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The Bayes Classifier

Lecturer: Clayton Scott Scribe: William Cunningham

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.
1 Introduction

Recall that a Bayes classifier is a classifier whose risk R(h) is minimal among all possible classifiers, and the
minimum risk R* is called the Bayes risk. Assume ) = {0,1} and define

n(z) == Pr(Y =1|X = z),

the posterior probability of the class being one, and sometimes called the regression function because n(x) =
E[Y|X = z] when Y = {0,1}. Also define

h(@) i {1 if n(z) > 1

0 otherwise.

2 Properties of the Bayes Risk
Theorem 1. (a) R(h*) = R*, i.e., h* is a Bayes classifier.

1
b) Fi h, R(h) — R* =2E X)—-1 *
(b) For any h, R(h) XHW( ) 2' {R(X)#h (X)}]

excess risk

(¢) R* = Ex[min(n(X),1-n(X))]
Proof. We know that for any h,

R(h) = Exy [1{nx)2vy]
= ExEyx [1{no02vy)
=Ex [n(X)1{nx)=01 + (1 = (X)) Linx)=13]-

To minimize R(h), it suffices to for h(z) to be such that Vz,

n(x)Lin@y=oy + (1 = 0(2)) Lin@)=1}

is minimized. We also note that the indicators here are mutually exclusive, so it suffices to take

0 otherwise

h(z) = {1 if n(2) > 1 - ()

Therefore R(h*) = R*. This proves part (a).



To prove (b), notice

R(h) — R* = R(h) — R(h*)
=Ex [n(X)1{nx)=01 + (1 = (X)) Lincx)=1}
—n(X)1gns(x)=01 — (1 = 1(X)) Lin-(x)=13]

=Ex H277(X) - 1‘1{h(X)7éh (X)}}
1
= 2Ex | 1n(X) = 5 | Lo zre (03 |

where the third equality holds by considering the cases in Table 1.

1 [T-2n(2) 0
iz) 0 077 2n(x) —1
0 1
h* ()

Table 1: This table shows the possible combinations of values of the argument to the expectation above
given the possible values of h(x) and h*(z). From this, we can simplify the expression for the expectation.

Finally, (c) follows from the definition of h*:

R(1") = Ex [n(X)1 )=y + (1 = 0(X)) Ln- (x)=13)]
= Ex [min((X),1 - n(X))].

O

Remark. By (b), h* can be redefined arbitrarily for any « such that n(z) = % and still be a Bayes classifier.
People often refer to h* as the Bayes classifier.

Remark. From (c), we see that 1 determines the difficulty of the classification problem. Figure 1 shows a
setting where the Bayes risk is small, and Figure 2 shows a case where it is large.

Remark. As a final remark, we note that the Bayes classifier can be expressed in different equivalent forms.
Assume that there exist class-conditional densities pg, p1. Let my = Py (Y = y), the prior probability of class
y. By Bayes’ rule,

mip1(x)
m1p1(x) + mopo ()
1
1 + e PO(I) ’

1 p1(x)

This is equivalent to the likelihood ratio test

3

o) S M0 )

> — =z
o(x) 1

S
m\»—t



Figure 1: An easy classification problem. In the case where X ~ unif[0, 1], the area of the shaded region
equals the Bayes risk.

Figure 2: A hard classification problem. In the case where X ~ unif[0, 1], the area of the shaded region
equals the Bayes risk.



3 Plug-in Classifiers

A plug-in classifier is based on an estimate of 7. This estimate is then plugged in to the formula for h*.
Thus, suppose that 7, is an estimate of  based on (X;,Y;), i = 1,...,n. We define h,(x) as

~ if . > 1
= {1 o>

0 otherwise.

The following result follows from Theorem 1. The proof is left as an exercise.
Corollary 1.
R(hy) = R* < 2Ex[|n(X) = 7u(X)]

Therefore, if Ex Hn(X ) — (X)) H approaches zero (in probability /almost surely) then the classifier iy is
(weakly/strongly) consistent. However, if classification is the goal, then the plug-in approach may be unwise
because estimating 7 is potentially much harder than estimating h. Section 3 shows an example of an n(x)
which would be harder to accurately estimate than the hA*(X) derived from it. It should be noted, however,
that sometimes estimation of n is also of interest, a problem known as class probability estimation. One
popular method for solving this problem is logistic regression.

Figure 3: Estimating 1 could be much harder than estimating the “level set” {z : n(z) > 1}.

Exercises

1. Extend Theorem 1 to the multiclass case, Y = {1,2,...,M}. Part (b) may or may not have a nice
generalization.

2. Let o € (0,1). Define the a-cost-sensitive risk of a classifier h to be
Ro(h) :=Exy [(1 — a)l{y—1n(x)=0} + @l{y—on(x)=1}] -
Determine the Bayes classifier and prove an analogue of Theorem 1 for this risk.

3. Prove Corollary 1.



