Ensemble Methods: Classification by Committee
Ensemble methods perform classification by "pooling" or "aggregating" the results of several classifiers.

Setting 1: Hard decisions

Suppose f_1, \ldots, f_m are classifiers

$$f_k : \mathbb{R}^d \rightarrow \{ -1, 1 \}$$

that output "hard" decisions, -1 or 1.

The classifiers may be combined by taking a (weighted) majority vote

$$f_{\text{combined}} (x) = \text{sign} \left\{ \sum_{k=1}^{M} w_k f_k (x) \right\}$$
Setting 2: Soft decisions

Write

\[f_k(x) = \text{sign}(g_k(x)) \]

where \(g_k : \mathbb{R}^d \rightarrow \mathbb{R} \) provides a "soft" decision.

Examples:

- **Linear classifier**: \(g(x) = \mathbf{w}^T x + b \)
- **Kernel classifier**: \(g(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i) \)

These soft decisions may be combined as

\[f_{\text{combined}}(x) = \text{sign}\left\{ \sum_{k=1}^{M} w_k g_k(x) \right\} \]
Why do this?

1. f_1, \ldots, f_n are too simple to be good classifiers by themselves. But if they were somehow organized to work in unison, the combined classifiers could perform very well.

2. Variance reduction:

 Suppose a classification algorithm has a high variance, meaning it is highly sensitive to slight perturbations of the training data. If each f_k is produced by the same algorithm, but on different variations (or reweightings) of the training data, the combined classifier may have smaller variance.
Example 1: Histograms

Consider a $d=2$ dimensional setting. A regular histogram classifier with bin width 1 looks like

The partition is fixed, irrespective of the data. As the data gradually shift upward, the classifier changes abruptly.

In contrast, a linear classifier would transition smoothly as the data shifts.
Example 1 Decision trees.

A decision tree is based on a tree-structured hierarchy of classifiers.

Often the "nodes" of the tree are simple univariate splits, e.g.
In 2-d:

\[
\begin{array}{c|cc|}
 & -1 & +1 \\
-1 & & +1 \\
-1 & -1 & +1 \\
\end{array}
\]

Like histograms, most algorithms for constructing decision trees have a high variance.

Averaged Shifted Histograms

An ensemble approach can be used to reduce the variance of the histogram classifier based on a fixed partition.

Idea:

- Generate M small shifts of the data
- For each shift, form the histogram classifier
- Average the resulting classifiers
In detail

- For $k = 1, \ldots, M$, generate

 \[\mathbf{e}_k = (e_{k1}, e_{k2}, \ldots, e_{kd})^T \]

 For example, if the histogram binwidth is h, consider shifts of the form

 \[(0, \ldots, 0, \pm \frac{h}{2}, 0, \ldots, 0)^T \]

- Let

 \[X_0 = \left\{ x_1, \ldots, x_n \right\}, \quad x_i \in \mathbb{R}^d \]

 denote the training data.

Define

\[X_k = X_0 + \mathbf{e}_k \]

\[= \left\{ x_i + e_{ki}, \ldots, x_n + e_{kd} \right\} \]

- Let $f_{X_k}(x)$ be the histogram classifier based on the data X_k
Majority vote:

\[f_{\text{combined}}(x) = \frac{1}{M} \sum_{k=1}^{M} f_{X_k}(x) \]

The result is a classifier with much lower variance.

- Single histogram
- Average of many histograms

true decision boundary
$n = 100$ points, $\text{bin width} = \frac{1}{3}$
of votes = 1

5

11

21

5 realizations of data

n = 1000 points, bin width = $\frac{1}{3}$
Bagging is short for bootstrap aggregation

Definition Let $X_0 = \{x_1, \ldots, x_n\}$ be a training sample. Let $X^* = \{x_1^*, \ldots, x_n^*\}$ be obtained by sampling with replacement from X_0. Then X^* is called a bootstrap sample.

Idea:

- Generate B bootstrap samples X_1^*, \ldots, X_B^*.
- Let $f_{x_b}^* (x)$ be the classifier trained on X_b^*.
- Vote:

$$f_{\text{combined}} (x) = \frac{1}{B} \sum_{b=1}^{B} f_{x_b}^* (x)$$
Both the averaged shifted histograms and bagging combine resampling with a majority vote. Many other resampling schemes are conceivable.

E.g., random convex combinations:

- Given \(X_0 = \{ x_1, \ldots, x_n \} \), generate \(X^* = \{ x^*_1, \ldots, x^*_n \} \), where \(x^*_i \) is obtained as

\[
x^*_i = \lambda x_a + (1-\lambda) x_b
\]

where \(a, b \) are random, \(\lambda \in [-\delta, 1+\delta] \) is uniform.
Recall there were two reasons that motivated ensemble rules: 1) combining simple rules into a complex rule; 2) variance reduction. Thus far we have only discussed the latter point.

