities
under a single-fault approximation.

The results in this figure correspond to a prior fault
probability value of 0.03, with the leak and inhibition
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probabilities at 0.05. Each curve in this figure is averaged
over 200 random realizations, where each random realiza-
tion corresponds to a random state of X and random
generation of the noisy query responses. For the PA and
BRITE models, the results were observed to be consistent
across different realizations of the underlying bipartite
network. For INET, we considered only one network with
25 probe stations.

Note from this figure that while BPEA performs the best,
Entropy+SF performs as badly as a random search. On the
other hand, AUC+SF performs significantly better than
Entropy+SF, and comparable to BPEA while having a
computational complexity that is orders less (near-quadratic
versus exponential complexity of BPEA). We compared the
performance of the methods for different values of prior
fault, inhibition, and leak probabilities, as shown in the
supplemental material [31]. We also observed that as the
prior fault probability is increased beyond 0.1, the perfor-
mance of AUC+SF starts to deteriorate and slowly con-
verges to that of Entropy+SF, and this was observed
irrespective of the size of the network. However, this should
not be a problem as most real-world applications have a
fairly low (
 0:1) prior fault probability.

6.2 Single-Fault Scenario

For the single fault scenario, we examine the fault diagnosis
application discussed above, as well as the emergency
response application of toxic chemical identification. In this
context, the objects are toxic chemicals and the queries are
symptoms. In the event of a toxic chemical accident, a first
responder is often faced with the task of rapidly identifying
the toxic chemical by posing symptom-based queries to a
victim. Unfortunately, many symptoms tend to be non-
specific (i.e., vomiting can be caused by many different
chemicals), and it is therefore critical for the first responder
to pose these questions in a sequence that leads to chemical
identification in as few questions as possible.

We compare the performance of the proposed rank-
based noise independent algorithm with that of entropy-

based query selection and random search on two synthetic
datasets, a computer network, and a toxic chemical
database. In addition, we also compare the proposed
algorithm with that of GBS, as the proposed rank-based
approach can be considered as an extension of GBS that is
designed to handle query noise. Once again, GBS serves as a
baseline, as it does not account for noise.

The first two datasets are random bipartite networks
generated using the standard ER random network model
and the PA random network model. The third dataset is a
network topology built using the BRITE generator. The last
dataset is the WISER database (http://wiser.nlm.nih.gov),
which is a toxic chemical database describing the binary
relation between 298 toxic chemicals and 79 acute symptoms.

We generated a random network for each of the random
network models considered, where each network consisted
of around 200 objects and 300 queries. We generated a
BRITE network consisting of 300 objects (components/
computers) and around 350 queries (probes). For the
synthetic datasets and WISER, we assumed the noise model
to be that of Section 5.2.1, and for the BRITE network, we
considered the noise model in Section 5.2.2. Here, we
present the results under uniform prior, where �i ¼ 1=M.
We observed similar performance under nonuniform prior.

Fig. 6 shows the worst-case rank of the unknown object
(i.e., the faulty computer or the leaked toxic chemical). Each
curve in this figure is averaged over 500 random realiza-
tions, where each random realization corresponds to a
random selection of the unknown object from the set of
M objects and random generation of the noisy query
responses. The resulting confidence intervals were very
small and, hence, are not shown in the figure. For the two
random network models and BRITE, the results were
observed to be consistent across different realizations of
the underlying bipartite network.

For the ER, PA, and the WISER datasets, we consider two
different values for the probability of error, p ¼ 0:1; 0:2. The
entropy-based query selection is performed assuming the
knowledge of p, whereas the rank-based query selection is
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Fig. 6. The first column corresponds to a dataset generated using the ER model, the second column corresponds to a dataset generated using the
PA model, the third column corresponds to the WISER database, and the last column corresponds to a BRITE network. In all the experiments, the
rank-based algorithm has no knowledge of the noise parameters.



performed using only the fact that p < p ¼ 0:5. The BRITE
networks are simulated using the QMR-DT noise model,
where we considered the leak and the inhibition probabil-
ities to be ð�; �0Þ ¼ ð0:05; 0:05Þ and ð0:1; 0:1Þ. This noise
model reduces to that in Section 5.2.2 with �0 ¼ �0 and
�1 ¼ ð1� �0Þ�. Once again, the entropy-based query selec-
tion is performed assuming the knowledge of �0 and �1,
whereas the rank-based query selection is performed using
only the fact that �0; �1 � p ¼ 0:25.

Finally, Fig. 7 demonstrates the sensitivity of entropy-
based query selection to misspecification of the value of
noise parameters. For the ER, PA, and WISER datasets, the
true noise parameter is p ¼ 0:25, while the underestimated
and the overestimated curves are obtained using p ¼ 0:15
and 0.4, respectively. For the BRITE network, while the true
noise parameters are ð0:1; 0:1Þ, the other two curves are
obtained using ð0:05; 0:05Þ and ð0:15; 0:15Þ. Once again, the
rank-based algorithm is performed without knowledge of
the noise parameters. This demonstrates that the entropy-
based query selection can perform poorly when the noise
parameters are misspecified.

These experiments demonstrate the competitive perfor-
mance of the rank-based algorithm to entropy-based query
selection, despite not having knowledge of the underlying
noise parameters.

7 CONCLUSIONS

We study active diagnosis in two different settings—multi-
ple fault and single fault. In the multiple-fault scenario,
active query selection algorithms such as BPEA rely on belief
propagation, making them intractable in large networks.
Thus, we propose to make the simplifying approximation of
a single fault in the query selection stage. Under this
approximation, several query selection criterion can be
implemented efficiently. However, we note that traditional
approaches such as entropy-based query selection under a
single fault approximation perform poorly in a multiple fault
setting. Hence, we propose a new query selection criterion
where the queries are selected sequentially such that the
AUC of a rank-based output is maximized. We demonstrate

the competitive performance of the proposed algorithm to
BPEA in the context of fault diagnosis in computer networks.
The competitive performance of the proposed algorithm,
while having a computational complexity that is orders less
than that of BPEA (near quadratic versus the exponential
complexity of BPEA), makes it a fast and a reliable substitute
for BPEA in large scale diagnosis problems. Furthermore, we
show that the proposed criterion has another interesting
feature in the single fault scenario in that it does not require
knowledge of the underlying noise distribution. On the other
hand, entropy-based query selection requires knowledge of
these noise parameters, and can be sensitive to misspecifica-
tion of these values.
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