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Abstract

We construct public-key cryptosystems that are secure assuming the worst-case hardness of ap-
proximating the minimum distance of n-dimensional lattices to within small poly(n) factors. Prior
cryptosystems with worst-case connections were based either on the shortest vector problem for a special
class of lattices (Ajtai and Dwork, STOC 1997; Regev, J. ACM 2004), or on the conjectured hardness of
lattice problems for quantum algorithms (Regev, STOC 2005).

Our main technical innovation is a reduction from variants of the shortest vector problem to corre-
sponding versions of the “learning with errors” (LWE) problem; previously, only a quantum reduction
of this kind was known. As an additional contribution, we construct a natural chosen ciphertext-secure
cryptosystem having a much simpler description and tighter underlying worst-case approximation factor
than prior schemes based on lattices.
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1 Introduction

The seminal work of Ajtai in 1996 revealed the intriguing possibility of basing cryptography on worst-case
complexity assumptions related to lattices [Ajt04]. (An n-dimensional lattice is a discrete additive subgroup
of Rn.) Since then, basic cryptographic primitives such as one-way functions and collision-resistant hash
functions, along with other notions from “Minicrypt” [Imp95], have been based on the conjectured hardness
of important and well-studied lattice problems. Perhaps the most well-known of these, the shortest vector
problem GapSVP, is to approximate the minimum distance of a lattice, i.e., the length of its shortest nonzero
vector. Another, called the short independent vectors problem SIVP, is (informally) to find a full-rank set of
lattice vectors that are relatively short.

For public-key encryption (and related strong notions from “Cryptomania”), however, the underlying
worst-case lattice assumptions are somewhat more subtle. The ground-breaking cryptosystem of Ajtai and
Dwork [AD97] and subsequent improvements [Reg04, AD07] are based on a special case of the shortest
vector problem, called “unique-SVP,” in which the shortest nonzero vector of the input lattice must be
significantly shorter than all other lattice vectors that are not parallel to it. Compared to other standard
problems, the complexity of unique-SVP is not as well-understood, and there is theoretical and experimental
evidence [Cai98, GN08] that it may not be as hard as problems on general lattices (for matching approximation
factors), due to the extra geometric structure.

A different class of cryptosystems (and the only other known to enjoy worst-case hardness) stem from a
work of Regev [Reg05], who defined a very natural intermediate problem called learning with errors (LWE).
The LWE problem is a generalization of the well-known “learning parity with noise” problem to larger
moduli. It is parameterized by a dimension n, a modulus q, and an error distribution χ over Zq; typically,
one considers a Gaussian-like distribution χ that is relatively concentrated around 0. In the search version
of LWE, the goal is to solve for an unknown vector s ∈ Znq (chosen uniformly at random, say), given any
desired m = poly(n) independent ‘noisy random inner products’

(ai , bi = 〈ai, s〉+ xi) ∈ Znq × Zq, i = 1, . . . ,m,

where each ai ∈ Znq is uniformly random and each xi is drawn from the error distribution χ. In the decision
version, the goal is merely to distinguish between noisy inner products as above and uniformly random
samples from Znq × Zq. It turns out that when the modulus q is prime and bounded by poly(n), the search
and decision variants are equivalent via an elementary reduction [Reg05]. (As we shall see later on, the
hypotheses on q can be relaxed somewhat).

The LWE problem is amazingly versatile. In addition to its first application in a public-key cryptosys-
tem [Reg05], it has provided the foundation for many cryptographic schemes, including chosen ciphertext-
secure cryptosystems [PW08], (hierarchical) identity-based encryption [GPV08, Pei09, CHK09], and oth-
ers [PVW08, AGV09, ACPS09], as well as for hardness of learning results relating to halfspaces [KS06]. We
emphasize that the above cryptographic applications are based on the presumed hardness of decision-LWE.