Boosting is an ensemble rule that achieves both. It is based on the notion of a base learner.

Definition | A base learner is any classification rule such that, given any training sample \((x_1, y_1), \ldots, (x_n, y_n)\), and weights \(w_1, \ldots, w_n \ (w_i > 0, \sum w_i = 1)\), it produces a classifier \(f\) such that

\[
\sum_{i=1}^{n} w_i \mathbb{I}_{\{f(x_i) \neq y_i\}}
\]

is small
In short, a base learner can learn a classifier that respects any possible weighting of the training error.

The Boosting principle

Choose an initial weighting \(W^{(1)} \)

- Given a weighting \(W^{(t)} \), apply the base learner to generate a classifier \(f_t \)

- Upweight \(w_{i}^{(t)} \) if \(f(x_i) \neq y_i \)

- Downweight \(w_{i}^{(t)} \) if \(f(x_i) = y_i \)

Repeat while \(t \leq T \).

Output

\[
f(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t f_t(x) \right)
\]

Where \(\alpha_t > 0 \) reflects the confidence in \(f_t \).
Examples of base learners

- Decision trees. As an averaging procedure, boosting will reduce their variance.

- Decision stumps: trees consisting of a single split

 \[f(x) = \text{sign} \left\{ x_j \geq c \right\} \]

- Radial basis functions

 \[f(x) = \text{sign} \left\{ k(x, x_i) + b \right\} \]

Exercise Describe an algorithm (a base learner) that chooses the decision stump with minimal weighted training error. Ditto for RBFs.
Solution

A similar strategy applies to RBFs. If σ is fixed (choosing σ is a separate problem), the total number of classifiers to consider is ___.

Adaboost

The first successful boosting algorithm was introduced by Yoav Freund and Robert Schapire, called Adaboost.
Given \((x_i, y_i), \ldots, (x_n, y_n)\), \(y_i \in \{-1, +1\}\)

Initialize \(w_i^1 = \frac{1}{n}\).

For \(t = 1, \ldots, T\)

- Apply base learner with weights \(w_t^t\) to produce classifier \(f_t\)

- Set \(r_t = \sum_{i=1}^{n} w_i^t I\{f_t(x_i) \neq y_i\}\)

- Set \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - r_t}{r_t} \right)\)

- Update \(w_i^{t+1} = w_i^t \cdot \exp \left\{ -\alpha_t y_i f_t(x_i) \right\} / Z_t\)

where \(Z_t\) is a normalization constant

End

Output \(f(x) = \text{sign} \left\{ \sum_{t=1}^{T} \alpha_t f_t(x) \right\}\)
The success of AdaBoost is reflected in the following result.

Theorem. Suppose $R_t = \frac{1}{2} - \delta_t$, $\delta_t \geq 0$, for each t. Then

$$\frac{1}{n} \sum_{i=1}^{n} I\{f(x_i) \neq y_i\} \leq \exp\left(-2 \sum_{t=1}^{T} \delta^2_t\right)$$

In particular, if $\delta_t \geq \delta > 0$ for all t, then

$$\frac{1}{n} \sum_{i=1}^{n} I\{f(x_i) \neq y_i\} \leq \exp\left(-2\delta^2 \cdot T\right)$$

The assumption $\delta_t \geq \delta > 0 \ \forall t$ is sometimes called the weak learning hypothesis, and the base learner is called a weak learner.

In words, the theorem tells us if our base learner does slightly better than random guessing, the final combined classifier can separate the training data perfectly for T large enough. In fact, the error goes to zero exponentially fast!
Adaboost details and comments

1. If $r_t = 0$, then $\alpha_t = 0$ and the algorithm breaks down. On the other hand, if $r_t = 0$, then f_t classifies every point perfectly and there is no need to boost.

2. T must be set in some manner. Unfortunately, no satisfactory theory or method for setting T is known. In practice a couple of options are

 - Set T by cross-validation
 - Let T_0 be the number of iterations until the training error is zero.

 Set $T = (1.1) \times T_0$.

3. Empirical evidence suggests that Adaboost using decision trees for base learners is one of the best "off-the-shelf" methods for classification.
Proof of Theorem. The proof is broken down into some lemmas.

