SURVEY OF ADDITIONAL TOPICS

Matrix Factorization

\[X \approx A \cdot B, \quad X \text{ is the (centered) data matrix} \]

1) PCA

\[
\begin{align*}
\min_{A,B} & \quad \| X - A \cdot B \|_F^2 \\
\text{s.t.} & \quad A \in \mathbb{R}^{d \times k} \\
& \quad B \in \mathbb{R}^{k \times n} \\
& \quad A^T A = I
\end{align*}
\]

2) K-means

\[
\begin{align*}
\min_{A,B} & \quad \| X - A \cdot B \|_F^2 \\
\text{s.t.} & \quad A \in \mathbb{R}^{d \times k} \\
& \quad B \in \mathbb{R}^{k \times n} \\
& \quad \text{columns of } B \text{ are indicator vectors}
\end{align*}
\]

3) Independent component analysis (ICA)

\[\text{...} \]
\[X \sim A \cdot S \]

\[S = [s_i] \] such that

for each \(t \), \(S_t, \ldots, S_T \)

are realizations of independent RVs.

"Cocktail Party Problem"

\[X = [x_{it}] \]

\(x_{it} = \text{mic } i \) measurement at time \(t \)

\(s_{it} = \text{speaker } i \) speech signal at time \(t \)
4) Nonnegative matrix factorization (NMF)

$$\min \| X - A \cdot B \|_F^2$$

s.t. $A \in \mathbb{R}^{d \times k}$

$B \in \mathbb{R}^{k \times n}$

elements of A, B are nonnegative.
5) Sparse coding / dictionary learning

\[
\min_{D,A} \| X - D \cdot A \|_F^2
\]

\(D \in \mathbb{R}^{d \times s} \quad (s > d) \)
\(A \in \mathbb{R}^{s \times n} \)

columns of D have unit norm
columns of A sparse

Intuitively, find a set of components (dictionary columns) such that every column of X is explained as a superposition of a small number of components.
Sparse coding illustration

\[[a_1, \ldots, a_{64}] = [0, 0, \ldots, 0, 0.8, 0, \ldots, 0, 0.3, 0, \ldots, 0, 0.5, 0] \]
(feature representation)

Algorithmic strategy: alternating minimization

7) Matrix completion

\[X = [x_{ij}], \quad \Omega \subseteq \{1, \ldots, d\} x \{1, \ldots, n\} \]

\((d \times n)\)

\(x_{ij}\) is only observed for \((i, j) \in \Omega\)

Basic approach: assume \(X\) has rank \(r \leq \min(d,n)\).

\[
\min_{A,B} \| X - A \cdot B \|_{F, \Omega}^2 \leftarrow \text{sum of squares of entries indexed by } \Omega
\]
8) Sparse PCA (\(\Omega_i\)'s constrained to be sparse)

9) Probabilistic PCA: generative model whose maximum likelihood estimate coincides with PCA. Useful for extending PCA to
 - missing data
 - mixture models

10) Factor analysis: slightly more flexible generative model
relative to PPCA.

Latent semantic indexing: Use PCA/SVD to get low rank approximation of X, where columns of X correspond to documents, rows to words in a vocabulary, and entries of X are word counts.

Nuclear Norm Regularization

Let $X \in \mathbb{R}^{d \times n}$ be a data matrix. Suppose we seek a the best rank r approximation to X.

Then we know to just apply PCA/SVD. But what if the true r is unknown?

One option is to solve

$$\min_{W \in \mathbb{R}^{d \times n}} \|X - W\|_F^2 + \lambda \cdot \text{rank}(W)$$

However, the rank function is nonconvex. Analogous to how the l_1 norm is a convex proxy for the sparsity of a vector, the nuclear norm,
\[\| W \|_x := \sum \sigma_i \] (sum of singular values)

is the tightest convex relaxation of rank. This leads to

\[
\min_{W \in \mathbb{R}^{d \times n}} \| X - W \|_F^2 + \lambda \| W \|_x
\]

which is now a convex problem. It can be solved using ADMM where the prox operator for the nuclear norm is given by singular value thresholding = soft thresholding applied to the singular values of the argument.

For matrix completion, one solves

\[
\min_W \| X - W \|_F^2 + \lambda \| W \|_x
\]

This approach yields a global minimum, unlike the alternating algorithm mentioned earlier.

