
SWIFFTX: A Proposal for the SHA-3 Standard

Yuriy Arbitman Gil Dogon∗ Vadim Lyubashevsky† Daniele Micciancio‡

Chris Peikert§ Alon Rosen¶

October 30, 2008

Abstract

This report describes the SWIFFTX hash function. It is part of our submission package to
the SHA-3 hash function competition.

The SWIFFTX compression functions have a simple and mathematically elegant design.
This makes them highly amenable to analysis and optimization. In addition, they enjoy two
unconventional features:

Asymptotic proof of security: it can be formally proved that finding a collision in a
randomly-chosen compression function from the SWIFFTX family is at least as hard as
finding short vectors in cyclic/ideal lattices in the worst case.

High parallelizability: the compression function admits efficient implementations on modern
microprocessors. This can be achieved even without relying on multi core capabilities, and
is obtained through a novel cryptographic use of the Fast Fourier Transform (FFT).

The main building block of SWIFFTX is the SWIFFT family of compression functions,
presented in the 2008 workshop on Fast Software Encryption (Lyubashevsky et al., FSE’08).
Great care was taken in making sure that SWIFFTX does not inherit the major shortcoming
of SWIFFT – linearity – while preserving its provable collision resistance.

The SWIFFTX compression function maps 2048 input bits to 520 output bits. The mode of
operation that we employ is HAIFA (Biham and Dunkelman, 2007), resulting in a hash function
that accepts inputs of any length up to 264− 1 bits, and produces message digests of the SHA-3
required lengths of 224, 256, 384 and 512 bits.

∗Mobileye Inc., Israel.
†Tel-Aviv University, Israel. E-mail vlyubash@cs.ucsd.edu.
‡University of California at San Diego. E-mail: daniele@cs.ucsd.edu. Supported by the National Science

Foundation under Grant CCF-0634909. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

§SRI International. E-mail: cpeikert@alum.mit.edu. Supported by the National Science Foundation under
Grants CNS-0716786 and CNS-0749931. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

¶IDC Herzliya, Israel. E-mail: alon.rosen@idc.ac.il.

1

1 Introduction

In this report we describe the SWIFFTX cryptographic hash function. The main goals in the design
of SWIFFTX were

• to define a function with a very regular structure and clean mathematical description, which
encourages cryptanalytic efforts;

• to use innovative but principled design choices, that can be justified through rigorous math-
ematical proofs of security. This is true not only for the high level mode of operation, but
remarkably also for the underlying compression function;

• to allow very efficient implementations on modern microprocessors, with a substantial amount
of parallelism that is easily exploitable both on single-core (through the use of “single-
instruction multiple-data” SIMD operations) and multi-core systems, without the need for
specialized hardware. (Though very fast hardware implementation is clearly also possible.)
We remark that efficiency on modern microprocessors is not achieved through the use of
64-bit arithmetic. In fact, most computation performed by SWIFFTX consists of arithmetic
modulo 257, which can be reasonably implemented on 8-bit processors.

The main component of our function is the SWIFFTX compression function (described in detail
in the rest of this document) which maps 2048-bit inputs to 520-bit outputs. Then, we use HAIFA [1]
as an iterative framework to obtain a hash function that takes as input an arbitrary number of bits
and produces a 520 bit output. The various digest sizes required by NIST are obtained by a final
post-processing stage (similar, but not identical, to the basic compression function) that maps 520
bits to the desired output of 512, 384, 256, or 224 bits.

1.1 Mode of operation

The HAIFA framework was selected to fix many of the flaws of the traditional Merkle-Damgard
construction, and to provide much stronger security guarantees against pre-image and second-
preimage attacks. However, other iterative frameworks are conceivable, and the main innovation
of our proposal is in the design and selection of the SWIFFTX compression function.

For a detailed description of the design and rationale of the HAIFA framework we refer to the
original paper [1]. Because of the structure of the SWIFFTX hash function, it supports HMAC,
HMAC as pseudo-random function and randomized hashing in the same way as the SHA family.
In the rest of this document we focus on the design of the SWIFFTX compression function and
the post-processing stage. See Figure 1 for a visual description of how the SWIFFTX compression
function fits within the HAIFA framework. As specified by the HAIFA framework, we use a single
520-bit IV to produce individual IV’s for each of the digest lengths. The IV that we chose was
generated from the digits of the decimal expansion of e (see section C for the actual IV value).

1.2 Compression function

The SWIFFTX compression fuction is based on the recently proposed SWIFFT compression func-
tion of [4, 3, 8]. A remarkable property of SWIFFT is that it admits an asymptotic proof of
security (against collision-finding and preimage attacks) under worst-case assumptions about the
complexity of certain lattice problems. (See Section 4.1 for details about these provable security

1

SWIFFTX

512/384/256/224 Bits

M
0

1400 bits

#bits salt

2x64 bits

520 bits

M
1

#bits saltZ
1

SWIFFTX

M
k-1

#bits mZ
2

SWIFFTX

FinalTrans

Z
k

SWIFFTX

m

16 bits

0

1512 bits
IV

520 bits

IV

Z
k

Z
k-1 10...0

(j+48) + 64 + 16 bits

1400-j bits

520 bits

m

1400 bits

2x64 bits

520 bits

520 bits

A
1

A
0
A
1
A
2

A
0
A
1
A
2

A
0
A
1
A
2

A
0
A
1
A
2

Legend

Random bits

Auxiliary information

Message bits

Intermediate bits

Figure 1: The SWIFFTX hash function.

properties.) The SWIFFT compression function has some features (e.g., linearity) that, while use-
ful in certain applications [6, 5], are undesirable in a general purpose hash function as sought by
NIST. These features also make SWIFFT susceptible to k-list/generalized birthday attacks [10, 2],
which substantially degrades the quantitative strength of the function. (In particular, the cost of
collision-finding attacks on SWIFFT is, by design, much less that 2n/2, where n is the output size.)