Lemma
\[\frac{1}{n} \sum_{i=1}^{n} I\{f(x_i) \neq y_i \} \leq \prod_{t=1}^{T} Z_t \]

Proof. By unraveling the update rule we find

\[W_{iT+1} = \frac{W_i^T \exp \left(-\alpha_T y_i f_T(x_i) \right)}{Z_T} \]
\[= \frac{w_i^{T-1} \exp \left(-y_i [\alpha_{T-1} f_{T-1}(x_i) + \alpha_T f_T(x_i)] \right)}{Z_{T-1} \cdot Z_T} \]
\[\vdots \]
\[= \frac{1}{n} \cdot \exp \left(-y_i \sum_{t=1}^{T} \alpha_t f_t(x_i) \right) \]
\[\frac{Z_1 \cdot Z_2 \cdots Z_T}{Z_1 \cdot Z_2 \cdots Z_T} \]
\[= \frac{\exp \left(-y_i F_T(x_i) \right)}{n \prod_{t=1}^{T} Z_t} \]

where \[F_t = \sum_{s=1}^{t} \alpha_s f_s \]

and \[f(x) = \text{sign} \left\{ F_T(x) \right\} \]
Now use the bound

\[I_{\{f(x_i) \neq y_i\}} = I_{\{y_i F_T(x_i) < 0\}} \leq \exp\left(-y_i F_T(x_i)\right) \]

Then

\[1 = \sum_{i=1}^{n} w_i^{T+1} \]

\[= \sum_{i=1}^{n} \frac{\exp\left(-y_i F_T(x_i)\right)}{n \cdot (\pi Z_t)} \]

\[\geq \frac{1}{(\pi Z_t)} \cdot \frac{1}{n} \sum_{i=1}^{n} \ I_{\{f(x_i) \neq y_i\}} \]

and the lemma follows.
Lemma \[Z_t = \sqrt{1 - \gamma_t^2} \]

Proof \[Z_t = \sum_{i=1}^{n} w_i^t \exp (-\alpha_t y_i f_t(x_i)) \]
\[= \sum_{i=1}^{n} w_i^t e^{-\alpha_t} + \sum_{i=1}^{n} w_i^t e^{\alpha_t} \]
\[= (1 - r_t) e^{-\alpha_t} + r_t e^{\alpha_t} \]

Now recall \[\alpha_t = \frac{1}{2} \ln \left(\frac{1 - r_t}{r_t} \right) \]

Then \[Z_t = (1 - r_t) \sqrt{\frac{r_t}{1 - r_t}} + r_t \sqrt{\frac{1 - r_t}{r_t}} \]
\[= 2 \sqrt{r_t (1 - r_t)} \]

Now substitute \[r_t = \frac{1}{2} - \gamma_t \]
\[z_t = 2 \sqrt{\left(\frac{1}{2} - \delta_t \right) \left(\frac{1}{2} + \delta_t \right)} \]

\[= 2 \sqrt{\frac{1}{4} - \delta_t^2} \]

\[= \sqrt{1 - 4\delta_t^2} \]

Lemma

\[\sqrt{1 - x} \leq e^{-\frac{1}{2}x} \]

Proof
Formally, \(\sqrt{1 - x} \) is concave, \(e^{-\frac{1}{2}x} \) is convex, so it suffices to show their slopes (derivatives) are both \(= -\frac{1}{2} \) at \(0 \).

Putting it all together, we obtain

\[
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} f(x_i) + y_i^2 \leq \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_i E_t(x_i) \right)
\]

\[
= \prod_{t=1}^{T} Z_t
\]

\[
= \prod_{t=1}^{T} \sqrt{1 - 4\chi_t^2}
\]

\[
\leq e^{-2 \sum_{t=1}^{T} \chi_t^2}
\]

Exercise | View \(Z_t \) as a function of \(x_t \), and find the value of \(x_t \) that minimizes \(Z_t \).
Solution

Earlier we showed

\[Z_t = (1 - r_t) e^{-\alpha_t} + r_t e^{\alpha_t}. \]

This is a convex, differentiable function of \(\alpha_t \).

It is minimized by setting

\[0 = \frac{\partial Z_t}{\partial \alpha_t} = -(1 - r_t) e^{-\alpha_t} + r_t e^{\alpha_t} \]

\[\Rightarrow e^{2\alpha_t} = \frac{1 - r_t}{r_t} \]

\[\Rightarrow \alpha_t = \frac{1}{2} \ln \left(\frac{1 - r_t}{r_t} \right) \]

In conclusion, each \(\alpha_t \) is chosen to minimize the corresponding term \(Z_t \) in the bound \(\prod_{t=1}^{T} Z_t \).

That is, the bound is minimized incrementally (not globally).
Alternative Loss Functions

AdaBoost uses the loss function

\[\phi(u) = e^{-u} \]

as a convex, differentiable upper bound on \[\mathcal{J}(u < 0) \]. However, other loss functions are possible.

