STATISTICAL SIGNAL PROCESSING

Statistical DSP

Digital \rightarrow discrete-time, sampled, quantized

Signal \rightarrow waveform, sequence of measurements or observations

Processing \rightarrow analyze, modify, synthesize

Examples of digital signals

- sampled speech waveform
- pixelized image
- Dow-Jones index
- stream of Internet packets
- vector of medical predictors

What kind of processing might be desirable?
A major difficulty

In many DSP applications, we don't have complete or perfect knowledge of the signals we wish to process. We are faced with many unknowns and uncertainties.

Examples

- Unknown signal parameters
 - delay of radar return
 - pitch of speech signal
- Environmental noise
 - multipath signals in wireless comm.
 - ambient EM waves
 - radar jamming
- Sensor noise
 - grainy images
 - old phonograph recordings
- Variability inherent in nature
 - stock market
 - Internet
Functional Magnetic Resonance Imaging

![Diagram of brain imaging process]

- brain image time-series
- activation map

Challenges:
- measurement noise
- intrinsic uncertainties in signal behavior
How can we process signals in the face of such uncertainty?

Can we model the uncertainty and incorporate this model into the processing?

Statistical signal processing is the study of these questions.

Modelling uncertainty

The most widely accepted and commonly used approach to modeling uncertainty is [probabilistic](#), although alternatives exist such as fuzzy logic.

Probability theory models uncertainty by specifying the chance of observing certain signals.
Alternatively, one can view probability as specifying the degree to which we believe a signal reflects the true state of nature.

Examples of probabilistic models

- sensor noise modeled as an additive Gaussian random variable
- uncertainty in the phase of a sinusoidal signal modeled as a ___ random variable on \([0, 2\pi]\).
- uncertainty in the number of photons striking a CCD per unit time modeled as a ___ random variable.
Probability laws describe the uncertainty in the signals we might observe.

Statistics describe the salient features of the signals we do observe, and allow us to draw conclusions (inferences) about which probability model actually reflects the true state of nature.
A statistic is a function of observed data, and may be scalar or vector valued.

Examples: Suppose we observe n scalar values x_1, \ldots, x_N. The following are statistics:

- sample mean $\rightarrow \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- the data itself $\rightarrow [x_1, \ldots, x_N]^T$
- an order statistic $\rightarrow x_{(1)} = \min \{ x_1, \ldots, x_N \}$
- an arbitrary function $\rightarrow [x_1^2 - x_2 \sin (x_3), e^{-x_1 x_3}]^T$

A statistic cannot depend on unknown quantities.
Statistical signal processing (in a nutshell)

Step 1: Postulate a probability model (or models) that can be expected to reasonably capture the uncertainties in the data.

Step 2: Collect data

Step 3: Formulate statistics that allow us to interpret or understand our probability models.

In this class we will focus on three areas:

- Estimation
- Filtering
- Detection

Hence the name
Estimation

If our probability model has free parameters, can we use the measured signal to infer the actual parameter values?

Examples

- Signal denoising: If we observe

 \[x = s + w \]

 where \(s \) is a signal of interest and \(w \) is noise, estimate \(s \).

- If \(s(n) = A \cos(2\pi fn + \phi) \), estimate \(A, \phi, f \) in signal plus noise model.

- Seismology: estimate depth below ground of an oil pool based on reflected acoustic waves.
Here is a more concrete example:

Example | Suppose we measure the voltage A of a battery using a voltmeter. Because the voltmeter tends to pick up noise from nearby objects, we take n measurements in hopes of gaining some accuracy.

Step 1: Assume a Gaussian noise model

$$x_i = A + w_i, \quad i = 1, \ldots, N$$

where

$$w_i \sim N(0, \sigma_w^2)$$

Step 2: Gather data

Step 3: Estimate A via the sample mean

$$\hat{A} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Is this the "right" statistic for this noise model? How accurate is the estimate? What if σ_w^2 is unknown?
Filtering

Filtering in deterministic DSP refers to modifying a signal by means of a linear operator (usually expressed in terms of convolution).

In statistical DSP, filtering refers to signal estimation by means of a linear function of the data. Thus, filtering is a special case of estimation, but it is distinguished by being concerned with online/real-time estimation of streaming data.

Examples:

- Denoise a speech/audio signal real-time
- Track a moving target or predict its future location
Detection

Given two (or more) probability models, which one best explains the observed signal?

Alternatively, given a single probability model, is it or is it not a valid characterization of the data?

Examples

- Decode a comm. signal into a sequence of 0's and 1's.

- Are other ships present on radar/sonar, and if so, are they friendly?

- Is a supernova exploding somewhere in the field of view of a certain telescope?
A more concrete detection example.

Example 1: Suppose you are given a coin and are asked to determine whether the following hypothesis is true:

\[H_0: \text{the coin is fair} \]

Step 1: Assume each toss of the coin is a realization of a random variable.

\[X \sim \text{random var.} \]

where \(p = \text{Prob}\{\text{heads}\} \).

Step 2: Toss the coin \(n = 100 \) times

\[\chi_i = 1 \iff \text{heads} \]

\[\chi_i = 0 \iff \text{tails} \]

Step 3: To assess the hypothesis

\[H_0: p = \frac{1}{2}, \]

form the statistic

\[k = \sum_{i=1}^{100} \chi_i \]

and reject \(H_0 \) if \(|k - 50| > 10 \).
In these examples, we used our intuition and heuristics in Step 3 to solve estimation and detection problems.

In this course we will develop principled and mathematically rigorous approaches to estimation, filtering, and detection using the theoretical framework of probability and statistics.

Summary

\[
\begin{align*}
\text{DSP} &= \text{processing digital signals with computer algorithms} \\
\text{SSP} &= \text{statistical DSP} \\
&= \text{processing in the presence of uncertainties and unknowns.}
\end{align*}
\]

Key

a. probability theory
b. uniform
c. Poisson
d. Bernoulli