Our SWIFFTX compression function uses SWIFFT as a building block, in such a way that

• the linearity properties are completely disrupted, substantially strengthening SWIFFT against
k-list attacks, and achieving other desirable pseudo-randomness properties;

• the asymptotic provable security guarantees of the SWIFFT compression function against
collision-finding and preimage attacks (described in theoretical works [4, 3, 8]) are maintained.

The SWIFFTX function is comprised of three layers, whose functionality and design rationale
are summarized here and will be elaborated on in Section 2:

1. An inner layer of 3 parallel invocations of SWIFFT on the same input but independent and
distinct “randomizers.”

The purpose of this layer is to serve as a one-way function that is sufficiently hard to invert.
We use 3 parallel invocations of SWIFFT so that the output is large enough to resist k-
list/generalized birthday attacks for inversion and collision-finding. This layer also provides

2

a small amount of compression, but that is ancillary; from a design perspective, any (almost)
injective one-way function with strong diffusion/mixing properties would suffice for our goals
in this layer.

2. The result produced by the inner layer can be interpreted as a sequence of numbers modulo
257. An intermediate layer converts the output of the inner layer from base 257 to binary,
and applies S-boxes that are simple permutations on 8 bits.

The purpose of this layer is to destroy the linear homomorphism of the inner layer of basic
SWIFFT functions, which is a necessary condition for pseudorandomness and defeating k-list
attacks. The primary goal of this layer is to significantly increase the degree of the entire
SWIFFTX function, viewed as a polynomial over either GF (2) or GF (257). The requirements
on the S-boxes are therefore quite modest; in particular, they need not be designed to resist
linear or differential cryptanalysis, but only to have reasonably large degree over GF (2).
Random permutations suffice for this purpose.

3. An outer layer consisting of a single invocation of SWIFFT on the binary output of the
intermediate layer. Here we reuse some of the randomizer matrices from the first step; this
does not have any impact on the security proof.

This final layer serves as the main compression step of SWIFFTX.

x
1,0

x
1,1

x
2,0

x
2,1

x
32,0

x
32,1

x
32,63

x
2,63

x
1,63

SWIFFT

A
0

A
1

A
2

x
1,0

x
1,63

SWIFFT

A
0

2 2 2 2 2 2 2 2 2

2 2

z
0,0

z
0,1

z
0,63

SWIFFT SWIFFT

x
1,1
2

x
9,0

x
9,63

2 2

x
9,1
2

x
24,0

x
24,63

2 2

x
24,1
2

x
25,0

x
25,63

2 2

x
25,1
2

z
1,0

z
1,1

z
1,63

z
2,0

z
2,1

z
2,63 0

2
40

z
0,64

z
1,64

z
2,64

256 256 256 256 256 256 256 256 256 256 256 256

Convert2Bytes Convert2Bytes Convert2Bytes

z
0

z
1

z
63

257 257 257

‘ ‘ ‘ z
0

z
1

z
63

257 257 257

‘ ‘ ‘ z
0

z
1

z
63

257 257 257

‘ ‘ ‘

z
0

z
1

z
63

257 257 257

‘‘ ‘‘ ‘‘

z z z z

Convert2Bytes

256 256 256 256
0 1 63 64

257
32x64

257
32x64

257
32x64

257
25x64

S-box S-box S-box S-box S-box S-box S-box S-box S-box S-box S-box
53

Figure 2: The SWIFFTX compression function.

3

Note that the outer layer by itself is not strongly collision-resistant, due to k-list attacks of
moderate complexity, as described in [4]. However, the one-wayness of the inner layer prevents any
collisions discovered in the outer layer from being converted into collisions in the entire function.

From an asymptotic security perspective, notice that because the intermediate layer is a permu-
tation, finding collisions (respectively, preimages) in SWIFFTX implies finding collisions (respec-
tively, preimages) in at least one of the four SWIFFT components. For the reason, the asymptotic
proofs of security for SWIFFT also apply to the SWIFFTX design.

2 SWIFFTX Design

In this section we describe the SWIFFTX compression function, giving a modular description of its
main components, which are: the SWIFFT function (Section 2.1), the ConvertToBytes procedure
(Section 2.2), an S-box (Section 2.3). In addition, there is a FinalTransform procedure (Section 2.5)
that is called once to produce the final digest.

Pseudocode for each of the components is included in Appendix A. We stress that this pseu-
docode (and reference implementation) is not intended to correspond to an efficient implemen-
tation. SWIFFTX has a mathematically elegant structure, and as such, it can be described and
implemented in several different but functionally equivalent ways. Our reference implementation
was chosen as the simplest possible description of the function, in order to provide a good reference
for cryptanalysis and verification of more complex (and efficient) implementations.

2.1 SWIFFT

The main component of the SWIFFTX compression function is the SWIFFT function (Figure 3
and Section A.2). This function takes as input either m = 32 (or in one special case, m = 25)
64-bit words x1, . . . , xm for a total of 2048 (or 1600) bits, and outputs 64 elements z′0, . . . , z

′
63 ∈

Z257 = {0, . . . , 256}. The function is indexed by either 2048 or 1600 fixed “randomizer” elements
a1,0, . . . , am,63 ∈ Z257, which are taken to be uniformly random integers modulo 257. (For con-
creteness and to ensure the lack of trapdoors, we generated these randomizers using the decimal
expansion of π (see Section A.3), but any other random way to choose them is also acceptable.)

