
EECS 598: Statistical Learning Theory, Winter 2014 Topic 8

Oracle Inequalities and Adaptive Rates
Lecturer: Clayton Scott Scribe: Yue Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

We have previously seen how sieve estimators give rise to rates of convergence to the Bayes risk by performing
empirical risk minimization over Hk(n), where (Hk)k ≥ 1 is an increasing sequence of sets of classifiers, and
k(n) → ∞. However, the rate of convergence depends on k(n). Usually this rate is chosen to minimize
the worst-case rate over all distributions of interest. However, it would be nice if we could automatically
get a faster rate of convergence when the distribution is more favorable. Since we don’t know whether
our distribution is worst-case or not a priori, we don’t know how to choose k(n), and adaptive rates of
convergence are not possible with sieve estimators.

Adaptive rates are possible, however, using another learning strategy called penalized empirical risk
minimization. With this approach we can prove a so-called “oracle inequality” that expresses the ability
of penalized ERM to automatically select a classifier of the appropriate complexity so as to achieve im-
proved rates of convergence, even when the best model class Hk depends on some unknown property of the
distribution.

In these notes we will consider oracle inequalities in the context of dyadic decision trees and of general VC
classes. In the latter case, penalized empirical risk minimization is known as structural risk minimization.

2 Dyadic Decision Trees

We have actually already seen an example of penalized empirical risk minimization and an associated oracle
inequality in the context of dyadic decision trees. However, the results we proved did not actually require
penalized ERM and the oracle inequality (see exercise at the end of the notes on dyadic decision trees). We
review those results here, and then use the oracle inequality to obtain an adaptive rate of convergence.

Let X ∈ [0, 1]d. Recall Tm = {all DDTs whose cells all have sidelength ≥ 1/m}. Denote by Π(h) = {Ai}
the recursive dyadic partition associated with h. Recall the penalized empirical risk minimizer

ĥn = arg min
h∈Tm

R̂n(h) + Φn(h), (1)

where Φn(h) is the complexity penalty

Φn(h) =
∑

A∈Π(h)

√
2B2−j(A)

[κj(A) + log(n)]
n

where j(A) is the depth of cell A (the number of splits needed to form A), B is a bound on the assumed
density of PX , and κ is a constant. We have shown that with probability at least 1− 1/n,

R(ĥn)−R∗ ≤ inf
h∈Tm

 R(h)−R∗︸ ︷︷ ︸
approximation error

+ 2Φn(h)︸ ︷︷ ︸
bound on estimation error

 (2)
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Figure 1: An example of a Bayes decision boundary when there exists feature dimensions irrelevant to the
label. In this case, x3 is the irrelevant feature dimension.

By setting m ∼
(

n
log n

) 1
d

, both error terms converge to zero as O
((

log n
n

) 1
d

)
whenever PXY belongs to the

box-counting class (defined in the notes on the sieve estimators). Inequality (2) is an example of an oracle
inequality : the discrimination rule ĥn in (1) achieves an optimal trade-off between approximation error and
(a bound on) estimation error.

In many real applications, only some dimensions of the feature space are relevant for classification. For
example, in the case of Figure 1, there is no need to split along dimension x3. It can be shown that for a
distribution in the box counting class with only dr < d relevant features, the optimal rate of convergence
(that holds uniformly for all such distributions) is O(n−1/dr ) [1]. We will see that the discrimination rule in
(1) can attain this optimal rate without knowledge of dr. In this sense, the discrimination rule is adaptive.

We first extends the definition of box-counting class to incorporate the number of relevant features.

Definition 1. Let dr ≤ d. Define B(dr) to be the set of all PXY such that

(A) PX has a bounded probability density function f , ‖f‖∞ ≤ B;

(B) ∃C s.t. ∀m ≥ 1, the Bayes decision boundary intersects at most Cmd−1 of the md cells in a regular
partition of X ;

(C) dr of the features are statistically dependent on Y

Theorem 1. Let m ∼
(

log n
n

) 1
d

. If PXY ∈ B(dr), then

E
[
R(ĥn)−R∗

]
= O

((
log n
n

) 1
dr

)
.

The convergence rate is optimal up to the logarithmic factor.

Proof. (Sketch – proof of the lemmas is left as an exercise.) Without loss of generality, assume the first dr

features are relevant. Let mr = 2J ≤ m for some integer J > 0; Let hmr
∈ Tm be the DDT obtained by

cycling through the first dr dimensions J times each. Let h∗mr
∈ Tm be obtained by pruning all cells of hmr

except those intersecting the Bayes decision boundary (and their siblings).
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Lemma 1.

R(h∗mr
)−R∗ = O

(
1
mr

)

The proof of Lemma 1 is left as an exercise.

Lemma 2.

E
[
R(hn)−R(h∗mr

)
]

= O

(
m

dr
2 −1

r

√
log n
n

)

The proof of Lemma 2 is left as an exercise. To prove Theorem 1, now choose

mr ∼
(

n

log n

) 1
dr

A key point to realize is that because of the oracle inequality, the user does not actually need to know
dr.

