Let \(x_1, \ldots, x_n \in \mathbb{R}^d \).

Recall that the goal of clustering is to assign the data to disjoint subsets called _______ so that points in the same cluster are more similar to each other than to points in other clusters.

Therefore, at the heart of every clustering algorithm is a notion of _______. Often it is more convenient to work with a _______.
Dissimilarity

A dissimilarity matrix is an \(n \times n \) matrix

\[
D = \begin{bmatrix} d_{ij} \end{bmatrix}_{i,j=1}^n
\]

which has the following properties

- \(d_{ii} = 0 \)
- \(d_{ij} = d_{ji} \)
- \(d_{ij} \geq 0 \)

Conceptually, if \(x_i \) is more similar to \(x_j \) than to \(x_k \), then

\[D\]

A dissimilarity matrix need not satisfy the triangle inequality:
Examples

- Euclidean distance
- Squared Euclidean distance
- kNN-based distance
A **cluster map** is a function

\[C: \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, K\} \]

that partitions the data into \(K \) clusters.

In K-means clustering we

- assume \(K \) is known (more on this later)
- adopt the squared Euclidean distance as a dissimilarity

\[d_{ij} = \]

- seek to minimize the

\[W(C) = \]

where

\[n_k = \]
The K-means criterion is a

optimization problem. The number of possible cluster maps C is

$$\frac{1}{K!} \sum_{k=1}^{K} \left(-1 \right)^{K-k} \binom{K}{k} k^n \quad (Jain \ & \ Dubes, \ 1988)$$

\[
\begin{align*}
&= 34,105 \quad \text{if } n=10, \ K=4 \\
&\approx 10^{10} \quad \text{if } n=19, \ K=4
\end{align*}
\]

There is no known efficient search strategy for this space. Therefore we resort to an iterative, suboptimal algorithm.
Exercise 1 Show that

\[W(C) = \sum_{k=1}^{K} \sum_{i : C(i) = k} \| x_i - \overline{x}_k \|^2 \]

where

\[\overline{x}_k := \frac{1}{n_k} \sum_{i : C(i) = k} x_i \]
Solution

\[W(c) = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i: C(i) = k} \sum_{j: C(j) = k} \left\| \chi_i - \bar{\chi}_k - (\chi_j - \bar{\chi}_k) \right\|^2 \]

\[\langle \chi_i - \bar{\chi}_k - (\chi_j - \bar{\chi}_k), \chi_i - \bar{\chi}_k - (\chi_j - \bar{\chi}_k) \rangle \]

\[= \left\| \chi_i - \bar{\chi}_k \right\|^2 - 2(\chi_i - \bar{\chi}_k)^T(\chi_j - \bar{\chi}_k) + \left\| \chi_j - \bar{\chi}_k \right\|^2 \]

\[= \frac{1}{2} \sum_{k=1}^{K} \frac{1}{n_k} \left[\sum_{i: C(i) = k} \sum_{j: C(j) = k} \left\| \chi_i - \bar{\chi}_k \right\|^2 \right. \]

\[- 2 \sum_{i: C(i) = k} \sum_{j: C(j) = k} (\chi_i - \bar{\chi}_k)^T(\chi_j - \bar{\chi}_k) \]

\[+ \sum_{i: C(i) = k} \sum_{j: C(j) = k} \left\| \chi_j - \bar{\chi}_k \right\|^2 \right] \]

\[= \frac{1}{2} \sum_{k=1}^{K} \frac{1}{n_k} \left[n_k \cdot \sum_{i: C(i) = k} \left\| \chi_i - \bar{\chi}_k \right\|^2 \right. \]

\[+ n_k \sum_{j: C(j) = k} \left\| \chi_j - \bar{\chi}_k \right\|^2 \right] \]

\[= \sum_{k=1}^{K} \sum_{i: C(i) = k} \left\| \chi_i - \bar{\chi}_k \right\|^2 \]
Therefore we seek to solve

$$C^* = \arg \min_C \sum_{k=1}^{K} \sum_{i: C(i) = k} \| x_i - \bar{x}_k \|_2^2$$

Note that for fixed \(C \) and \(k \),

$$\bar{x}_k = \min_m \sum_{i: C(i) = k} \| x_i - m \|_2^2$$

Therefore

$$C^* = \arg \min_{C, \{m_k\}_{k=1}^{K}} \sum_{k=1}^{K} \sum_{i: C(i) = k} \| x_i - m_k \|_2^2$$

$$W(C, \{m_k\}_{k=1}^{K})$$

This suggests an iterative algorithm

1) Given \(C \), choose \(\{m_k\}_{k=1}^{K} \) to minimize \(W(C, \{m_k\}_{k=1}^{K}) \)

2) Given \(\{m_k\}_{k=1}^{K} \), choose \(C \) to minimize \(W(C, \{m_k\}_{k=1}^{K}) \)
1) \[m_k^* = \]

2) \[C^*(i) = \]

K-means Clustering Algorithm

- Initialize \(\bar{x}_k \), \(k=1,...,K \)
- Repeat
 - \(C(i) = \)
 - \(\bar{x}_k = \)
- Until clusters don’t change

Remarks

- The algorithm is typically initialized by setting each \(\bar{x}_k \) to be a random data point
- Since the algorithm often finds a local min, several random initializations are recommended
Clusters are "nearest neighbors" regions or __________ cells defined with respect to the cluster means.

Therefore the cluster boundaries are

\[k = 3 \]

\[K - \text{means will fail if clusters are} \]
Model selection

How to choose K?

If $W_k(C^*)$ is the within-cluster scatter based on K clusters, we have a plot like this:

$$W_k(C^*)$$

If the "right" number of clusters is K^*, we expect:

- for $K < K^*$, $W_k(C^*) - W_{k-1}(C^*)$ will be large
- for $K > K^*$, $W_k(C^*) - W_{k-1}(C^*)$ will be small

This suggests choosing K near the "knee" of the curve.
A. clusters, similarity, dissimilarity

B. \(d_{ij} < d_{ik} \)

\[d_{ij} + d_{jk} \neq d_{ik} \]

C. \[\| x - y \| = \left(\sum_{j=1}^{d} (x^{(j)} - y^{(j)})^2 \right)^{\frac{1}{2}} \]

\[\| x - y \|^2 \]

- length of shortest path on \(k \)-nearest neighbor graph, for some \(k \)

D. \(d_{ij} = \| x_i - x_j \|^2 \), within cluster scatter

\[W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{i:C(i) = k} \left[\frac{1}{n_k} \sum_{j:C(j) = k} \| x_i - x_j \|^2 \right] \]

- avg. dissim. to points in same cluster

\[n_k = \sum_{i=1}^{n} \frac{1}{1+C(i) = k} \]

E. Combinatorial

F. \(\overline{x}_k \)
G. \[\eta_k^* = \frac{1}{\eta_k} \sum_{i : C(i) = k} x_i \]

\[C^*(i) = \arg \min_k \| x_i - \bar{x}_k \| \]

H. \[C(i) = \arg \min_k \| x_i - \bar{x}_k \| \]

\[\bar{x}_k = \frac{1}{\eta_k} \sum_{i : C(i) = k} x_i \]

I. Voronoi, hyperplanes, nonconvex