As another application, consider robust PCA:

\[
\min \| X - W \|_F^2 + \lambda \| L \|_x + \sigma \| S \|_{1,1}
\]

s.t. \[W = L + S \] (sum of)
\[\text{st. } \mathbf{w} = \mathbf{L} + \mathbf{S} \]

\(S \) corresponds to outliers, and

\(L \) gives the low dim. representation.

(just apply standard PCA to \(L \)).

\[\text{sum of absolute values of all entries} \]

\[\text{Group Lasso} \]

Recall that the \(l_1 \) or "lasso" penalty promotes sparsity and is useful for feature selection. The "group lasso" penalty is useful for group feature selection.

Consider a prediction problem (classification or regression) where the features can be naturally grouped.

Example

In classification of brain images, groups of pixels correspond to anatomical units (e.g., hippocampus, visual cortex).

Let \(G_1, \ldots, G_m \) be a partition of \(\{1, \ldots, d\} \), so that

- \(G_r \cap G_s = \emptyset \) if \(r \neq s \)
- \(\bigcup_{r=1}^{m} G_r = \{1, \ldots, d\} \).
Let w_G denote the vector w restricted to features in G, e.g.,

\[
\begin{bmatrix}
11 \\
-4 \\
-1 \\
17 \\
8
\end{bmatrix}, \quad G = \{2, 5\} \Rightarrow w_G = \begin{bmatrix}
-4 \\
8
\end{bmatrix}.
\]

The group lasso penalty is $\sum_{r=1}^{M} \|w_r\|_2$. Therefore, to perform linear regression with group feature selection, we would solve

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i - b)^2 + \sum_{r} \|w_r\|_2.
\]

The intuition is that $\sum \|w_r\|$ can be viewed as the ℓ_1 norm of $(\|w_1\|_2, \ldots, \|w_r\|_2)$, which encourages most values of $\|w_r\|_2$ to be zero, i.e., $w_r = \text{zero vector}$.

Multiclass SVM
One way to define a linear SVM in the multiclass case is
\[
 f(x) = \arg \max_{k=1,\ldots,K} \langle w_k, x \rangle
\]
where \(w_k \) is associated with class \(k \), and solves
\[
 \min_{w_1, \ldots, w_K} \frac{1}{2} \sum_{k=1}^{K} \|w_k\|^2 + \frac{C}{n} \sum_{i=1}^{n} \xi_i
\]
\(\text{s.t.} \quad \langle w_{y_i} - w_k, x_i \rangle \geq 1 - \xi_i, \quad \forall i, \forall k \neq y_i \)
\[\xi_i \geq 0 \quad \forall i\]

The above formulation can be kernelized using the dual optimization problem.

Q: How could we incorporate embedded feature selection into the linear multiclass SVM?

A: Group lasso penalty where groups correspond to features

Multitask Learning

Suppose there are \(N \) different (but possibly related)
classification problems, referred to as tasks, and let
\[
\{ (x_j^{(i)}, y_j^{(i)}) \mid j = 1, \ldots, n_i \}
\]
be training data for the \(i \)th task.

In multi-task learning, the goal is to learn the \(N \) classifiers simultaneously, in hopes that if some tasks are sufficiently similar, training data can be pooled, thus leading to a larger effective sample size for some or all tasks.

Let's consider the linear case. Let \(W^{(i)} \in \mathbb{R}^d \) be the parameter associated with task \(i \), and write
\[
W = \begin{bmatrix}
W^{(1)} & \cdots & W^{(N)}
\end{bmatrix} = \begin{bmatrix}
W_1^T \\
\vdots \\
W_d^T
\end{bmatrix}
\] (d \times n)

A basic approach is to solve
\[
\min_{W} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} l(y_{ij}, \langle w_j^{(i)}, x_i \rangle) + \lambda R(W)
\]
\[\min \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathcal{L}(y_i, w_j, x_i, y_i), \quad R(w) \]

where \(R \) is a regularizer that encourages \(w^{(1)}, \ldots, w^{(N)} \) to be similar. Can you suggest a good \(R? \)

Here are some possibilities:

- **shared mean**:
 \[
 R(w) = \sum_{i=1}^{N} \left\| w^{(i)} - \frac{1}{N} \sum_{k=1}^{N} w^{(k)} \right\|_2^2
 \]

- **nuclear norm**:
 \[
 R(w) = \| W \|_*
 \]

- **group lasso**:
 \[
 R(w) = \sum_{k=1}^{d} \| w_k \|_2
 \]

For which of the above regularizers can the method be kernelized?