SWIFFT can be described mathematically as follows. Let

rev: {0, . . . , 63}→ {0, . . . , 63}

be the “bit-reversal” function that on input a 6-bit binary number b5b4b3b2b1b0 outputs the number
with binary representation

rev(b5b4b3b2b1b0) = b0b1b2b3b4b5.

On input x1, . . . , xm, where each xi = xi,0 · · ·xi,63 consists of 64 bits, SWIFFT outputs the sequence
of values z′0, . . . , z

′
63 ∈ Z257, where

z′i =
m∑

j=1

aj,i

63∑

k=0

xj,rev(k) · ω(2i+1)k

where ω = 42 and all the arithmetic is performed modulo 257.
This computation can equivalently be described as follows:

4

• Permute the bits xj,0, . . . , xj,63 in each word xj according to the bit-reversal function to obtain
xj,rev(0), . . . , xj,rev(63).

• Interpret each (permuted) word xj,rev(0), . . . , xj,rev(63) as the coefficients of a polynomial of
degree (at most) 63:

pj(α) = xj,rev(0) + xj,rev(1) · α + · · · + xj,rev(63) · α63.

• Evaluate each polynomial pj(·) on all the odd powers ω, ω3,ω5, . . . ,ω127 of ω = 42, where all
arithmetic is modulo 257.

• Multiply each of the resulting values pj(ω2i+1) by aj,i and sum over all j, to obtain

z′i = a1,i · p1(ω2i+1) + · · · + am,i · pm(ω2i+1).

Evaluating pj(α) on all odd powers of ω can be performed in a number of ways. One way that
admits an efficient implementation is by

1. pre-multiplying each degree-i coefficient of pj by ωi, then

2. evaluating the resulting polynomials on all powers of ω2.

The second operation above can be performed efficiently using the Fast Fourier Transform algo-
rithm.

x
1,!(0)

w0 w1 w63x x x w0 w1 w63x x x w0 w1 w63x x x

y
1,0

xxxa1,0 a1,1 a1,63

z
0

z
1

z
63

FFT FFT FFT

y
1,1

y
1,63

y
2,0

xxxa2,0 a2,1 a2,63

y
2,1

y
2,63

y
m,0

xxxam,0 am,1 am,63

y
m,1

y
m,63

+

+

+

257 257 257

2

257 257 257 257 257 257 257 257 257

x
1,0

x
1,1

x
2,0

x
2,1

x
m,0

x
m,1

x
m,63

x
2,63

x
1,63

2 2 2 2 2 2 2 2 2

Index bit-reversal ! Index bit-reversal ! Index bit-reversal !

x
1,!(1)

2

x
1,!(63)

2

x
2,!(0)

2

x
2,!(1)

2

x
2,!(63)

2

x
m,!(0)

2

x
m,!(1)

2

x
m,!(63)

2

‘ ‘ ‘

257 257 257 257 257 257 257 257 257

257 257 257 257 257 257 257 257 257

Figure 3: The SWIFFT function.

Our choice of parameters ω = 42 and modulus 257 were dictated entirely by efficiency concerns.
In fact, the cryptographic strength of the function is largely independent of the particular values
(indeed, in the post-processing stage of SWIFFTX we use an instantiation of SWIFFT with a

5

different modulus). Because 257 is prime, the ring of integers modulo 257 forms a finite field,
whose multiplicative group is cyclic and has exactly 256 elements. In particular, any generator
of the multiplicative group has order 256. All we need here is an element of order 128, which
can be obtained by squaring any generator of the multiplicative group. The value ω = 42 is one
such element of order 128, and has additional properties that are convenient for highly-optimized
implementations.

Full pseudocode for SWIFFT is given in Section A.2.

2.2 ConvertToBytes

Because the output of the SWIFFT function is comprised of elements in Z257, we need a function
that converts them into binary quantities for further use. We perform a simple change of base from
257 to 256 by taking groups of 8 elements z′0, . . . , z

′
7 ∈ Z257 and producing 8 elements z0, . . . , z7 in

Z256 and a bit b ∈ {0, 1} such that

7∑

i=0

z′i · 257i =
7∑

i=0

zi · 256i + b · 2568.

We then take the bit b from 8 such groups and combine them together into one byte (see figure 4).
Therefore, ConvertToBytes is an injective function mapping 64 elements of Z257 into 65 bytes.

z
0

z
1

z
7!257 +

2

7

z
0

z
1

z
7

b
0

2

b
1

2

b
7

256

+ + !257

+ !256 +
7

+ !256

z
8

z
9

z
15!257 +

7

z
8

z
9

z
15

+ + !257

+ !256 +
7

+ !256

z
56

z
57

z
63!257 +

z
56

z
57

z
63

+ + !257

+ !256 + + !256

7

7 z
64

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

256 256 256 256 256 256 256 256 256

257 257 257 257 257 257 257 257 257

Figure 4: The ConvertToBytes procedure.

2.3 S-Box

The linearity of the SWIFFT functions in the inner and outer layers of SWIFFTX is broken by
the change of base performed by ConvertToBytes, as well as by an S-box (Figure 7). The S-
box is a simple permutation over {0, 1}8, i.e., mapping one byte to one byte. To ensure the lack
of a trapdoor, the S-box was constructed from the digits of e in a manner that ensures it is a
permutation.

2.4 SWIFFTX Compression Function (putting everything together)

The SWIFFTX compression function takes as input 2048 bits and applies three SWIFFT functions
with distinct randomizers. Notice that the FFT operation need only be done once for each of the

6

input blocks, and can be reused across the three applications of SWIFFT. The output of the three
SWIFFT functions is then fed to the ConvertToBytes function to obtain 3× 65 = 195 bytes, then
each of those bytes is fed into the S-box. We arrange these 195 bytes as in Figure 2 and append 5
bytes corresponding to S-box(0). The result is 200 bytes, or 1600 bits that are used as the input
to the next SWIFFT. The output of this SWIFFT is fed to the ConvertToBytes function, and
we end up with 520 bits, which are then either fed to the next compression function, or to the
FinalTransform function, described below.