The main result of [Reg05] is a remarkable connection between lattices and the learning with errors
problem, namely: the search version of LWE is at least as hard as quantumly approximating GapSVP and
SIVP on n-dimensional lattices, in the worst case. (The exact approximation factor is Õ(n/α), where the
error distribution has standard deviation ≈ α · q for parameter α ∈ (0, 1).) In other words, there is a
polynomial-time quantum algorithm (a reduction) that solves standard lattice problems, given access to an
oracle that solves search-LWE. This is an intriguing and nontrivial connection, because despite significant
research efforts, efficient quantum algorithms for the lattice problems in question have yet to be discovered.
Under the plausible conjecture that no such algorithms exist, it follows that LWE is hard and all of the above
cryptographic constructions are secure (even against quantum adversaries).
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Due to the relative novelty of quantum computing, however, it may still be premature to place a great deal
of confidence in such conjectures, and in any case, it is worthwhile to base hardness results and cryptographic
schemes on the weakest possible assumptions. The central question left open in [Reg05] is whether there is a
classical reduction from lattice problems to LWE. More generally, basing a public-key cryptosystem on any
‘conventional’ worst-case lattice assumption has remained an elusive open question.

1.1 Results

Our main result is the first public-key cryptosystem whose security is based on the conjectured worst-case
hardness of approximating the shortest vector problem (GapSVP) on arbitrary lattices. The core technical
innovation is a classical reduction from certain lattice problems to corresponding versions of the learning
with errors problem. In more detail:

• We show that for large moduli q ≥ 2n/2, the search version of LWE is at least as hard as approximating
GapSVP in the worst case, via a classical (probabilistic polynomial-time) reduction. As in [Reg05], the
approximation factor for GapSVP is Õ(n/α), where (roughly speaking) α · q is the standard deviation
of the Gaussian error distribution over Zq.
More generally, our reduction implies that for moduli as small as (say) q ≥ n/α, search-LWE is at least
as hard as classically approximating a novel variant of the shortest vector problem on general lattices
(in the worst case, to within Õ(n/α) factors). The new problem, which we call ζ-to-γ-GapSVP, is
(informally) to approximate the minimum distance to within a γ factor, given a promise that it lies
within a range having gap ζ > γ. This problem is equivalent to standard GapSVP for ζ ≥ 2n/2; for
smaller ζ it is no harder than GapSVP, yet even for ζ = poly(n) it still appears (given the state of the
art in lattice algorithms) to be exponentially hard in the dimension n. In our reduction, the modulus q
grows with ζ, so relying on this (potentially) easier variant of GapSVP permits a smaller choice of q.

• We then consider prior LWE-based schemes, such as public-key cryptosystems [Reg05, PVW08] and
identity-based encryption [GPV08], in the context of the above classical hardness results. Generally
speaking, the security of these schemes is based on the hardness of decision-LWE, which (as mentioned
above) is equivalent to the search version for prime modulus q = poly(n). While this suffices for
basing security on the ζ-to-γ-GapSVP problem for ζ = poly(n), it is not enough to give a connection
to standard GapSVP, due to the large modulus q ≥ 2n/2 needed by our reduction.

Fortunately, it also happens that for Gaussian error distributions, search- and decision-LWE are also
equivalent when q is the product of many distinct small primes [Reg08]. Using this fact and adapting
prior cryptosystems to different values of q, we obtain semantically secure cryptosystems based on the
worst-case hardness of GapSVP and its ζ-to-γ variant.1 See Section 1.2.1 for a detailed summary and
comparison to prior works.

• As an additional contribution, we construct a very natural LWE-based cryptosystem that is secure under
the strong notion of an adaptive chosen-ciphertext attack. This provides an alternative to a recent
construction of Peikert and Waters [PW08], with the advantages of a much simpler description and
analysis, and tighter underlying approximation factors (which are only slightly worse than those of the
semantically secure schemes; see Figure 1).

1A preliminary version of this work [Pei08b] constructed a different style of cryptosystem based directly on the search version of
LWE, which gave a connection to standard GapSVP without needing a search/decision equivalence for large q. However, systems
based on decision-LWE seem more natural and flexible; see Section 1.2.1 for further discussion.
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Cryptosystem Public key Expansion Worst-case problem Approximation

LWE, q = 2O(n) O(n4) O(log n) GapSVP Õ(n2)

Ajtai-Dwork [AD97, AD07] O(n4) O(n) unique-SVP∗ Õ(n2)

Regev [Reg04] O(n4) O(n2) unique-SVP∗ Õ(n1.5)

