Constrained Optimization

CONSTRAINED OPTIMIZATION

A constrained optimization problem has the form min f(x)

min
$$f(x)$$

x
s.t. $g_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., n$

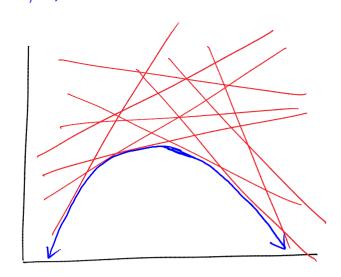
where $x \in \mathbb{R}^d$. If x satisfies all the constraints, it is said to be feasible. Assume f is defined at all feasible points.

The Lagrangian

The Lagrangian function is $L(x,\lambda,\nu):=f(x)+\sum_{i=1}^{m}\lambda_{i}g_{i}(x)+\sum_{j=1}^{n}\nu_{j}h_{j}(x)$ and $\lambda=[\lambda_{i},...,\lambda_{m}]^{T}$ and $\nu=[\nu_{i},...,\nu_{n}]^{T}$ are called Lagrange multiplies or dual variables.

The Lagrange dual function is $L(\lambda,\nu) := \min L(x,\lambda,\nu)$

Note Lb is concave, being the point-wise minimum of a family of affine functions



The dual optimization problem is

 $\max_{\lambda_1 \nu : \lambda_i \ge 0} L_{D}(\lambda_1 \nu)$

Similarly, the primal function is

 $L_{p}(x) := \max_{\lambda_{1}v: \lambda_{1} \geq 0} L(x,\lambda,v)$

and the primal optimization problem is

min Lp(x)

Notice that

 $L_{p}(x) = \begin{cases} f(x) \\ \infty \end{cases}$

if x is feasible otherwise.

Therefore, the primal problem and the original

problem have the same solution, yet the primal problem is unconstrained.

Weak Duality

Denote the optimal objective function values of the primal and dual

$$p^{+} = \min_{x} L_{p}(x) = \min_{x} \max_{\lambda, \nu: \lambda_{i} \geq 0} L(x, \lambda, \nu)$$

$$d^{*} = \max_{l, v: l_{i} \geq 0} L_{D}(x) = \max_{l, v: l_{i} \geq 0} \min_{x} L(x, l, v).$$

Weak duality refers to the following fact, which always holds:

Proof Let à be feasible. Then for any 1, v with 1:30

$$L(x,\lambda,\nu) = f(x) + \sum lig_i(x) + \sum y_i h_i(x) \leq f(x)$$

Hence

$$L_{b}(\lambda,\nu) = \min_{x} L(x,\lambda,\nu) \leq f(x)$$

This is true for any feasible &, so

$$L_D(\lambda, \nu) \leq \min_{\chi \text{ feasible}} f(\chi) = p^{\chi}.$$

Lecture Notes Page

Taking the max over $J, \nu: J_i \ge 0$, we have $d^* = \max_{J_i \nu: J_i \ge 0} L_b(J, \nu) \le p^*.$

Strong Duality

If p* = d*, we say strong duality holds.

The original unconstrained optimization problem is said to be convex if f and gi,..., Im are convex functions and hi,..., he are affine.

We state the following without proof.

Theorem] If the original problem is convex and a constraint qualification holds, then $p^* = d^*$.

Examples of constraint qualifications

- · All gi are affine
- (Strict feasibility) $\exists x \text{ s.t. } h_j(x) = 0 \ \forall j \text{ and}$ $g_i(x) = 0 \ \forall i.$

KKT Conditions

From now on, assume f, gy..., gm, hy..., hn are differentiable. For unconstrained optimization, we know $\nabla f(x*) = 0$ is necessary for x* to be a global minimizer, and sufficient if f is additionally convex. The following two results generalize these properties to constrained optimization.

Theorem! (Necessity) If $p^* = d^*$, x^* is primal optimal, and (x^*, v^*) is dual optimal, then the Karesh-Kuhn-Tucker (KKT) conditions hold:

(1)
$$\nabla f(x^*) + \sum_i J_i^* \nabla_{g_i}(x^*) + \sum_i v_i^* J_i(x^*) = 0$$

- $(2) g_i(x^*) \leq 0$
- (3) $hi(x^*) = 0$
- (4) $\lambda_i^* \geq 0$
- (5) $l_i^* g_i(x^*) = 0$ \(\forall i\) (complimentary slackness)

Proof (2)-(3) hold since x^{*} is feasible. (4) holds by definition of the dual problem. To prove (5) and (1): $f(x^{*}) = L_{b}(\lambda^{*}, v^{*}) \qquad [by strong duality]$

Lecture Notes Page

=
$$\min_{x} \left(f(x) + \sum l_{i}^{*} g_{i}(x) + \sum v_{i}^{*} h_{i}(x) \right)$$

 $\leq f(x^{*}) + \sum l_{i}^{*} g_{i}(x^{*}) + \sum v_{i}^{*} h_{i}(x^{*})$
 $\leq f(x^{*})$ [by (2)-(4)]

and therefore the two inequalities are equalities. Equality of the last two lines implies $l_i^*g_i(x^*) = 0$ $\forall i$. Equality of the 2nd and 3rd lines implies x^* is a minimizer of $L(x, \lambda^*, \nu^*)$ w.r.t. χ . Therefore

 $\nabla_{x} L(x^{*}, \lambda^{*}, \nu^{*}) = 0,$

which is (1)

Theorem (Sufficiency) If the original problem is convex and \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy the KKT conditions, then \tilde{x} is primal optimal, $(\tilde{\lambda}, \tilde{\nu})$ is dual optimal, and strong duality holds.

Proof By (2) and (3), \tilde{x} is feasible. By (4), $L(x, \tilde{I}, \tilde{\nu})$ is convex in x. By (1), \tilde{x} is a minimizer of $L(x, \tilde{\lambda}, \tilde{\nu})$. Then

$$L_{D}(\hat{x}, \hat{v}) = L(\hat{x}, \hat{x}, \hat{v})$$

$$= f(\hat{x}) + \sum_{i} \tilde{y}_{i}(\hat{x}) + \sum_{i} \hat{h}_{i}(\hat{x})$$

$$= 0 \quad \text{Sy } (5) \text{ and } (3)$$

$$= f(\hat{x}).$$

Therefore p* = d* and the result follows.

In conclusion, if a constrained optimization problem is differentiable and convex, then the KKT conditions are necessary and sublicient for primal/dual optimality (with zero duality gap). Thus, the KKT conditions can be used to solve such problems.

Saddle Point Property

If $\tilde{\chi}$ is primal optimal, (\tilde{X}, \tilde{V}) is dual optimal, and strong duality holds, then $(\tilde{\chi}, \tilde{\chi}, \tilde{\chi})$ is a saddle point of L, i.e.,

 $L(x, \lambda, \nu) \leq L(x, \overline{\lambda}, \overline{\nu}) \leq L(x, \overline{\lambda}, \overline{\nu})$ for all $x \in \mathbb{R}^d$, $\lambda \in \mathbb{R}^m$ with $f_{\overline{i}} \geq 0$, and $\nu \in \mathbb{R}^n$. The proof \overline{i} s left as an exercise.

Lecture Notes Pag