2.5 FinalTransform

While the output of SWIFFTX is almost regularly distributed over the domain Z64
257, the output

of the entire hash function should be regularly distributed over Z512
2 . When converted to 65 bytes

using the ConvertToBytes function, the 520 resulting bits are statistically biased. Therefore, after
the final block of the input has been processed, it is necessary to convert these 520 skewed bits
into 512 uniformly-distributed bits. Because our main objective is to preserve the security proof,
we perform an operation that “smooths” the output and is theoretically equivalent to evaluating
one more SWIFFT function having a 520-bit input.

We extend the 520 bits to 576 bits by padding with zero bits, then break these into 9 groups
of 64 bits. We treat each of the groups as a polynomial xi of degree at most 63. We then use
576 randomizer elements that were already created and create 9 polynomials pi. We then compute
x0p0 + . . . + x8p8 over the ring Z256[α]/(α64 + 1). The result is a polynomial of degree 63 whose
coefficients are elements modulo 256 (i.e. bytes), and therefore we have the required 512 bits.

z z z z
256 256 256 256

0 1 63 64

x
0,0

x
0,63

2 2

x
0,1

2

x
8,0

x
8,63

2 2

x
8,1

2

0
2
56

x
1,0

x
1,63

2 2

x
1,1

2

520 + 56 bits

x
0

x
1 x

8

p
0

p
1

p
8

a
1,0

a
1,63

a
1,1

256 256 256

a
0,0

a
0,63

a
0,1

256 256 256

a
8,0

a
8,63

a
8,1

256 256 256

z

z
0

z
1

z
63

x x x

+

256 256 256

Figure 5: FinalTransform procedure.

7

3 SIMD implementation

The SWIFFT compression functions are highly parallelizable and admit very efficient implementa-
tion on modern microprocessors. In this section, we describe how to exploit this fact in order to
achieve substantial speed up on processors that are equipped with SIMD architecture. These ideas
naturally extend to fast hardware implementations.

Our implementation uses two main techniques for achieving high performance, both relating
to the structure of the Fast Fourier Transform (FFT) algorithm. The first observation is that
the input to the FFT is a binary vector, which limits the number of possible input values (when
restricting our view to a small portion of the input). This allows us to precompute and store the
results of several initial iterations of the FFT in a lookup table. The second observation is that
the FFT algorithm consists of operations repeated in parallel over many pieces of data, and that
modern microprocessors have explicit instructions for exactly these kinds of operations. We now
proceed in more detail.

For concreteness we set parameters n = 64, m = 32, and modulus p = 257. This corresponds
to the inner layer evaluations of SWIFFT within SWIFFTX. The outer layer can be described by
taking m = 25. Let ω be a 128th root of unity in Zp = Z257, i.e., an element of order 128 = 2n.
(We will see later that it is convenient to choose ω = 42, but most of the discussion is independent
from the choice of ω.)

The compression function takes an mn = 2048-bit input, viewed as m = 32 binary vectors
x0, . . . ,x31 ∈ {0, 1}64. (For convenience, entries of a vector or sequence are numbered starting from
0 throughout this section.) The function first processes each vector xj , multiplying its ith entry by
ωi (for i = 0, . . . , 63), and then computing the Fourier transform of the resulting vector using ω2

as a 64th root of unity. More precisely, each input vector xj ∈ {0, 1}64 is mapped to yj = F (xj),
where F : {0, 1}64 → Z64

257 is the function

F (x)i =
63∑

k=0

(xk · ωk) · (ω2)i·k =
63∑

k=0

xk · ω(2i+1)k. (1)

The final output z of the compression function is then obtained by computing 64 distinct linear
combinations (modulo 257) across the ith entries of the 32 yj vectors:

zi =
31∑

j=0

ai,j · yi,j (mod 257),

where the ai,j ∈ Z257 are the primitive Fourier coefficients of the fixed multipliers.

3.1 Computing F

The most expensive part of the computation is clearly the computation of the transformation F on
the 32 input vectors xj , so we first focus on the efficient computation of F . Let y = F (x) ∈ Z64

257

for some x ∈ {0, 1}64. Expressing the indices i, k from Equation (1) in octal as i = i0 + 8i1 and
k = k0 + 8k1 (where j0, j1, k0, k1 ∈ {0, . . . , 7}), and using ω128 = 1 (mod 257), the ith component

8

of y = F (x) is seen to equal

yi0+8i1 =
7∑

k0=0

(ω16)i1·k0

(
ω(2i0+1)k0 ·

7∑

k1=0

ω8k1(2i0+1) · xk0+8k1

)

=
7∑

k0=0

(ω16)i1·k0 (mk0,i0 · tk0,i0) ,

where mk0,i0 = ω(2i0+1)k0 and tk0,i0 =
∑7

k1=0 ω8k1(2i0+1)xk0+8k1 . Our first observation is that each
8-dimensional vector tk0 = (tk0,0, tk0,1, . . . , tk0,7) can take only 256 possible values, depending on
the corresponding input bits xk0 , xk0+8, . . . , xk0+8·7. Our implementation parses each 64-bit block
of the input as a sequence of 8 bytes X0, . . . , X7, where Xk0 = (xk0 , xk0+8, . . . , xk0+8·7) ∈ {0, 1}8,
so that each vector tk0 can be found with just a single table look-up operation tk0 = T (Xk0), using
a table T with 256 entries. The multipliers mk0 = (mk0,0, . . . ,mk0,7) can also be precomputed.