LWE, q = poly(n) Õ(n2) O(log n)
poly(n)-to-γ-GapSVP

Õ(n1.5)
GapSVP/SIVP (quantum)

old CCA: q = poly(n) [PW08] n2+δ O(log n) same two choices ↑ n5+δ

new CCA: q = poly(n) n2+δ O(log n) same two choices ↑ Õ(n2)

new CCA: q = 2O(n) n4+δ O(log n) GapSVP Õ(n3)

Figure 1: Efficiency measures and underlying problems for lattice-based cryptosystems with worst-case
connections. “Expansion” is the best known amortized ratio of ciphertext length to plaintext length, for
many-bit messages (we omit log n factor improvements that are sometimes possible at the expense of slightly
looser approximation factors). The final three rows describe known chosen ciphertext-secure cryptosystems,
all of which are based on LWE; δ denotes an arbitrary positive constant that varies from entry to entry. ∗See
Section 1.2.1 for discussion of a recently discovered connection between GapSVP and unique-SVP.

Our classical hardness results for LWE are incomparable to the quantum connections demonstrated
by Regev [Reg05]. While our reduction solves the decision problem GapSVP when q is very large (and
progressively easier variants of GapSVP for smaller values of q), Regev’s reduction approximates both the
search problem SIVP as well as GapSVP for small q, but using the extra power of quantum computation.

1.2 Discussion

1.2.1 Efficiency, Approximation Factors, and Prior Cryptosystems

In adapting prior LWE-based (semantically secure) cryptosystems [Reg05, PVW08, GPV08] to our hardness
results, the modulus q is the main parameter governing efficiency, as well as the underlying worst-case
problem and approximation factor. In all cases, the public key size is O(n2 log2 q), and the amortized
plaintext-to-ciphertext expansion factor can be made as small as O(log n) (or even O(1), at the expense
of slightly stronger assumptions [KTX07, PVW08]). The underlying worst-case approximation factor for
GapSVP (or its ζ-to-γ variant) is γ = Õ(n1.5

√
log q). Figure 1 summarizes the efficiency and underlying

problems for LWE-based cryptosystems (for selected interesting values of q) and those based on the unique-
SVP problem [AD97, Reg04, AD07].

Using a main component of our reduction and several additional ideas, Lyubashevsky and Miccian-
cio [LM09] recently showed that the unique-SVP and GapSVP problems are actually equivalent, up to
an O(

√
n/ log n) factor loss in the approximation factor. This implies that prior cryptosystems based on

unique-SVP [AD97, Reg04, AD07] are also secure under the worst-case hardness of GapSVP, with a Θ̃(
√
n)

relaxation in the underlying approximation factor. Considering the top three lines of Figure 1, we see that all
these systems are therefore nearly identical with respect to key size and security, though LWE-based schemes
enjoy the ‘best of all worlds’ with respect to approximation and expansion factors.
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A preliminary version of this work [Pei08b] also included a more technical reduction showing that partic-
ular bits of the LWE secret s are ‘hard-core’ (pseudorandom). The purpose was to construct cryptosystems
(enjoying both semantic and chosen-ciphertext security) based on the search version of LWE, due to the lack
of a search/decision equivalence for large q at the time. With such an equivalence now in hand (for q of a
certain form), it is more convenient and natural to base cryptosystems on decision-LWE, and we consider the
search-based cryptosystems obsolete.

1.2.2 Open Problems

Our core reduction from lattice problems to LWE is non-adaptive (all queries to the LWE oracle can be
prepared in advance), and seems to be limited to solving variants of the decision version GapSVP of the
shortest vector problem. In contrast, the quantum reduction of [Reg05] and prior classical reductions for
Minicrypt primitives (e.g., [Ajt04, MR07]) are iterative. That is, they work by adaptively using their oracles
to find shorter and shorter lattice vectors, which also lets them approximate search problems such as SIVP. A
key question that remains open is whether a classical, iterative reduction exists for LWE.

It would be very interesting to study the complexity of the new ζ-to-γ variant of GapSVP (and other
decision problems), in which a gap of intermediate quality is promised, and a tighter approximation is desired.
For example, are such problems NP-hard for any nontrivial values of ζ? Are there reductions from larger to
smaller values of ζ , possibly by trading off against γ? In the other direction, are there algorithms that perform
better as ζ decreases toward γ?

