Locally Linear Regression

Consider a regression setting with training data \((x_i, y_i), x_i \in \mathbb{R}^d, y_i \in \mathbb{R}\)

and assume the relationship between \(x\) and \(y\) is non-linear

Furthermore, suppose we are not willing to adopt a polynomial model, which we previously saw could be fit using ________.
Ideas

- Local averaging

\[ f(x) = \text{avg. } y_i \text{ among } x_i \]

s.t. \[ \|x - x_i\| < \delta \]

- Weighted local averaging

\[ f(x) = \text{weighted avg. of } y_i \text{ based on } \|x - x_i\| \]

Known as the Nadayara-Watson estimate

Note: local averaging is the special case where
Smoothing Kernels

\[ k_\sigma(y) \text{ is called a smoothing kernel} \]

Example:

\[ k_\sigma(y) = \frac{1}{\sigma d} D \left( \frac{\| y \|}{\sigma} \right) \]

where

\[
D(t) = \begin{cases} 
\frac{3}{4}(1-t^2) & \text{if } |t| \leq 1 \\
0 & \text{else} 
\end{cases}
\]

or

\[
D(t) = \begin{cases} 
(1-t^3)^3 & \text{if } |t| \leq 1 \\
0 & \text{else} 
\end{cases}
\]

or

\[ D(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \]

FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each has been calibrated to integrate to 1. The tri-cube kernel is compact and has two continuous derivatives at the boundary of its support, while the Epanechnikov kernel has none. The Gaussian kernel is continuously differentiable, but has infinite support.
Unfortunately, local averaging suffers near the boundaries of the data set, and in other sparsely populated regions.

These problems can be alleviated by...

\[ \text{Locally Linear Regression} \]

Here's the algorithm:

Input: \((x_i, y_i)_{i=1}^n, \quad x_i \in \mathbb{R}^d, \quad y_i \in \mathbb{R}\)

\[ x \in \mathbb{R}^d \]

Solve: \( \min_{\beta(x), \beta_0(x)} \sum_{i=1}^n K(x_i, x) \left[ y_i - \beta(x)^T x_i - \beta_0(x) \right]^2 \)

\[ (\hat{\beta}(x), \hat{\beta}_0(x)) \]

Output: \( \hat{f}(x) = \beta(x)^T x + \hat{\beta}_0(x) \)

Note: A weighted least squares problem must be solved at each new \( x \)!
Relative to local averaging, LLR is

- smooth
- more accurate at boundaries
Weighted Least Squares

\[ \sum_{i=1}^{n} w_i (y_i - \beta^T x_i - \beta_0)^2 \]

\[ = (\bar{y} - A\theta)^T W (\bar{y} - A\theta) \]

where

\[ y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \theta = \begin{bmatrix} \beta_0 \\ \beta \end{bmatrix} \]

\[ A = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix}, \quad W = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix} \]

How can we minimize

\[ (\bar{y} - A\theta)^T W (\bar{y} - A\theta) \]

w.r.t. \( \theta \)?
\[(y - A\theta)^T W (y - A\theta) = (y - A\theta)^T W^{\frac{1}{2}} W^{\frac{1}{2}} (y - A\theta)\]

\[= (W^{\frac{1}{2}} y - W^{\frac{1}{2}} A\theta)^T (W^{\frac{1}{2}} y - W^{\frac{1}{2}} A\theta)\]

\[= (\hat{y} - \hat{A}\theta)^T (\hat{y} - \hat{A}\theta), \quad \hat{y} = W^{\frac{1}{2}} y, \hat{A} = W^{\frac{1}{2}} A\]

\[= \|\hat{y} - \hat{A}\theta\|^2\]

\[\hat{\theta} = \text{arg min}\|y - A\theta\|^2\]

**Applying this to LLR, we have**

\[\hat{f}(x) = \hat{\theta}(x)^T \begin{bmatrix} 1 \\ x \end{bmatrix}\]

\[= y^T W(x) A (A^T W(x) A)^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix}\]

where

\[W(x) =\]
bandwidth selection (bias-variance tradeoff)

the effect of the bandwidth
A. Least squares

\[ \hat{f}(x) = \frac{1}{\sum_{i} y_i} \sum_{i: \|x_i - x\| < \delta} y_i \]

\[ \hat{f}(x) = \sum_{i=1}^{n} k_\sigma(x - x_i) \cdot y_i \]

\[ k_\sigma(x - x_i) = \frac{1}{\sum_{i} k_\sigma(x - x_i)} \]

B. 

\[ k_\sigma(x - x_i) = \begin{cases} \frac{1}{\|x - x_i\| < \delta} \\ 0 \end{cases} \]

C. 

\[ \hat{\theta} = (\hat{A}^T \hat{A})^{-1} \hat{A}^T \tilde{y} \]

\[ = (A^T A)^{-1} A^T W y \]

\[ W(x) = \begin{bmatrix} k_\sigma(x_1 - x) & 0 \\ k_\sigma(x_2 - x) & \ddots \\ 0 & \ddots & \ddots \\ k_\sigma(x_n - x) \end{bmatrix} \]