For example, the "logistic loss" \[\phi(u) = \log(1 + e^{-u}) \] doesn't work as hard on misclassified points, and therefore may be less susceptible to overfitting.
To generalize AdaBoost to other loss functions, recall

\[F_t(x) = \sum_{s=1}^{t} \alpha_t f_s(x) \]

On the \(t \)th iteration of boosting, we have the upper bound

\[\frac{1}{n} \sum_{i=1}^{n} I_{y_i F_t(x_i)} < 0 \overset{?}{\leq} \frac{1}{n} \sum_{i=1}^{n} \phi(y_i F_t(x_i)) \]

View this bound as an objective to be minimized over function space. That is, view the function \(F_t \) as a variable being optimized.

Boosting can be seen as functional gradient descent.

Given that \(f_1, \ldots, f_{t-1} \) have been learned, view \(f_t \) as the direction of the next step in a gradient descent minimization of the upper bound.

\[\alpha_1 f_1, \alpha_2 f_2, \alpha_3 f_3 \]

\[F_1 \rightarrow F_2 \rightarrow F_3 \]
We seek f_t that minimizes the slope of B_t at F_{t-1}.

Writing

$$B_t(\alpha_t) = \frac{1}{n} \sum_{i=1}^{n} \phi \left(y_i F_{t-1}(x_i) + y_i \alpha_t f_t(x_i) \right)$$

the slope of B_t in the direction f_t is

$$\frac{\partial B_t}{\partial \alpha_t} \bigg|_{\alpha_t=0} = \frac{1}{n} \sum_{i=1}^{n} y_i f_t(x_i) \phi'(y_i F_{t-1}(x_i))$$

Minimizing this is equivalent to minimizing

$$-\sum_{i=1}^{n} y_i f_t(x_i) \frac{\phi'(y_i F_{t-1}(x_i))}{\sum_{j=1}^{n} \phi'(y_j F_{t-1}(x_j))} =: W_{i}^{t}$$

$$= \sum_{i: y_i \neq f_t(x_i)} W_{i}^{t} - \sum_{i: y_i = f_t(x_i)} W_{i}^{t}$$

$$= 2 \left(\sum_{i: y_i \neq f_t(x_i)} W_{i}^{t} \right) - 1$$

$$\Rightarrow$$ We can use the base learner to find f_t
Once the direction f_t is established, the next step is to determine the optimal step-size α_t.

This is achieved by minimizing $B_t(\alpha_t)$ with respect to α_t.

The advantage of the exponential loss is computational:

- the weight update has a nice recursive formula since

$$\phi'(a + b) = \phi'(a) \cdot \phi'(b)$$

- $B_t'(\alpha_t) = 0$ has a closed form solution.

However, using other convex losses is not much worse from a computational perspective:

- $\phi'(y_i F_{t-1}(x_i))$ is easy to compute
- α_t is the solution of a univariate, convex optimization problem.
Generalized Boosting Algorithm

Given \((x_1, y_1), \ldots, (x_n, y_n)\), \(y_i \in \{-1, 1\}\), convex loss \(\phi\)

Initialize \(W_i^0 = \frac{1}{n}\)

For \(t = 1, \ldots, T\)

- Apply base learner with weights \(w^t\)
 to produce classifiers \(f_t\)

- Set
 \[
 \alpha_t = \arg \min_{\alpha} \frac{1}{n} \sum_{i=1}^{n} \phi \left(y_i f_{t-1}(x_i) + y_i \alpha f_t(x_i) \right)
 \]

- Update
 \[
 W_i^{t+1} = \frac{\phi'(y_i f_t(x_i))}{\sum_{j=1}^{n} \phi'(y_j f_t(x_j))}
 \]

End

Output

\[
 f(x) = \text{sign} \left\{ \sum_{t=1}^{T} \alpha_t f_t(x) \right\} = \text{sign} \left\{ \sum_{t=1}^{T} \alpha_t f_t(x) \right\}
\]
Exercise: Verify that when \(\phi(u) = e^{-u} \), the algorithm reduces to AdaBoost.
Solution. If $\phi(u) = e^{-u}$, then $\phi''(u) = -e^{-u}$, and

$$w_i^t \propto -\phi'(y_i f_t(x_i)) = e^{-y_i f_t(x_i)}$$

$$= \frac{1}{T} e^{-y_i \sum_{s=1}^{T} f(x_i)} \quad \checkmark$$

To see that α_t is the same as for AdaBoost, apply the same argument used to show α_t minimized E_t.

Remark. When $\phi(u) = \log_2 (1 + e^{-2u})$, and α_t is estimated by a single step of a Newton-Raphson algorithm, the algorithm is called LogitBoost. This is the other common boosting algorithm besides AdaBoost.