1.3 Technical Overview

1.3.1 Background

We start by giving a brief, high-level description of the common approach underlying prior cryptosystems
having worst-case connections [AD97, Reg04, Reg05, AD07]. These works consider two types of probability
distributions over some domain: the uniform distribution, and distributions that are highly concentrated, or
‘lumpy,’ over certain parts of the domain. The two types of distributions are used in the construction and
analysis of public-key cryptosystems, the details of which are not relevant at this point.

The heart of each work is a reduction from solving some worst-case lattice problem to distinguishing
between the two types of distributions (uniform and lumpy). In order to guarantee that the reduction produces
the prescribed kind of lumpy distributions, it has so far been necessary for the input to obey some kind of
geometric constraint during some phase of the reduction. For instance, in the work of Ajtai and Dwork and
its improvements [AD97, Reg04, AD07], the input is a lattice that must have a ‘unique’ shortest vector.

Regev’s quantum reduction for LWE [Reg05] is more subtle, and because we rely on one of its components,
we describe it in more detail. The reduction has two parts that alternately feed back to each other. The first
is entirely classical (non-quantum), and has the following form: given access to an LWE oracle and many
lattice points drawn from a certain distribution, it solves a bounded-distance decoding (BDD) problem to
within a certain radius. The goal of the BDD problem is to find the unique lattice vector that is closest to a
given target point, under the promise that the target is within some small fraction of the lattice’s minimum
distance. (This promise is the geometric constraint imposed by the reduction, alluded to earlier.) The second
component of the reduction is quantum, and uses an oracle for the BDD problem to sample lattice points
according to a more-concentrated distribution. These samples are then fed back to the first component of the
reduction to solve BDD for a larger decoding radius, and so on.
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The main obstacle to obtaining a purely classical reduction seems to be in making use of an oracle for
the BDD problem. Quoting [Reg05], “. . . it seems to us that the only way to generate inputs to the oracle
is the following: somehow choose a lattice point y and let x = y + z for some perturbation vector z of
length at most d [a small fraction of the minimum distance]. Clearly, on input x the oracle outputs y. But
this is useless since we already know y!” In contrast, Regev’s quantum reduction uses the BDD oracle to
uncompute y from x, which turns out to be very powerful.

1.3.2 Our Approach

Briefly stated, we find a way to use a BDD oracle to solve a lattice problem, classically. The main idea is to
imagine, as a complementary case, a lattice whose minimum distance is significantly less than the decoding
radius d that the oracle handles. If the reduction generates a point x = y + z as described above, then the
original lattice point y is statistically hidden from the oracle. Of course, this process does not result in a valid
instance of the BDD problem (and the subsequent reduction will not produce valid LWE samples), but this
is of no consequence — no matter what the BDD oracle does, it must fail to guess y with some noticeable
probability. On the other hand, when the minimum distance is large enough relative to d, the oracle is obliged
to return y with overwhelming probability. The reduction can therefore distinguish between lattices having
small and large minimum distance, thereby solving GapSVP.

We note that this style of argument is exactly the main idea behind the Arthur-Merlin protocol for
coGapSVP of Goldreich and Goldwasser [GG00]. In effect, our reduction and the BDD oracle play the
roles of the verifier and unbounded prover, respectively, in their protocol. To our knowledge, this is the
first use of the technique in a lattice reduction; prior works (e.g., [Ajt04, MR07, Reg05]) solve GapSVP
by obtaining relatively short vectors in the dual lattice. The approach is also closely related to the concept
of lossy (trapdoor) functions [PW08], which influence our new chosen ciphertext-secure cryptosystems,
described below.

The (simplified) discussion so far has ignored one very important issue: the classical reduction from BDD
to LWE requires not only an LWE oracle, but also several lattice points drawn from a certain Gaussian-like
distribution. In [Reg05], these points are iteratively produced by the quantum component of the reduction,
which is unavailable in the classical setting (this is why we lose the iterative structure of the overall reduction).
Instead, our reduction employs a Gaussian sampling algorithm for lattices, recently developed in [GPV08],
using the ‘best available’ basis for the input lattice. With an LLL-reduced basis [LLL82] (which may always
be computed in polynomial time), the quality of the resulting distribution induces a large modulus q = 2O(n)

for the LWE problem. For the ζ-to-γ variant of GapSVP, the standard deviation of the Gaussian distribution
decreases with ζ, and we can use a correspondingly smaller value of q. (We note that the Gaussian sampling
algorithm from [GPV08] is especially important in this case to get a tight connection between ζ and q.)