The value y = F (x) can be broken down as 8 (8-dimensional) vectors

yi1 = (y8i1 , y8i1+1, . . . , y8i1+7) ∈ Z8
257.

Our second observation is that, for any i0 = 0, . . . , 7, the i0th component of yi1 depends only on
the i0th components of mk0 and tk0 . Moreover, the operations performed for every coordinate are
exactly the same. This permits parallelizing the computation of the output vectors y0, . . . ,y7 using
SIMD (single-instruction multiple-data) instructions commonly found on modern microprocessors.
For example, Intel’s microprocessors (starting from the Pentium 4) include a set of so-called SSE2
instructions that allow operations on a set of special registers each holding an 8-dimensional vector
with 16-bit (signed) integer components. We only use the most common SIMD instructions (e.g.,
component-wise addition and multiplication of vectors), which are also found on most other modern
microprocessors, e.g., as part of the AltiVec SIMD instruction set of the Motorola G4 and IBM G5
and POWER6. In the rest of this section, operations on 8-dimensional vectors like mk0 and tk0 are
interpreted as scalar operations applied component-wise to the vectors, possibly in parallel using a
single SIMD instruction.

Going back to the computation of F (x), the output vectors yi1 can be expressed as

yi1 =
7∑

k0=0

(ω16)i1·k0(mk0 · tk0).

Our third observation is that the latter computation is just a sequence of 8 component-wise multi-
plications mk0 ·tk0 , followed by a single 8-dimensional Fourier transform using ω16 as an 8th root of
unity in Z257. The latter can be efficiently implemented using a standard FFT network consisting
of just 12 additions, 12 subtractions and 5 multiplications.

3.2 Optimizations relating to Z257

One last source of optimization comes from two more observations that are specific to the use of
257 as a modulus, and the choice of ω = 42 as a 128th root of unity. One observation is that the
root used in the 8-dimensional FFT computation equals ω16 = 22 (mod 257). So, multiplication
by (ω16), (ω16)2 and (ω16)3, as required by the FFT, can be simply implemented as left bit-shift

9

operations (by 2, 4, and 6 positions, respectively). Moreover, analysis of the FFT network shows
that modular reduction can be avoided (without the risk of overflow using 16-bit arithmetic) for
most of the intermediate values. Specifically, in our implementation, modular reduction is per-
formed for only 3 of the intermediate values. The last observation is that, even when necessary
to avoid overflow, reduction modulo 257 can be implemented rather cheaply and using common
SIMD instructions, e.g., a 16-bit (signed) integer can be reduced to the range {−127, . . . , 383} using
x ≡ (x∧ 255)− (x ' 8) mod 257, where ∧ is the bit-wise “and” operation, and ' 8 is a right-shift
by 8 bits.

3.3 Summary

In summary, function F can be computed with just a handful of table look-ups and simple SIMD
instructions on 8 dimensional vectors. The implementation of the remaining part of the computation
of the compression function (i.e., the scalar products between yi,j and ai,j) is straightforward,
keeping in mind that this part of the computation can also be parallelized using SIMD instructions,
and that reduction modulo 257 is rarely necessary during the intermediate steps of the computation
due to the use of 16-bit (or larger) registers.

3.4 Further optimizations

We remark that our implementation does not yet take advantage of all the potential for paral-
lelism. In particular, we only exploited SIMD-level parallelism in individual evaluations of the
transformation function F . Each evaluation of the compression function involves 16 applications
of F , and subsequent multiplication of the result by the coefficients ai,j . These 16 computations
are completely independent, and can be easily executed in parallel on a multicore microprocessor.
Finally, we point out that FFT networks are essentially “optimally parallelizable,” and that our
compression function has extremely small circuit depth, allowing it to be computed extremely fast
in customized hardware.

4 Security Analysis

In this section, we interpret the asymptotic proofs collision-resistance and the other claimed cryp-
tographic properties. We then consider attacks on the SWIFFT and SWIFFTX functions for our
specific choice of parameters, and review the best known attacks to determine concrete levels of
security.

4.1 Interpretation of Security Proofs

An asymptotic proof of one-wayness for the basic SWIFFT function was given in [7], and an
asymptotic proof of collision-resistance (a stronger property) was given independently in [8] and [3].
As in most cryptography, security proofs must rely on some precisely-stated (but as-yet unproven)
assumption. Our assumption, stated informally, is that finding relatively short nonzero vectors in
n-dimensional ideal lattices over the ring Z[α]/(αn+1) is infeasible in the worst case, as n increases.
(See [7, 8, 3] for relevant definitions and precise statements of the assumption.)

Phrased another way, the proofs of security say the following. Suppose that our family of
functions is not collision resistant; this means that there is an algorithm that is able to find a

10

collision in SWIFFT for uniformly random choice of randomizers in some feasible amount of time
T with some noticeable probability δ. The algorithm might only succeed on a small (but noticeable)
fraction of randomizers, and may only find a collision with some small (but noticeable) probability.
Given such an algorithm, there is also an algorithm that can always find a short nonzero vector
in any ideal lattice over the ring Z[α]/(αn + 1), in some feasible amount of time related to T and
the success probability of the collision-finder. We stress that the best known algorithms for finding
short nonzero vectors in ideal lattices require exponential time in the dimension n, in the worst
case.

4.2 The underlying assumption

The importance of worst-case assumptions in lattice-based cryptography cannot be overstated.
Robust cryptography requires hardness on the average, i.e., almost every instance of the primitive
must be hard for an adversary to break. However, many lattice problems are heuristically easy
to solve on “many” or “most” instances, but still appear hard in the worst case on certain “rare”
instances. Therefore, worst-case security provides a very strong and meaningful guarantee, whereas
ad-hoc assumptions on the average-case difficulty of lattice problems may be unjustified.

