HIERARCHICAL CLUSTERING

As its name suggests, hierarchical clustering produces not just one partition of a dataset into clusters, but a hierarchy of clusterings.

Let the data be \(x_1, \ldots, x_n \).

A hierarchical clustering has \(n \) levels. Each level corresponds to a different partition or cluster map. These levels are hierarchical in the sense that:

- Level \(n \) \(\rightarrow \) \{ \(x_1 \), 3, 3, 2, 3, \ldots, 3 \(x_n \) \}
- Level 1 \(\rightarrow \) \{ \(x_1 \), \ldots, \(x_n \) \}
- Level \(k \), \(1 \leq k < n \) \(\rightarrow \) Formed by merging two clusters at level \(k+1 \)
The primary reason why people like hierarchical clustering is because of a graphical representation called a ___________. Any horizontal line across this graph corresponds to a particular partition in the hierarchy.

- **Horizontal axis**: no physical meaning, just shows organization of clusters (not unique)
- **Vertical axis**: dissimilarity of ________ clusters.
Compared to non-hierarchical clustering algorithms such as K-means, hierarchical clustering has the following advantages:

- Clusters may exist at multiple scales, i.e., clusters may have ________
- Does not require specifying the number of clusters in advance.

There are two classes of algorithms for HC:

- bottom-up or ________
- top-down or ________
Agglomerative Hierarchical Clustering

Both agglomerative and divisive HC require input in the form of a matrix

\[D = [d_{ij}]_{ij=1}^n, \quad d_{ij} = d(x_i, x_j) \]

The dissimilarity matrix is then used to define the dissimilarity between two... there are several ways to do this.

Example

Suppose A, B are clusters. We may define the dissimilarity between A and B to be

\[d_{avg}(A, B) := \]

Note In these notes we speak of clusters as subsets of $\{x_1, \ldots, x_n\}$ as opposed to subsets of \mathbb{R}^d.
Agglomerative HC implements the following algorithm, where

\[H_k \] is the set of clusters at level \(k \)

\[
\begin{align*}
\text{Initialize } & H_0 = \left\{ \{x_1\}, \{x_2\}, \ldots, \{x_n\} \right\} \\
\text{For } k = n-1 \text{ down to } 1 & \\
& \quad \text{Select cluster } A, B \in H_{k+1} \text{ for which } d(A, B) \text{ is } \underline{\quad} \\
& \quad \text{Set } H_k \text{ to be } H_{k+1} \text{ with } A \text{ and } B \text{ deleted and } A \cup B \text{ added} \\
\text{End}
\end{align*}
\]

In other words, we iteratively the two least dissimilar clusters until we have one cluster.
Linkage

The formula that relates point dissimilarities to cluster dissimilarities is called the

 Examples:

- average \(d_{avg}(A,B) = \)
- single \(d_{min}(A,B) = \)
- complete \(d_{max}(A,B) = \)
- centroid \(d_{cent}(A,B) = \)
- Ward's \(d_{Ward}(A,B) = \sqrt{\frac{n_A n_B}{n_A + n_B}} \| \overline{x}_A - \overline{x}_B \| \)
Remarks

- The centroid and Ward's linkage are not built out of an underlying point dissimilarity.

- The average, single, and complete linkages can be applied to cluster data as long as point dissimilarities can be defined.

- The choice of linkage function has a major effect on the HC. Furthermore, there is often no clear choice which one to use.
More Remarks

- single linkage

 \[\rightarrow \] generates a _____ _____ _____

 \[\rightarrow \] sensitive to outliers: tends to merge them at the very end

 \[\rightarrow \] chaining: tends to produce elongated clusters

- complete linkage

 \[\rightarrow \] discourages elongated clusters,
 favors clusters with small _____

- average

 \[\rightarrow \] compromise between single and complete

 \[\rightarrow \] affected by monotone scaling of \(d_{ij} \)

- centroid

 \[\rightarrow \] easy to compute

 \[\rightarrow \] dendrogram can be non-monotone

- Ward's

 \[\rightarrow \] corrects centroid's monotonicity problem
Monotonicity

Certain linkages have a monotonicity property that allows us to assign a quantitative value to the height of nodes in the

In particular, suppose a node was formed by merging two clusters A and B. Then the height of $A \cup B$ is defined to be

Definition 1 A linkage d is monotone if, for any cluster $\{A \cup B \cup C$ produced by HC, we have

Denotes order of merging
Consider a simple example:

Denote \(h = \text{height} \)

\[h(M) = \]

\[h(O) = \]

\[h(P) = \]
Example 1 The single linkage has the monotone property.

To see this, suppose HC produces the cluster \(\{A \cup B \} \cup C \).