1.3.3 Chosen Ciphertext-Secure Cryptosystems

Here we summarize the ideas behind a new, very natural cryptosystem that enjoys CCA-security, i.e., security
under active chosen-ciphertext attacks. At its heart is a collection of injective trapdoor functions based on
LWE. This collection was defined in the recent work of Gentry, Peikert, and Vaikuntanathan [GPV08], and is
closely related to an earlier proposal by Goldreich, Goldwasser, and Halevi [GGH97].

The description of a function gA from the collection is a matrix A ∈ Zn×mq made up of m uniformly
random and independent vectors ai ∈ Znq , for some large enough m. The function gA is typically evaluated
on a random input, which comes in two parts: a uniformly random s ∈ Znq , and an error vector x ∈ Zmq
whose entries xi are chosen independently from the error distribution χ of the LWE problem. The function is
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defined simply as
b = gA(s,x) = Ats + x ∈ Zmq .

Note that each entry of the output vector is bi = 〈ai, s〉+ xi, so inverting gA (respectively, distinguishing its
output from uniform) is syntactically equivalent to solving search-LWE (resp., decision-LWE) given m noisy
inner products. Moreover, as shown in [GPV08], the function gA has a trapdoor with which the input s may
be recovered efficiently from b (when χ is sufficiently concentrated). Concretely, the trapdoor is a ‘short’
basis for a certain lattice defined by A, which can be generated so that A has the required (nearly) uniform
distribution [Ajt99, AP09].

Our CCA-secure scheme relies on the recent witness-recovering decryption approach of [PW08], some
additional perspectives due to Rosen and Segev [RS09], and a few more techniques that are particular to the
use of LWE in this application. The key observation is that k independent functions gA1 , gA2 , . . . , gAk

remain
pseudorandom even when evaluated on the same input s and independent error vectors x1, . . . ,xk, because
the output simply consists of k ·m samples from the LWE distribution. (This fact was also independently
observed by Goldwasser and Vaikuntanathan.) For injective trapdoor functions, one-wayness under such
“correlated inputs” immediately yields chosen-ciphertext security (for short messages) [RS09]. However,
the precise meaning of “injective” turns out to be quite subtle in this context, and the LWE-based trapdoor
functions must be carefully modified to satisfy the necessary conditions for the security proof. In addition,
we exploit the pseudorandomness of LWE to handle any desired message length efficiently.

1.4 Organization

The remainder of the paper is organized as follows. In Section 2 we recall notation, concepts, and basic
results related to lattices and the learning with errors problem. In Section 3 we give our main reduction from
the shortest vector problem to the learning with errors problem, and relate different versions of LWE to each
other. In Section 4 we give cryptographic applications of LWE, including a new chosen ciphertext-secure
cryptosystem.

2 Preliminaries

We denote the set of real numbers by R and the set of integers by Z. For a positive integer n, define
[n] = {1, . . . , n}. For real x, bxe denotes the integer closest to x with ties broken upward (e.g., b1.5e = 2),
and we extend b·e coordinate-wise to real vectors. We extend any real function f(·) to any countable set A
by defining f(A) =

∑
x∈A f(x).

The main security parameter throughout the paper is n, and all other quantities are implicitly functions
of n. We use standard O(·), o(·), Ω(·), and ω(·) notation to describe the growth of functions, and write
f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We let poly(n) denote an unspecified
polynomial function f(n) = O(nc) for some constant c. A function f(n) is negligible, written negl(n), if
f(n) = o(n−c) for every constant c. We say that a probability is overwhelming if it is 1− negl(n).

Vector spaces. By convention, all vectors are in column form and are named using bold lower-case letters
(e.g., x), and xi denotes the ith component of x. Matrices are named using bold capital letters (e.g., X),
and xi denotes the ith column vector of X. We identify a matrix X with the (ordered) set of its column
vectors, and define ‖X‖ = maxj‖xj‖. For a set S ⊆ Rn, point x ∈ Rn, and scalar c ∈ R, we define
S + x = {y + x : y ∈ S} and cS = {cy : y ∈ S}.
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The Euclidean (or `2) norm on Rn is ‖x‖ =
√∑

i x
2
i . The open unit ball Bn ⊂ Rn (in the `2 norm) is

defined as Bn = {x ∈ Rn : ‖x‖ < 1}.
For any (ordered) set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, S̃ = {s̃1, . . . , s̃n} denotes

its Gram-Schmidt orthogonalization, defined iteratively as follows: s̃1 = s1, and for each i = 2, . . . , n, s̃i
is the orthogonal projection of si onto span⊥(s1, . . . , si−1). In matrix notation, S decomposes uniquely as
S = QU for some orthogonal matrix Q and upper-triangular matrix U with positive diagonal entries, and
s̃i = ui,i · qi.

