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1 Introduction

We can decompose the excess risk of a discrimination ruleas follows:

R(ĥn)−R∗ = R(ĥn)−R∗H︸ ︷︷ ︸
estimation error

+ R∗H −R∗︸ ︷︷ ︸
approximation error

The first term is the estimation error and measures the performance of the discrimination rule with respect
to the best hypothesis in H. In previous lectures, we studied performance guarantees for this quantity when
ĥn is ERM. Now, we also consider the approximation error, which captures how well a class of hypotheses
{Hk} approximates the Bayes decision boundary. For example, consider the histogram classifiers in Figure 1
and Figure 2, respectively. As the grid becomes more fine-grained, the class of hypotheses approximates the
Bayes decision boundary with increasing accuracy. The examination of the approximation error will lead to
the design of sieve estimators that perform ERM over Hk where k = k(n) grows with n at an appropriate
rate such that both the approximation error and the estimation error converge to 0. Note that while the
estimation error is random (because it depends on the sample), the approximation error is not random.

2 Approximation Error

The following assumption will be adopted to establish universal consistency.

Definition 1. A sequence of sets of classifiers H1,H2, . . . is said to have the universal approximation
property (UAP) if for all PXY ,

R∗Hk → R∗

as k →∞.

Observe that R∗Hk is not random; it does not depend on the training data. Also, it depends on PXY
because it is an expectation. The following theorem gives a sufficient condition for a sequence of classifiers
to have the UAP.

Theorem 1. Suppose Hk consists of classifiers that are piecewise constant on a parititon of X into cells
Ak,1, Ak,2, . . .. If supj≥1 diam(Ak,j)→ 0 as k →∞, then {Hk} has the UAP.

Proof. See the proof of Theorem 6.1 in [1].

Example. Suppose X = [0, 1]d. Consider Hk =
{

histogram classifiers based on cells of sidelength 1
k

}
.

Then, diam(Ak,j) =
√
d
k for ∀j. In particular,

sup
j≤1

diam(Ak,j) =

√
d

k

→ 0

as k →∞. By the above theorem, {Hk} has the UAP.
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Figure 1: Histogram classi-
fier based on 6× 6 grid

Figure 2: Histogram classi-
fier based on 12× 12 grid

3 Convergence of Random Variables

This section offers a brief review of convergence in probability and almost surely, and gives some useful
results for proving both kinds of convergence.

Definition 2. Let Z1, Z2, . . . be a sequence of random variables in R. We say that Zn converges to Z in
probability, and write Zn

i.p.−→ Z, if ∀ε > 0,

lim
n→∞

Pr(|Zn − Z| ≥ ε) = 0.

We say Zn converges to Z almost surely (with probability one), and write Zn
a.s.−→ Z, if

Pr({ω : lim
n→∞

Zn(ω) = Z(ω)}) = 1.

Example. In analysis of discrimination rules, we consider Ω = {ω = ((X1, Y1), (X2, Y2), . . .) ∈ (X × Y)∞}
where (Xi, Yi)

i.i.d.∼ PXY . To study convergence of the risk to the Bayes risk, we take Zn = R(ĥn) where ĥn
is a classifier based on the first n entries of ω, namely (X1, Y1), . . . , (Xn, Yn), and Z = R∗.

Now, we consider some useful lemmas for proving convergence in probability and almost sure convergence.
We begin with useful results for convergence in probability.

Lemma 1. If Zn
a.s.−→ Z, then Zn

i.p.−→ Z.

Proof. This was proved in EECS 501.

Lemma 2. If E{|Zn − Z|} → 0 as n→∞, then Zn
i.p.−→ Z.

Proof. By Markov’s inequality

Pr(|Zn − Z| ≥ ε) ≤
E{|Zn − Z|}

ε
→ 0.

Now, we turn our attention to almost sure convergence. We begin with the Borel-Cantelli Lemma, which
yields a useful corollary.
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Lemma 3 (Borel-Cantelli Lemma). Consider a probability space (Ω, A, P ). Let {An}n≥1 be a sequence of
events. If ∑

n≥1

P (An) <∞

then

P (lim supAn) = 0

where

lim supAn := {ω ∈ Ω : ∀N ∃n ≥ N such that ω ∈ An}
= {ω that occur infinitely often in the sequence of events}

=
⋂
N≥1

⋃
n≥N

An.