Then

\[
d(A \cup B, C) = \min_{x \in A \cup B, z \in C} d(x, z) d(z, A) \\
= \min \left\{ \min_{x \in A} d(x, z), \min_{y \in B} d(y, z) \right\}
\]

≥
• complete is monotone: same proof as for single
 \[\text{with } \min \to \max \]

• average is monotone:
\[
d_{\text{avg}}(A \cup B, C) = \frac{1}{n_C} \cdot \frac{1}{n_A+n_B} \sum_{z \in C} \sum_{x \in A \cup B} d(z, x)
\]
\[
= \frac{1}{n_C} \sum_{z \in C} \left(\frac{1}{n_A+n_B} \sum_{x \in A} d(z, x) + \frac{1}{n_A+n_B} \sum_{y \in B} d(z, y) \right)
\]
\[
= \frac{n_A}{n_A+n_B} d(A, C) + \frac{n_B}{n_A+n_B} d(B, C)
\]
\[
\geq \frac{n_A}{n_A+n_B} d(A, B) + \frac{n_B}{n_A+n_B} d(A, B)
\]
\[
\text{[otherwise } C \text{ would have merged with } A \text{ or } B]\]
\[
= d(A, B)
\]

• centroid is not monotone

\[
\text{counterexample: equilateral triangle } \rightarrow \text{ centroid }
\]

• Ward's is monotone: proof based on connection
to within-class scatter
Global criterion?

HC defines a cluster to be the output of a certain algorithm.

Can we view HC as an algorithm for (approximately) optimizing a global objective function?

Let J_k be an objective function that assess the quality of a clustering into K clusters.

\[
\text{Initialize } \mathcal{H}_n = \{\{x_1\}, \{x_2\}, \ldots, \{x_n\}\}
\]

For $k = n \downarrow 1$

1. Find $A, B \in \mathcal{H}_{k+1}$ such that merging A and B to form \mathcal{H}_k yields the smallest J_k

End
Does this algorithm ever coincide with HIC? Sometimes.

Examples:

- \(d = d_{\text{max}} = \text{complete linkage} \)

\[
\gamma_k(H) =
\]

- \(d = d_{\text{ward}} = \text{Ward's linkage} \)

\[
\gamma_k(H) =
\]

\(\) requires a little algebra to verify this.
Divisive Hierarchical Clustering

Initialize \(\mathcal{H}_1 = \{ x_1, \ldots, x_n \} \)

For \(k = 2 : n \)
 - Select a cluster \(C \in \mathcal{H}_{k-1} \)
 - Split \(C \) into clusters \(A \) and \(B \)
 - Set \(\mathcal{H}_k \) to be \(\mathcal{H}_{k-1} \) with \(C \) replaced by \(A \) and \(B \)

End

Comments:

- Less common than agglomerative methods
- Splits must be chosen carefully to ensure a monotone dendrogram
- Can be faster than agglomeration if only a small number of clusters is desirable.
Other uses

- Initialization for other clustering methods such as K-means

Choosing K

Although HC produces a nice tree, we may want to choose a specific level. We can

- use the same method used for K-means
- look for a large jump in the dendrogram
Instability

Like ________, HC is sensitive to perturbations of the data

Interpretation

Dendrogram = summary of ________

≠ summary of ________

To what extent does dendrogram represent the actual structure of the data?

Model-Based Interpretation

HC may be viewed as a greedy method for maximum likelihood estimation of cluster parameters, where different generative models correspond to different linkages. See Kamvar, Klein, and Manning, "Interpreting and Extending Classical Agglomerative Clustering Algorithms Using a Model-Based Approach."
A. n B. dendrogram C. child
D. subclusters; agglomerative/divisive
E. dissimilarity, clusters, $d_{av}(A,B) = \frac{1}{|A| \cdot |B|} \sum_{x \in A} \sum_{y \in B} d(x,y)$
F. minimal, merge G. linkage

\[d_{\text{min}}(A,B) = \min_{x \in A \atop y \in B} d(x,y) \]
\[d_{\text{max}}(A,B) = \max_{x \in A \atop y \in B} d(x,y) \]
\[d_{\text{cent}}(A,B) = \| \bar{x}_A - \bar{x}_B \| \]

H. non-Euclidean I. minimal spanning tree, diameter
J. dendrogram; $d(A,B)$; $d(A \cup B, C) \geq d(A,B)$
K. $h(M) = d(L,F) = d(D \cup E, F)$
 \[\geq d(D, E) = h(L) \]
 $h(C) = d(M, K) = d(L \cup F, K)$
 \[\geq d(L, F) = h(M) \]
 $h(P) = d(C, N)$...
 $\geq h(C)$ and $h(N)$
L. $\geq \min_{x \in A \atop y \in B} d(x,y) = d(A,B)$, otherwise A,B would have merged with C
M. greedy,
\[J_k(H) = \max_{A \in H} \left(\max_{x, y \in A} d(x, y) \right) \]
\[\text{max cluster "diameter"} \]
\[J_k(H) = \text{within-cluster scatter (as in K-means)} \]

N. Decision trees; algorithm, data