In the context of duality it is often convenient to orthogonalize in the reverse order, defining s̃n = sn and
each s̃i as the orthogonal projection of si onto span⊥(si+1, . . . , sn) for i = n− 1, . . . , 1. In matrix notation,
S = QL where Q is again an orthogonal matrix and L is lower triangular with positive diagonal entries, and
s̃i = li,i · qi. In this work, by default we orthogonalize in forward order unless specified otherwise.

Probability. The statistical distance between two distributions X and Y over D (or two random variables
having those distributions) is defined as ∆(X,Y ) = maxA⊆D|fX(A)− fY (A)|. Statistical distance is
a metric on probability distributions; in particular, it obeys the triangle inequality. Applying a (possibly
randomized) function g cannot increase the statistical distance: ∆(g(X), g(Y )) ≤ ∆(X,Y ). The uniform
distribution over D is denoted U(D).

For any positive integer n and real r > 0, define the n-dimensional Gaussian function ρ(n)
r : Rn → R

with parameter r as
ρ(n)
r (x) = exp(−π(‖x‖/r)2).

(We often omit n when it is clear from context.) The total measure associated to ρr is
∫

Rn ρr(x) dx = rn, so
we can define a continuous Gaussian probability distribution Dr over Rn by its density function

Dr(x) = ρr(x)/rn.

The Gaussian distribution Dr is spherically symmetric, and its projection onto any unit vector is D(1)
r . For

x ∈ R distributed according to D(1)
r and any t ≥ 1, a standard tail inequality is that |x| < r · t except with

probability at most exp(−πt2). Moreover, for x ∈ Rn distributed according to D(n)
r , ‖x‖ ≤ r ·

√
m except

with probability at most 2−n.
It is possible to sample efficiently from Dr to within any desired level of precision. It is also possible

to sample efficiently from U(Bn); see, e.g., [GG00]. For simplicity, we use real numbers in this work and
assume that we can sample from Dn

r and U(Bn) exactly; all the arguments can be made rigorous by using a
sufficiently large (polynomial) number of bits of precision.

We need the following lemma, which says that for two n-dimensional balls whose centers are relatively
close, the uniform distributions over the balls have statistical distance bounded away from 1.

Lemma 2.1 ([GG00]). For any constants c, d > 0 and any z ∈ Rn with ‖z‖ ≤ d and d′ = d ·
√
n/(c log n),

we have
∆(U(d′ · Bn), U(z + d′ · Bn)) ≤ 1− 1/ poly(n).

2.1 Learning with Errors

Let T = R/Z be the additive group on the real interval [0, 1) with modulo 1 addition. For positive integers
n and q ≥ 2, a vector s ∈ Znq , and a probability distribution φ on T, define As,φ to be the distribution on
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Znq × T obtained by choosing a vector a ∈ Znq uniformly at random, choosing an error term e ∈ T according
to φ, and outputting (a, 〈a, s〉/q + e), where the addition is performed in T.

We are primarily concerned with error distributions φ over T that are derived from Gaussians. For α > 0,
define Ψα to be the distribution on T obtained by drawing a sample from D

(1)
α and reducing it modulo 1.

Definition 2.2. For an integer function q = q(n) and an error distribution φ on T, the goal of the learning
with errors problem LWEq,φ in n dimensions is, given access to any desired poly(n) number of samples from
As,φ for some arbitrary s ∈ Znq , to find s (with overwhelming probability).

