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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

This is a course on statistical learning theory. We will primarily focus on the theory of supervised classi-
fication, with some additional topics such as density estimation, online learning and/or weakly supervised
learning. In the first part of the course, we focus on classification.

2 Classification

In classification we consider pairs (x, y), where x is a feature vector belonging to a feature space X (for
example, X = Rd), and y is a label belonging to a label space Y. In binary classification, for example,
Y = {0, 1} (or, Y = {−1, 1}, sometimes). A classifier is a function h : X → Y. In Handwritten Digit
Recognition [1], X = {digital images of a certain size} and Y = {0, 1, · · · , 9}. In classification we desire a
classifier that accurately assigns labels to feature vectors.

The key assumption for statistical learning theory is that there exists a joint probability distribution on
the feature-label space X × Y, denoted as PXY . Each observed feature-label pair (X,Y ) is random and
generated according to PXY . We use (X,Y ) to denote a random variable and (x, y) to denote its realization.

Remark. In this course we will assume that all events and functions are measurable, and will not concern
ourselves with issues of measurability. Students aiming to do research in this area would do well to study
measure theory.

To understand the meaning of the joint distribution PXY , consider the following decomposition:

PXY = PX|Y PY ,

where PY is the Y -marginal of PXY , referred to as the prior of label Y,
PX|Y =y is the class-conditional distribution of X given Y = y.

There are two interpretations for the above decomposition: First, one can view it as a two-step random
number generation procedure: first generate the label Y = y via PY , then generate the feature vector
according to PX|Y =y. Second, one can interpret this decomposition via the total expectation theorem (aka.
the disintegration Theorem), i.e., for any real-valued function φ : X × Y → R,

EXY [φ(X,Y )] = EY EX|Y [φ(X,Y )]

There is an alternative decomposition, namely

PXY = PY |X PX ,

where PX is the X-marginal of PXY ,

PY |X=x is the posterior distribution of Y given X = x.

1



2

Figure 1: The illustration of a binary classification problem with X = R and Y = {0, 1}. Assume PX|Y =y is
continuous, with density py, y = 0, 1. The red dashed (right) curve and blue solid curve (left) denote the two
conditional densities. They overlap in the middle, which means that they cannot be completely separated.

The same comments apply here. Both decompositions are useful. Figure 1 shows an example for binary
classification, with X = R and Y = {0, 1}. Note that in this case, the two class-conditional distributions
cannot be completely separated: no classifier will be 100% accurate.

To learn a classifier h : X → Y, assume we have access to a set of n labeled training examples or
training instances, (X1, Y1), . . . , (Xn, Yn), which are assumed to be i.i.d. according to PXY . The collection
of all training examples is called the training data. The domain of the training data is (X × Y)n. Let H
be a collection of classifiers of concern, e.g., the set of linear classifiers h(x) = sign (wTx+ b). A learning
algorithm/classification algorithm/discrimination rule is a function

Ln : (X × Y)n → H

Denote ĥn := Ln((X1, Y1), . . . , (Xn, Yn)). Note that ĥn is a function of random variables, so it is a random
variable as well.

3 The goal of classification

Define the risk of classifier h as

R(h) := PXY (h(X) 6= Y ) = EXY [1{h(X)6=Y }], (1)

where (X,Y ) is independent of the training data. Also define the Bayes risk as

R∗ := inf
h
R(h),

where the infimum is taken over all classifiers h : X → Y, not just h ∈ H. If R(h∗) = R∗, then h∗ is called
a Bayes classifier.

A learning algorithm Ln is called weakly consistent if

R(ĥn)
i.p.−→ R∗, (2)

and strongly consistent if
R(ĥn) a.s.−→ R∗. (3)

Note that as ĥn is a random variable, R(ĥn) is a random variable as well. Ln is called universally
(weakly/strongly) consistent if it is (weakly/strongly) consistent for ∀PXY . That is, the consistency holds
without any assumption on the distribution PXY .
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In the following lectures, we will study learning algorithms possessing asymptotic and/or finite sample
performance guarantees. Asymptotic guarantees will include consistency and rates of convergence. Finite
sample guarantees will include confidence intervals on the risk, and sample complexity bounds.
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