3 Structural Risk Minimization

Let {Hk}k≥1 be a collection of VC classes with VC dimensions Vk. Recall that for each k, we have the
uniform deviation bound: with probability at least 1− δk, ∀h ∈ Hk,∣∣∣R̂n(h)−R(h)

∣∣∣ ≤√32 [Vk log(n+ 1) + log(8/δk)]
n

.

Further, we know that with probability at least 1− δk,

R(ĥn,k) ≤ R∗Hk
+ 2

√
32 [Vk log(n+ 1) + log(8/δk)]

n
, (3)

where ĥn,k is ERM over Hk. We can unify these bounds into one, as stated below.

Corollary 1. With probability at least 1− 1/n, ∀k, ∀h ∈ Hk,∣∣∣R̂n(h)−R(h)
∣∣∣ ≤√32 [Vk log(n+ 1) + k log 2 + log(8n)]

n
=: Φn(k) (4)

Proof. Think of the complementary event on which the inequality (4) fails to hold. That means at least one
h ∈ Hk fails the bound (3) for some k, which occurs with probability at most δk. By the union bound, the
inequality (4) fails with probability at most

∑
k δk. Set δk = δ2−k and δ = 1/n to obtain the result.

Note that Φn(k) is an increasing function of the VC dimension Vk. We think of Φn(k) as a complexity
penalty. The following discrimination rule formulates penalized ERM in this setting.

Definition 2. Structural risk minimization (SRM) is defined via ĥn = ĥn,bk, where

k̂ = arg min
k≥1

R̂n(ĥn,k)︸ ︷︷ ︸
empirical risk

+ Φn(k)︸ ︷︷ ︸
complexity

The chosen k̂ effects the trade-off between data fidelity and model complexity.
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Figure 2: The bound on the test error is the sum of the empirical risk and a complexity term. The empirical
risk R̂n(ĥn,k) decreases with the index k of the VC class Hk (structure), while the model complexity Φn(k)
increases with k. The optimal bound is achieved on some appropriate k̂.

The SRM principle is illustrated in Figure 2. On the left side of x-axis, the model complexity is low, which
means the classifier does not have enough capacity to the fit training data well, leading to high empirical
risk or underfitting. On the right side of the x-axis, the model is complex enough to fit the training data
well (hence low empirical error), but an over-complex model tends to perfectly fit the idiosyncrasies (noise)
in training data, leading to poor generalization on test data, a phenomenon called overfitting. SRM selects
the best model that achieves a near-optimal trade-off between empirical error and model complexity. This
is reflected in the following result.

Theorem 2. With probability at least 1− 1/n,

R(ĥn)−R∗ ≤ inf
k≥1

{
R∗Hk

−R∗ + 4Φn(k)
}
.

Proof. Consider the event Ω = {bound in Corollary 1 holds}. By assumption, Pr(Ω) ≥ 1 − 1/n. On event
Ω, for any k ≥ 1,

R(ĥn) = R(ĥn,bk)

≤ R̂(ĥn,bk) + Φn(k̂) Inequality (4)

≤ R̂(ĥn,k) + Φn(k) Definition of SRM ĥn,bk
≤ R(ĥn,k) + 2Φn(k) Inequality (4)
≤ R∗Hk

+ 4Φn(k) Inequality (3)

Now subtract R∗ from both sides. Since k was arbitrary, the proof is complete.
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Exercises

1. Complete the proof of Theorem 1 as follows.

(a) Prove Lemma 1. Hint: show that the projection of the Bayes decision boundary onto the relevant
dimensions intersects no more than Cmdr−1 cells in [0, 1]dr . You may also want to look at the
analysis of approximation error in our study of the histogram rule.

(b) Prove Lemma 2. Hint: This should be a relatively straightforward modification of our bound on
the estimation area from the notes on dyadic decision trees.

2. Suppose we have access to some holdout data Xn+1, . . . , Xn+m that is not used for training. Define
the holdout error of a classifier h to be

R̃n(h) :=
1
m

m∑
i=1

1{h(Xn+i) 6=Yn+i}.

Now suppose we have a sequence of sets of classifiers (Hk) of increasing complexity. Consider the
discrimination rule h̃n = ĥh,bk, where ĥn,k is empirical risk minimization over Hk, and

k̂ = arg min
k≥1

R̃n(h) + Φ̃n(k).

Your task in this problem is to define Φ̃n(k) and prove an oracle inequality for h̃n. Your result should
basically say that SRM does about as well as the best empirical risk minimizer, which of course is not
known. Note: We are not assuming that the Hk are VC classes. Also, “with high probability” refers
to the draw of both the training and holdout data.

3. DDTs also adapt to the intrinsic dimension of the data distribution. Modify conditions (A) and
(B) in the definition of the box-counting class to reflect the idea that the data lie on a manifold of
dimension dm < d. Then show that DDTs can adaptively come within a log factor of the optimal
rate of O(n−1/dm). Hint: The modification of (B) is fairly straightforward. To modify (A), don’t
mess with trying to define a density on a manifold; instead, use box-counting ideas and formulate this
condition in terms of the probability of the data occurring in a hypercube with side length 1/m (i.e.,
bound this probability in terms of some power of m).

4. Give conditions under which SRM is strongly universally consistent. Provide a theorem statement with
proof. Compare to sieve estimation.
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