Remark 2.3. The above definition of LWE has a ‘worst-case’ flavor, in that the vector s ∈ Znq is arbitrary
and must be found with overwhelming probability. Using standard amplification and random self-reduction
techniques (see, e.g., [Reg05, Lemma 4.1 and Lemma 3.6]), this worst-case form is equivalent (up to a
polynomial factor in the number of samples consumed) to an ‘average-case’ version in which the goal is to
find a uniformly random s ∈ Znq with any non-negligible probability given As,φ, where the probability is
taken over all the randomness in the experiment.

2.2 Lattices

An n-dimensional lattice is a discrete additive subgroup of Rn. Equivalently, let B = {b1, . . . ,bn} ⊂ Rn

consist of n linearly independent vectors; the lattice Λ generated by the basis B is

Λ = L(B) =
{
Bz =

∑
i∈[n]

zi · bi : z ∈ Zn
}
.

(Technically, this is the definition of a full-rank lattice, which is all we are concerned with in this work.) The
origin-centered fundamental parallelepiped P1/2(B) of a basis B is the half-open region defined as

P1/2(B) =
{
Bc =

∑
i∈[n]

ci · bi : c ∈ [−1
2 ,

1
2)n
}
⊂ Rn.

For a point w ∈ Rn and basis B, we write x = w mod B to denote the unique x ∈ P1/2(B) such
that w − x ∈ L(B). Given input B and w, the value x = w mod B may be computed efficiently as
x = B(B−1w − bB−1we).

The minimum distance λ1(Λ) of a lattice Λ (by default, in the `2 norm) is the minimum distance between
any two distinct lattice points, or equivalently, the length of the shortest nonzero lattice vector:

λ1(Λ) = min
x 6=y∈Λ

‖x− y‖ = min
0 6=x∈Λ

‖x‖.

It is well-known and easy to show that for any basis B of Λ, we have

λ1(Λ) ≥ min
i
‖b̃i‖.

The dual lattice of Λ, denoted Λ∗, is defined as

Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.

By symmetry, it can be seen that (Λ∗)∗ = Λ. If B is a basis of Λ, then the dual basis B∗ = (B−1)t is in fact
a basis of Λ∗. The following simple fact relates the Gram-Schmidt orthogonalizations of a basis and its dual;
we include a brief proof for completeness.
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Lemma 2.4. Let B be an (ordered) basis, and let D = B∗ = B−t be its dual basis. Then d̃i = b̃i/‖b̃i‖2 for
all i ∈ [n], where B (respectively, D) is orthogonalized in forward (respectively, reverse) order. In particular,
‖d̃i‖ = 1/‖b̃i‖.

Proof. We may write the Gram-Schmidt decomposition of B as B = QU for some orthogonal matrix Q
and upper-triangular matrix U with positive diagonal entries, so b̃i = ui,i · qi and b̃i/‖b̃i‖2 = qi/ui,i.

Observe that D = B−t = Q−t ·U−t = Q ·U−t, because Q−t = Q. Note that U−t is lower triangular
and its diagonal entries (in order) are u−1

i,i > 0. Therefore, D = Q · U−t is indeed the Gram-Schmidt

decomposition (in reverse order) of the dual basis D, and d̃i = qi/ui,i as desired.

For our chosen ciphertext-secure cryptosystem we recall two related ‘decoding’ algorithms on lattices,
originally due to Babai [Bab86]. The first is a simple rounding algorithm that, given a lattice basis B ⊂ Rn×n

and point x ∈ Rn, outputs the lattice point v = B · bB−1xe ∈ L(B). It is clear that the set of points in Rn

for which this algorithm outputs a particular v ∈ L(B) is exactly v + P1/2(B).
The second algorithm is usually known as the “nearest-plane” algorithm. For simplicity we assume that

the given basis is orthogonalized in forward order; otherwise, the algorithm’s main loop should be reordered
correspondingly. The algorithm works as follows: given a lattice basis B and point x, let y← x, and then
for i = n, . . . , 1, let y← y − cibj where

ci = b〈y, b̃i〉/〈b̃i, b̃i〉e ∈ Z.

Finally, output x − y. The set of points in Rn for which this algorithm outputs a particular v ∈ L(B) is
exactly v + P1/2(B̃).

2.2.1 Computational Problems on Lattices

We are mainly interested in variants of the shortest vector problem on lattices.