At a minimum, the asymptotic proofs of security indicate that there are no unexpected “struc-
tural weaknesses” in the design of SWIFFT, at least in terms of collision-resistance. Specifically,
the ability to find collisions efficiently (in an asymptotic sense) would necessarily require new algo-
rithmic insights about finding short vectors in arbitrary ideal lattices (over the ring Z[α]/(αn +1)).

Ideal lattices are well-studied objects from a branch of mathematics called algebraic number
theory, the study of number fields. Let n be a power of 2, and let ζ2n ∈ C be a primitive 2nth
root of unity over the complex numbers (i.e., a root of the polynomial αn + 1). Then the ring
Z[α]/(αn + 1) is isomorphic to Z[ζ2n], which is the ring of integers of the so-called cyclotomic
number field Q(ζ2n). Ideals in this ring of integers (more generally, in the ring of integers of any
number field) map to n-dimensional lattices under what is known as the canonical embedding of
the number field. These are exactly the ideal lattices for which we assume finding short vectors is
difficult in the worst case.1 Further connections between the complexity of lattice problems and
algebraic number theory were given in [9].

For the cryptographic security of our hash functions, it is important that the extra ring structure
does not make it easier to find short vectors in ideal lattices. As far as we know, and despite being a
known open question in algebraic number theory, there is no way to exploit this algebraic structure
in any significant way. The best known algorithms for finding short vectors in ideal lattices are
the same as those for general lattices, and have similar performance. It therefore seems reasonable
to conjecture that finding short vectors in ideal lattices is infeasible (in the worst case) as the
dimension n increases.

4.3 Cryptanalysis

Asymptotic proofs do not necessarily rule out cryptanalysis of specific parameter choices, or ad-hoc
analysis of one fixed function from the family. To quantify the exact security of our functions, it is

1In [7, 8, 3], the mapping from ideals to lattices is slightly different, involving the coefficient vectors of elements in
Z[ζ2n] rather than the canonical embedding. However, both mappings are equivalent in terms of lengths of vectors,
and the complexity of finding short vectors is the same under both mappings.

11

still crucially important to cryptanalyze our specific parameter choices and particular instances of
the function.

A central question in measuring the security of our functions is the meaning of “infeasible” in
various attacks (e.g., collision-finding attacks). Even though the basic SWIFFT function has an
output length of about n lg p bits, it does not enjoy a full n lg p “bits of security” for one-wayness,
nor (n lg p)/2 bits of security for collision resistance. Nor does the basic SWIFFT function satisfy
additional desirable properties, such as pseudorandomness. The enhanced SWIFFTX function was
designed to address these issues.

The SWIFFT function by itself is linear and is therefore susceptible to k-list/generalized birth-
day attacks [10] as described in [4]. It was shown that one could find collisions and preimages in
the SWIFFT function using approximately 2106 and 2128 operations, respectively. We now describe
how similar attacks can be applied to the SWIFFTX function and the reasons why we believe that
they are not any more effective than naive brute-force attacks.

The SWIFFTX compression function is linear in the inner and outer layers, but the intermediate
layer was designed to break all linearity between the two layers. It is our belief that when the three
layers are combined together, the entire function is highly non-linear. Nevertheless, it is possible
to mount attacks separately on each layer. For example, collisions in the inner layer of SWIFFTX
(which consists of three distinct SWIFFT functions) clearly correspond to collisions in the entire
function. The inner layer is a linear function (so generalized birthday attacks can be applied) that
maps 2048 bits to 1536 bits. To find a collision in such a function using techniques described
in [4] would require approximately 2384 operations, which is greater than the approximately 2256

operations needed to break the entire function using the standard birthday attack.
A way to find a preimage of any output y of the function involves first finding the preimage of y

in the outer layer, then inverting the intermediate layer, and finding the preimage in the inner layer.
One can use the birthday attack to find a preimage of y in the ouside layer using the generalized
birthday techniques. Since the input to the outer layer is 1600 bits, and the output is 520 bits, and
the function is linear, methods identical to those described in [4] can be used to obtain preimages
in time approximately 2100. The intermediate layer of the function is trivially invertible, so we can
obtain a string whose preimage under the inner layer alone would be a true preimage of y. Finding
preimages in the inner layer using the techniques described in [4] would require approximately 2512

operations, which is equivalent to the time necessary to mount the trivial attack on the SWIFFTX
function with 512-bit digests.

5 Performance

In this section we report on the performance of SWIFFTX (both SIMD and non-SIMD versions)
on various input sizes. The performance of the SIMD version was about 8 times faster than its
non-SIMD counterpart. Also, because of the expensive final transformation stage, the throughput
rate for hashing short messages was significantly less than for long ones.

We did not optimize for 8-bit or 64-bit machines, and did not test the speed of our submitted
implementation on such machines. We conjecture that by using the best compiler optimizations (as
we did on 32bit version) one can potentially gain a two-fold improvement on 64-bit machines. For
the case of 8-bit machines, a conservative estimate would be to multiply by 4 the results from 32bit
architectures, since in the worst case an operation that requires multiplication on 32bit machine
would require 4 such operations on 8bit machine.

12

5.1 Speed Measurement

To measure the speed of SWIFFTX, we applied two standard methods: for measuring the rate in
MB/Secs we measured the running time is seconds. On Windows machines, for example, this was
accomplished using the ’clock()’ function (from 〈time.h〉). For runs that take about 10 seconds,
which was the case for our tests, the time spent on non-SWIFFTX code is amortized and can be
neglected. We divided the length of the hashed message by the time (multiplying by the number
of trials, of course) to get the rate in MB/Secs. To count the number of cycles per byte we used
the ubiquitous RDTSC instruction, removing the overhead of the measurement itself and averaging
over a number of trials. For both measurements the variance turned out to be low, so the results
we present here are indeed representative.

