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1 Introduction

Recall that a Bayes classifier is a classifier whose risk R(h) is minimal among all possible classifiers, and the
minimum risk R∗ is called the Bayes risk. Assume Y = {0, 1} and define

η(x) := Pr(Y = 1|X = x),

the posterior probability of the class being one, and sometimes called the regression function because η(x) =
E[Y |X = x] when Y = {0, 1}. Also define

h∗(x) :=

{
1 if η(x) ≥ 1

2

0 otherwise.

2 Properties of the Bayes Risk

Theorem 1. (a) R(h∗) = R∗, i.e., h∗ is a Bayes classifier.

(b) For any h, R(h)−R∗︸ ︷︷ ︸
excess risk

= 2EX
[∣∣∣∣η(X)− 1

2

∣∣∣∣1{h(X)6=h∗(X)}

]

(c) R∗ = EX
[

min(η(X), 1− η(X))
]

Proof. We know that for any h,

R(h) = EXY
[
1{h(X) 6=Y }

]
= EXEY |X

[
1{h(X)6=Y }

]
= EX

[
η(X)1{h(X)=0} +

(
1− η(X)

)
1{h(X)=1}

]
.

To minimize R(h), it suffices to for h(x) to be such that ∀x,

η(x)1{h(x)=0} +
(
1− η(x)

)
1{h(x)=1}

is minimized. We also note that the indicators here are mutually exclusive, so it suffices to take

h(x) =

{
1 if η(x) ≥ 1− η(x)
0 otherwise

Therefore R(h∗) = R∗. This proves part (a).
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To prove (b), notice

R(h)−R∗ = R(h)−R(h∗)

= EX
[
η(X)1{h(X)=0} +

(
1− η(X)

)
1{h(X)=1}

− η(X)1{h∗(X)=0} −
(
1− η(X)

)
1{h∗(X)=1}

]
= EX

[∣∣∣∣2η(X)− 1
∣∣∣∣1{h(X)6=h∗(X)}

]
= 2EX

[∣∣∣∣η(X)− 1
2

∣∣∣∣1{h(X)6=h∗(X)}

]
,

where the third equality holds by considering the cases in Table 1.

h(x) 1 1− 2η(x) 0
0 0 2η(x)− 1

0 1
h∗(x)

Table 1: This table shows the possible combinations of values of the argument to the expectation above
given the possible values of h(x) and h∗(x). From this, we can simplify the expression for the expectation.

Finally, (c) follows from the definition of h∗:

R(h∗) = EX
[
η(X)1{h∗(X)=0} +

(
1− η(X)

)
1{h∗(X)=1}

)]
= EX

[
min(η(X), 1− η(X))

]
.

Remark. By (b), h∗ can be redefined arbitrarily for any x such that η(x) = 1
2 and still be a Bayes classifier.

People often refer to h∗ as the Bayes classifier.

Remark. From (c), we see that η determines the difficulty of the classification problem. Figure 1 shows a
setting where the Bayes risk is small, and Figure 2 shows a case where it is large.

Remark. As a final remark, we note that the Bayes classifier can be expressed in different equivalent forms.
Assume that there exist class-conditional densities p0, p1. Let πy = PY (Y = y), the prior probability of class
y. By Bayes’ rule,

η(x) =
π1p1(x)

π1p1(x) + π0p0(x)

=
1

1 + π0
π1

p0(x)
p1(x)

.

This is equivalent to the likelihood ratio test

p1(x)
p0(x)

≥ π0

π1
⇐⇒ η(x) ≥ 1

2
.
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Figure 1: An easy classification problem. In the case where X ∼ unif[0, 1], the area of the shaded region
equals the Bayes risk.

Figure 2: A hard classification problem. In the case where X ∼ unif[0, 1], the area of the shaded region
equals the Bayes risk.
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3 Plug-in Classifiers

A plug-in classifier is based on an estimate of η. This estimate is then plugged in to the formula for h∗.
Thus, suppose that η̂n is an estimate of η based on (Xi, Yi), i = 1, . . . , n. We define ĥn(x) as

ĥn(x) =

{
1 if η̂n(x) ≥ 1

2

0 otherwise.

The following result follows from Theorem 1. The proof is left as an exercise.

Corollary 1.

R(ĥn)−R∗ ≤ 2EX
[∣∣η(X)− η̂n(X)

∣∣]
Therefore, if EX

[∣∣η(X)− η̂n(X)
∣∣] approaches zero (in probability/almost surely) then the classifier ĥn is

(weakly/strongly) consistent. However, if classification is the goal, then the plug-in approach may be unwise
because estimating η is potentially much harder than estimating h. Section 3 shows an example of an η(x)
which would be harder to accurately estimate than the h∗(X) derived from it. It should be noted, however,
that sometimes estimation of η is also of interest, a problem known as class probability estimation. One
popular method for solving this problem is logistic regression.

Figure 3: Estimating η could be much harder than estimating the “level set” {x : η(x) ≥ 1
2}.

Exercises

1. Extend Theorem 1 to the multiclass case, Y = {1, 2, . . . ,M}. Part (b) may or may not have a nice
generalization.

2. Let α ∈ (0, 1). Define the α-cost-sensitive risk of a classifier h to be

Rα(h) := EXY
[
(1− α)1{Y=1,h(X)=0} + α1{Y=0,h(X)=1}

]
.

Determine the Bayes classifier and prove an analogue of Theorem 1 for this risk.

3. Prove Corollary 1.