Proof. Observe that P (lim supAn) = P (limN→∞
⋃
n≥N An). Let BN =

⋃
n≥N An. Observe that B1 ⊃ B2 ⊃

B3 ⊃ · · · , i.e., {BN} is a decreasing sequence of events. Then, by continuity of P , we have

P ( lim
N→∞

BN ) = lim
N→∞

P (BN )

= lim
N→∞

P (
⋃
n≥N

An)

≤ lim
N→∞

∑
n≥N

P (An)

= 0

where the inequality in the third line follows from union bound and the last equality follows from the
hypothesis that

∑
n≥1 P (An) <∞.

The following corollary of the Borel-Cantelli lemma is very useful for showing almost sure convergence.

Corollary 1. If for all ε > 0, we have ∑
n≥1

Pr(|Zn − Z| ≥ ε) <∞

then Zn
a.s.−→ Z.

Proof. Define the event Aε = {ω ∈ Ω : ∀N ∃n ≥ N such that |Zn(w) − Z(w)| ≥ ε}. Let Aεn = {ω ∈ Ω :
|Zn(ω) − Z(ω)| ≥ ε}. Observe that lim supAεn = Aε. By the hypothesis, we may apply the Borel-Cantelli
lemma to obtain Pr(Aε) = 0.

Now define A = {ω ∈ Ω : Zn(ω) 6→ Z} = {ω ∈ Ω : ∃ε > 0 ∀N ∃n ≥ N such that |Zn(ω)− Z(ω)| ≥ ε}. In
words, this means: for some ε, no matter how far along you go in the sequence, you can find some n such
that |Zn(ω) − Z(ω)| ≥ ε. Now, let {εj} be a strictly decreasing sequence converging to 0. Observe that
A ⊂

⋃∞
j=1A

εj . To see this, take some ω ∈ A. Then, for some ε > 0 ∀N∃n ≥ N such that |Zn(ω)−Z(ω)| ≥ ε.
As j →∞, eventually there is some j′ such that εj′ ≤ ε, so that ω ∈ Aεj′ . Therefore,

Pr(A) ≤ Pr(
∞⋃
j=1

Aεj)

≤
∞∑
j=1

Pr(Aεj )

= 0.

This concludes the proof.
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4 Sieve Estimators

Let {Hk} be a sequence of sets of classifiers with the uniform approximation property (UAP). Assume that
we have a uniform deviation bound for Hk (e.g., if Hk is finite or a VC class). We denote by ĥn,k the classifier
we obtain from empirical risk minimization (ERM) over Hk:

ĥn,k = arg min
h∈Hk

1
n

∑
i

1{h(Xi)6=Yi} .

Let k(n) be an integer-valued sequence and define ĥn = ĥn,k(n). Since we have the UAP, it should be clear
that the approximation error goes to 0 as long as k(n)→∞ with n. We wish to restrict the rate of growth
of k(n) appropriately so that the estimation error also goes to zero, in probability or almost surely. This is
called a sieve estimator, whose name is generally attributed to Grenander [3]. Formally, we need that

R(ĥn)−R∗Hk(n)
−→ 0, i.p/a.s.

Let’s apply some previously developed theory to this problem. Consider the case where |Hk| < ∞. We
have seen that

Pr
(
R(ĥn)−R∗Hk(n)

≥ ε
)
≤ 2

∣∣Hk(n)

∣∣ e−nε2/2 . (1)

We need to make sure that
∣∣Hk(n)

∣∣ does not dominate the exponential term, so that the sum in Corollary 1
converges. Rewrite the right-hand side of Eqn. (1) as∣∣Hk(n)

∣∣ e−nε2/2 = eln|Hk(n)|−nε2/2 .

Thus it suffices to have
ln
∣∣Hk(n)

∣∣
n

→ 0, as n→∞ .

Another way to write this is using little-oh notation. We say that a sequence an = o(bn) if an
bn
→ 0 as

n→∞. So, the above is equivalent to ln
∣∣Hk(n)

∣∣ = o (n). Under this condition,

∀ε > 0, ∃Nε, ∀n ≥ Nε, ln
∣∣Hk(n)

∣∣− nε2

2
≤ −nε

2

4
. (2)

Then for all ε > 0, ∑
n≥1

Pr
(
R(ĥn)−R∗Hk(n)

≥ ε
)
≤ Nε +

∑
n≥Nε

2e−nε
2/4 <∞ .