5.2 The test scenarios

In the course of the development process we have carried out a large number of runs (different
versions, different machines and OSes, etc). For clarity we present here the results of three basic
tests:

Test 1: Short message test. This test hashed an empty message for 200000 times.

Test 2: Long message test. This test hashed a message of 64 × 106 bytes. The message was
produced from NIST’s KAT code - replicating a short pattern of 64 bytes 106 times.

We also ran a SWIFFTX internal tables initialization test. This test just called the SWIFFTX
initialization function 2× 109 number of times. It took 4.22× 10−9 seconds (which corresponds to
9 cycles) for a single initialization function call.

The numbers above were chosen to produce a running time of about 10 seconds on a typical
machine we have, for each test. As said above, we have carried out many tests, some took many
hours of runs, but we found this short 10-seconds test to be a representative as well. All the tests
were carried out for 512bit digest size, since we have no special treatment of shorter digest size (in
terms of speed/memory, and also algorithmically).

5.3 Platforms

We conducted tests on the following four standard platforms:

1. By T60 we denote the Lenovo/ThinkPad T60 with Intel Centrino Duo T7400, each core
running @ 2.16GHz with 1GB of RAM running Windows XP Professional build 5.1.2600,
32bit.

2. By MSI we denote MSI laptop with Intel Core Duo T7250, each core running @ 2.00GHz
with 2GB of RAM running Windows Vista Home Basic build 6.0.6000, 32bit.

3. By DESKTOP1 we denote a desktop computer with Intel Core Duo E4500, each core running
@ 2.20GHz with 2GB of RAM running Windows XP Professional build 5.1.2600, 32bit.

4. By DESKTOP2, we denote a desktop computer with Intel Core Duo E4500, each core running
@ 2.20GHz with 2GB of RAM running Linux SUSE tirana 2.6.22.

Note that all of the machine above represent a typical configuration as NIST define the reference
platform in section 6.B of the submission requirements document.

13

5.4 SIMD architecture

Since the main CPU-cycles-consuming part of SWIFFTX is the four applications of SWIFFT, the
potential of high speed on modern architectures is strong. And indeed, compiling the code for
SSE-2 instruction set produced a much faster result than on the NIST’s reference platform using
ANSI C. Here we provide only one example, but in the future we plan to explore this potential
further, by, for example, implementing SWIFFTX on GPUs. Since almost every modern machine
today is equipped with a powerful graphics card, we believe that SIMD timings may in practice
be even more important than NIST’s constrained ANSI C reference implementation. We ran the
SIMD tests on DESKTOP2.

5.5 Table of results

Test 1 Test 2 Test 2 (SIMD)
MB/sec 2.92 6.22 37

Cycles/Byte 657 320 57

Figure 6: Performance table

5.6 Memory footprint size

The compiled SWIFFTX binary occupies 20480 bytes on the disk. While running KAT-MCT code,
for example, the memory consumption is a total of 1416 KBytes, which includes the KAT and
MCT code.

Acknowledgments

Thanks to Eli Biham, Ron Rivest, and Eran Tromer for advice and encouragement.

References

[1] E. Biham and O. Dunkelman. A framework for iterative hash functions - HAIFA. Technical
report, Technion Computer Science Department Technical Report CS-2007-15, 2007.

[2] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM, 50(4):506–519, 2003.

[3] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision resistant.
In ICALP (2), pages 144–155, 2006.

[4] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: a modest proposal for
FFT hashing. In FSE, 2008.

[5] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In
International workshop on practice and theory in public key cryptography - PKC 2008, volume
4939 of Lecture Notes in Computer Science, pages 162–179, Barcelona, Spain, March 2008.
Springer.

14

[6] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In Ran Canetti, editor, Theory of cryptography conference - Proceedings of TCC
2008, volume 4948 of Lecture Notes in Computer Science, pages 37–54, New York, NY, USA,
March 2008. Springer.

[7] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
Computational Complexity, 16(4):365–411, 2007. (Preliminary version in FOCS 2002).

[8] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In TCC, 2006.

[9] C. Peikert and A. Rosen. Lattices that admit logarithmic worst-case to average-case connection
factors. In STOC, 2007.

[10] D. Wagner. A generalized birthday problem. In CRYPTO, pages 288–303, 2002.

15

A Pseudocode

A.1 SWIFFTX Compression Function

Input: Binary string x of length 2048.
Output: Binary string z of length 520.
1: Read the input x as x0x1 . . .x31, where xi are bit-strings of length 64.
2: for j = 0 to 2 do
3: [z0,j , z1,j , . . . , z64,j] ← ConvertToBytes(SWIFFT(32,x0, . . . ,x31,Aj))
4: for i = 0 to 64 do
5: zi,j ← SBox[zi,j]
6: end for
7: end for
8: r← z0,0||z0,1|| . . . ||z0,63||z1,0||z1,1|| . . . ||z1,63||z2,0||z2,1|| . . . ||z2,63||z0,64||z1,64||z2,64||(SBox[0])5

9: Treat r as a bit-string (i.e. convert every byte zi,j and the five bytes (SBox[0])5 to their binary
representation)

10: Read the 1600 bit-string r as x0x1 . . .x24 where, xi are bit-strings of length 64.
11: [z0, z1, . . . , z64] ← ConvertToBytes(SWIFFT(25,x0, . . . ,x24,A0))
12: z← z0||z1|| . . . ||z64

13: Treat z as a bit-string (i.e. convert every byte zi to its binary representation)
14: ouptut z

