In density estimation problems, we are given a random sample

\[x_1, \ldots, x_n \]

from an unknown density \(f(x) \)

The objective is to estimate \(f \).

Before examining this task let's first see why it is important.
Classification

From the formula for the Bayes classifier, a “plug-in” classifier has the form

\[
\hat{f}(x) = \arg \max_k \hat{\pi}_k \hat{g}_k(x)
\]

where \(\hat{g}_k\) is an estimate of the class-conditional density.

Clustering

The contours of a density can serve to define clusters in a natural way: All \(x\) in the same “connected component” of a contour are in the same cluster.

Novelty Detection

Given a random sample \(x_1, \ldots, x_n\) from the same nominal distribution, we can estimate its density \(\hat{f}\), and use

\[
\hat{f}(x) \geq \gamma
\]

to detect whether a future observation comes from the nominal distribution or a new one.
Kernel Density Estimation

A kernel density estimate has the form

\[\hat{f}(x) := \]

where \(k_\sigma(y) \) is called a kernel

Example | Gaussian kernel

\[k_\sigma(y) = \]

Remarks |

1) Another term for a KDE is a

2) A KDE is nonparametric. Why?

3) The Gaussian kernel is the most common.

4) The parameter \(\sigma \) is called the
KDE = average of "local" density estimates $k_\sigma(x-x_i)$
Kernels

A kernel function should satisfy

1)
2)
3)

Examples

- Uniform kernel
 \[k_\sigma(y) = c_\sigma \mathbb{1}_{||y|| \leq \sigma} \]

- Triangular kernel

- Epanechnikov kernel
 \[\text{(parabolic)} \]

- Cauchy kernel
The accuracy of a KDE depends critically on the

Automatically setting σ is a nontrivial problem to which we will return later in the course.
Theorem. Let $\hat{f}_n(x)$ be a KDE based on the kernel k_0. Suppose $\sigma = \sigma_n$ is such that

- $\sigma_n \to 0$ as $n \to \infty$
- $n \cdot \sigma_n^{-d} \to \infty$ as $n \to \infty$.

Then

$$E\left\{ \int |\hat{f}_n(x) - f(x)| \, dx \right\} \to 0$$

as $n \to \infty$, regardless of the true density f.

A. \(\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} k_{\sigma}(x-x_i) \)

\[
k_{\sigma}(y) = \left(2\pi\sigma^2\right)^{-\frac{d}{2}} \exp \left\{ -\frac{y^2}{2\sigma^2} \right\}
\]

\[
= \phi(y; 0, \sigma^2 I)
\]

Parzen window, \(\sigma = \text{bandwidth} \)

B. 1) \(\int k_{\sigma}(y) \, dy = 1 \)

2) \(k_{\sigma}(y) \geq 0 \)

3) \(k_{\sigma}(-y) = k_{\sigma}(y) \)

C. \(\text{bandwidth} \)