The summation on the right is simply a converging geometric series. By Corollary 1 we have established

Theorem 2. Let {Hk} satisfy the UAP with
∣∣Hk(n)

∣∣ < ∞. Let k(n) be an integer sequence such that as
n → ∞, k(n) → ∞ and ln

∣∣Hk(n)

∣∣ = o(n). Then R(ĥn) → R∗ almost surely, i.e., ĥn is strongly universally
consistent.

Corollary 2. Let {Hk} = {the set of histogram classifiers with side length 1/k} , X = [0, 1]d. Let k(n) →
∞ such that kd = o(n). Then ĥn is strongly universally consistent.

Proof. We previous saw in Section 2 that histograms have the UAP. Also,
∣∣Hk(n)

∣∣ = 2k
d

, so the corollary
follows from Theorem 2.

In Corollary 2, we require kd

n → 0. Note that n/kd is the number of samples per cell. Therefore the
number of samples per cell must go to infinity; this seems like a reasonable condition for strong consistency.
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Now, let’s consider the case where the VC dimension of Hk is finite. From our discussion of VC theory,
we have that for all ε > 0,

Pr
(
R(ĥn)−R∗Hk(n)

≥ ε
)
≤ 8SHk(n)(n)e−nε

2/128 .

We also know from Sauer’s lemma
SH(n) ≤

(ne
V

)V
, n ≥ V,

where V is the VC dimension of H. Using this, we deduce

Pr
(
R(ĥn)−R∗Hk(n)

≥ ε
)
≤ 8SHk(n)(n)e−nε

2/128 ≤ CnVk(n)e−nε
2/128 = C exp

(
Vk(n) lnn− n ε2

128

)
.

C is simply a constant that does not depend on n. If we choose k(n) such that Vk(n) = o
(
n

lnn

)
, then we

obtain the following inequality, which is similar to the one in Eqn. (2):

∀ε > 0, ∃N, ∀n ≥ N, Vk(n) lnn− nε2

128
≤ −nε

2

256
.

Therefore ∑
n≥1

Pr
(
R(ĥn)−R∗Hk(n)

≥ ε
)
≤ N +

∑
n≥N

Ce−nε
2/256 <∞ .

We have established

Theorem 3. Let {Hk} satisfy the UAP, and let Vk < ∞ denote the VC dimension of Hk. Let k(n) be an
integer-valued sequence such that as n → ∞, k(n) → ∞ and Vk(n) = o( n

lnn ). Then R(ĥn) → R∗ almost
surely, i.e., ĥn is strongly universally consistent.

5 Rates of Convergence

One could ask whether there is a universal rate of convergence. Put more formally, is there an ĥn such that
E
[
R(ĥn)−R∗

]
converges to 0 at a fixed rate, for any joint distribution PXY ? It turns out that the answer

is no. A theorem from [2] makes this concrete.

Theorem 4. Let {an} with an ↘ 0 such that 1
16 ≥ a1 ≥ a2 ≥ . . . . For any ĥn, there exists a joint

distribution PXY such that R∗ = 0 and ER(ĥn) ≥ an.

Proof. See Chapter 7 of [1].

Since the sequence {an} is arbitrary, we can also choose how slowly it converges to 0, thus showing that
there will be no universal rate of convergence. In order to establish rates of convergence, we will therefore
have to place restrictions on PXY . Some possible reasonable restrictions on PXY include:

• PX|Y=y is a continuous random variable.

• η(x) is “smooth”.

• there exists a t0 such that PX
(∣∣η(X)− 1

2

∣∣ ≤ t0) = 0.

• the Bayes decision boundary is “smooth”.

Below we consider one particular distributional assumption under which we can establish a rate of conver-
gence.
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Figure 3: Illustration of Bayes decision boundary (BDB).

6 Box-Counting Class

Let X = [0, 1]d. For m ≥ 1, define Pm to be the partition of X into cubes of side length 1/m. Note that
|Pm| = md.

Definition 3. The box counting class B is the set of all PXY such that

(A) PX has a bounded density.

(B) There exists a constant C such that ∀m ≥ 1, the Bayes decision boundary (BDB) {x : η(x) = 1/2}
passes through at most Cmd−1 elements of Pm (see Fig. 3).

This essentially says that the Bayes decision boundary (BDB) has dimension d − 1. Look up the term
“box-counting dimension” for more.