A.2 SWIFFT

Input: Integer k > 0, k strings x0, . . . ,xk−1 ∈ {0, 1}64, and k′ × 64 matrix A where k′ ≥ k.
Output: Numbers z0, . . . , z63, where each zi ∈ Z257.
1: for i = 0 to k − 1 do
2: xi ← IndexBitReversal(xi)
3: end for
4: Interpret each xi as a polynomial of degree at most 63. For example, the string 1100 . . . 001

corresponds to 1 + α + α63.
5: w ← 42
6: Initialize z0, z1, . . . z63 to 0.
7: for i = 0 to k − 1 do
8: for j = 0 to 63 do
9: zj ← zj + A[i][j] · xi(w2j+1) mod 257

10: end for
11: end for
12: output z0, . . . , z63

A.3 Generating the randomizer matrices (GenerateA’s)

Input: Vector p containing the decimal part of π (i.e. p[0] = 1,p[1] = 4,p[2] = 1,p[3] = 5, . . .)
Output: Matrices A0,A1,A2 ∈ Z32×64

257 .

1: Initialize array a to have 6144 entries (6144 = 32 ∗ 64 ∗ 3)
2: ca ← 0

16

3: cp ← 0
4: while ca < 6144 do
5: n ← p[cp] ∗ 100 + p[cp + 1] ∗ 10 + p[cp + 2]
6: if n < 257 ∗ 3 then
7: a[ca] ← n mod 257
8: ca ← ca + 1
9: end if

10: cp ← cp + 3
11: end while
12: for k = 0 to 2 do
13: for i = 0 to 31 do
14: for j = 0 to 63 do
15: Ak[i][j] ← a[2048k + 64i + j]
16: end for
17: end for
18: end for
19: output matrices A0,A1,A2

A.4 The Index-Bit Reversal function (IndexBitReversal)

Input: Binary string x of length 64.
Output: Binary string x′ of length 64.
1: Write x as x0x1 . . . x63 where xi are bits.
2: for i = 0 to 63 do
3: Write i as a 6-bit binary number i0i1i2i3i4i5
4: j ← i5i4i3i2i1i0
5: x′i ← xj

6: end for
7: x′ ← x′0x

′
1 . . . x′63

8: output x′

A.5 The Final Transformation (FinalTransform)

Input: Binary string x of length 520
Output: Binary string z of length 512
1: x← x||056

2: for i = 0 to 8 do
3: Set pi to the polynomial A1[i][0] + A1[i][1]α + A1[i][2]α2 + . . . + A1[i][63]α63.
4: end for
5: Break x into 9 bit-strings x0, . . . ,x8 of length 64 and treat each xi and pi as polynomials of

degree at most 63

6: Compute z←
8∑

i=0
xi · pi where polynomial multiplication is over the ring Z256[α]/(α64 + 1)

7: Treat z = z0 + z1α + z2α2 + . . . + z63α63 as a string of bytes z0||z1||z2|| . . . ||z63

8: Output z

17

A.6 Convert To Bytes function (ConvertToBytes)

Input: z0, . . . , z63, where zi ∈ Z257

Output: z′0, . . . , z
′
64 where z′i ∈ Z256

1: Find the unique elements z′0, . . . , z
′
63, b0, . . . , b7 where z′i ∈ Z256 and bi ∈ {0, 1} such that

for all 0 ≤ k ≤ 7,
7∑

i=0

z8k+i · 257i =
7∑

i=0

z′8k+i · 256i + bk · 2568

2: z′64 ←
7∑

i=0
b0 · 2i

3: output z′0, . . . , z
′
64

B The S-Box

0 1 2 3 4 5 6 7 8 9 a b c d e f
7d d1 70 0b fa 39 18 c3 f3 bb a7 d4 84 25 3b 3c 0
2c 15 69 9a f9 27 fb 02 52 ba a8 4b 20 b5 8b 3a 1
88 8e 26 cb 71 5e af ad 0c ac a1 93 c6 78 ce fc 2
2a 76 17 1f 62 c2 2e 99 11 37 65 40 fd a0 03 c1 3
ca 48 e2 9b 81 e4 1c 01 ec 68 7a 5a 50 f8 0e a3 4
e8 61 2b a2 eb cf 8c 3d b4 95 13 08 46 ab 91 7b 5
ea 55 67 9d dd 29 6a 8f 9f 22 4e f2 57 d2 a9 bd 6
38 16 5f 4c f7 9e 1b 2f 30 c7 41 24 5c bf 05 f6 7
0a 31 a5 45 21 33 6b 6d 6c 86 e1 a4 e6 92 9c df 8
e7 be 28 e3 fe 06 4d 98 80 04 96 36 3e 14 4a 34 9
d3 d5 db 44 cd f5 54 dc 89 09 90 42 87 ff 7e 56 a
5d 59 d7 23 75 19 97 73 83 64 53 a6 1e d8 b0 49 b
3f ef bc 7f 43 f0 c9 72 0f 63 79 2d c0 da 66 c8 c
32 de 47 07 b8 e9 1d c4 85 74 82 cc 60 51 77 0d d
aa 35 ed 58 7c 5b b9 94 6e 8d b1 c5 b7 ee b6 ae e
10 e0 d6 d9 e5 4f f1 12 00 d0 f4 1a 6f 8a b3 b2 f

Figure 7: The S-Box

C The IV

1f, d7, 60, 96, f1, f5, f7, 5d, bb, 3e, 73, d4, 4c, 76, 61, 23, 52, 3b, 7e, b2, 0d, a6, ab, ab, d2, 87, 03,
3b, 9d, 54, 75, 2b, 3c, 4e, 27, 04, 53, 76, e2, 84, 48, 73, ea, fb, e9, f1, c3, fb, 13, 0b, 3d, bb, be, 9a,
59, 95, a7, fd, f4, f9, cc, 9c, 52, 08, a8

18