We have the following rate of convergence result.

Theorem 5. Let Hk ={histogram classifiers based on Pk}, assume PXY ∈ B, and let ĥn be a sieve estimator
with and k ∼ n

1
d+2 . Then

E
[
R(ĥn)

]
−R∗ = O(n−

1
d+2 ).

Proof. Recall the decomposition into estimation and approximation errors:

E
[
R(ĥn)−R∗

]
= E

[
R(ĥn)−R∗Hk

]
+R∗Hk −R

∗.

To bound the estimation error, denote ∆̂n := R(ĥn)−R∗Hk . By the law of total expectation,

E
[
∆̂n

]
= Pr(∆̂n ≥ ε)︸ ︷︷ ︸

≤δ

E
[
∆̂n | ∆̂n ≥ ε

]
︸ ︷︷ ︸
≤1 (trivial since R≤1)

+Pr(∆̂n < ε)︸ ︷︷ ︸
≤1

E
[
∆̂n | ∆̂n < ε

]
︸ ︷︷ ︸

≤ε

.

Choosing ε =
√

2[kd ln 2+ln(2/δ)]
n and δ = 1/n, we have E

[
R(ĥn)

]
−R∗Hk = O

(√
kd

n

)
.

To bound the approximation error, let h∗ = Bayes classifier and h∗k = best classifier in Hk. Observe

R(h∗k)−R(h∗) = 2EX
[∣∣∣∣η(x)− 1

2

∣∣∣∣1{h∗k(X) 6=h∗(X)}

]
≤ EX

[
1{h∗k(X)6=h∗(X)}

] (
by
∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ 1
2

)
= PX (h∗k(X) 6= h∗(X)) . (3)
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Let ∆ := {x : h∗k(x) 6= h∗(x)}, and let f be the density of PX . Then

PX (∆) =
∫

∆

f(x)dx

≤ ‖f‖∞ · λ (∆) ,

where λ denotes volume/Lebesgue measure. Now classification errors occur only on cells intersecting the

Bayes decision boundary (see shaded cells in Fig. 3), and so λ(∆) ≤ Ckd−1/kd = O( 1
k ). Setting 1

k =
√

kd

n ,

we see that k ∼ n
1
d+2 gives the best rate for histograms.

Histograms do not achieve the best rate among all discrimination rules for the box-counting class; this
best rate is E

[
R(ĥn)

]
−R∗ = O(n−

1
d ) [4]. In the next set of notes we’ll examine a discrimination rule that

achieves this rate to within a logarithmic factor.

Exercises

1. With X = Rd let

Hk = {h(x) = 1{f(x)≥0} : f is a polynomial of degree at most k}.

Let P be the set of all joint distributions PXY such that

inf
h∈Hk

R(h)→ R∗

as k → ∞. Determine an explicit sufficient condition on k(n) for the sieve estimator to be consistent
for all PXY ∈ P.

2. Up to this point in our discussion of empirical risk minimization, we have always assumed that an
empirical risk minimizer exists. However, it could be that the infimum of the empirical risk is not
attained by any classifier. In this case, we can still have a consistent sieve estimator based on an
approximate empirical risk minimizer. Thus, let τk be a sequence of positive real numbers decreasing
to zero. Define ĥn,k to be any classifier

ĥn,k ∈ {h ∈ Hk : R̂n(h) ≤ inf
h′∈Hk

R̂n(h′) + τk}.

Now consider the discrimination rule ĥn := ĥn,k(n). Show that Theorems 2 and 3 still hold for this
discrimination rule. State any additional assumptions on the rate of convergence of τk that may be
needed.

3. Assume X ⊆ Rd. A function f : X → R is said to be Lipschitz continuous if there exists a constant
L > 0 such that for all x, x′ ∈ X , |f(x)− f(x′)| ≤ L‖x− x′‖. Show that if one coordinate of the Bayes
decision boundary is a Lipschitz continuous function of the others, then (B) holds in the definition of
the box-counting class. An example of the stated condition is when the Bayes decision boundary is
the graph of, say, xd = f(x1, . . . , xd−1), where f is Lipschitz.

4. Establish the following partial converse to Lemma 2: If |Zn − Z| is bounded, then Zn
i.p.−→ Z implies

E{|Zn − Z|} → 0. Therefore, in the context of classification, ER(ĥn) → R∗ is equivalent to weak
consistency.
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