Definition 2.5 (Shortest Vector Problem). For a function γ(n) ≥ 1, an input to the shortest vector problem
GapSVPγ is a pair (B, d), where B is a basis of an n-dimensional lattice Λ = L(B) and d > 0 is a real
number. It is a YES instance if λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

Remark 2.6. Given an oracle for GapSVPγ , the minimum distance of a lattice can be efficiently approximated
to within a factor of (say) 2γ by binary search on the value d.

We now define a generalization of the shortest vector problem, which is actually the problem upon which
our main worst- to average-case reduction is based.

Definition 2.7 (ζ-to-γ-GapSVP). For functions ζ(n) ≥ γ(n) ≥ 1, an input to ζ-to-γ shortest vector problem
GapSVPζ,γ is a pair (B, d), where:

1. B is a basis of an n-dimensional lattice Λ = L(B) for which λ1(Λ) ≤ ζ(n),

2. mini‖b̃i‖ ≥ 1, and

3. 1 ≤ d ≤ ζ(n)/γ(n).

It is a YES instance if λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

Remark 2.8. A few notes about Definition 2.7 are in order.

9



1. The second condition min‖b̃i‖ ≥ 1 implies that λ1(Λ) ≥ 1, and is without loss of generality by
scaling the basis B.

2. Similarly, the last condition 1 ≤ d ≤ ζ(n)/γ(n) is also without loss of generality, because the instance
is trivially solvable when d lies outside that range.

3. The first condition is therefore the interesting one. First observe that for any ζ(n) ≥ 2n/2, GapSVPζ,γ is
equivalent to the standard GapSVPγ problem: an arbitrary basis B′ of Λ can be reduced in polynomial
time using the LLL algorithm [LLL82] to another basis B of Λ so that

λ1(Λ) ≤ ‖b1‖ ≤ 2n/2 ·min
i
‖b̃i‖,

which can then be scaled to make mini‖b̃i‖ = 1.

For functions ζ(n) � 2n/2, particularly ζ(n) = poly(n), the first condition is more interesting.
The nature of the problem is to approximate the minimum distance to within a gap γ(n), given a
promise that it lies within a looser range having gap ζ(n). The promise could be made efficiently
verifiable by restricting to ‘high quality’ bases that actually contain a vector of length at most ζ(n),
though this is not necessary for our reduction and could potentially make the problem easier. To our
knowledge, none of the lattice algorithms in the literature (e.g., [AKS01]) are able to solve GapSVPζ,γ
for γ(n) < ζ(n) = poly(n) in time better than 2Ω(n), even when the promise is efficiently verifiable,
and even for such a tight choice of parameters as ζ(n) = 2 · γ(n).

2.2.2 Gaussians on Lattices

Micciancio and Regev [MR07] introduced a lattice quantity called the smoothing parameter, and related it to
various lattice quantities.

Definition 2.9. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is
defined to be the smallest r such that ρ1/r(Λ∗\{0}) ≤ ε.

Note that the smoothing parameter scales with the lattice: for any real c 6= 0, ηε(c · Λ) = c · ηε(Λ).

Lemma 2.10 ([MR07, Lemma 3.2]). For any n-dimensional lattice Λ, we have η2−n(Λ) ≤
√
n/λ1(Λ∗).

The following bound on the smoothing parameter of the integer lattice Z is a special case of [MR07,
Lemma 3.3].

Lemma 2.11. For any f(n) = ω(
√

log n), there exists a negligible ε = ε(n) such that ηε(Z) ≤ f(n).

When the parameter r exceeds the smoothing parameter of a lattice Λ, the Gaussian measure ρr associated
with any translate (coset) of Λ is essentially unchanged:

Lemma 2.12 ([MR07, implicit in Lemma 4.4]). For any n-dimensional lattice Λ, any ε ∈ (0, 1), r ≥ ηε(Λ),
and c ∈ Rn, we have

ρr(Λ + c) ∈ [1−ε
1+ε , 1] · ρr(Λ).
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For an n-dimensional lattice Λ and real r > 0, define the discrete Gaussian probability distribution over
Λ with parameter r (and centered at zero) as

DΛ,r(x) =
ρr(x)
ρr(Λ)

∀ x ∈ Λ.

(Note that the denominator in the above expression is merely a finite normalization factor.)
Our reduction uses, as a subroutine, an efficient algorithm that samples from discrete Gaussian dis-

tributions. (The Gram-Schmidt orthogonalization used in the algorithm may be performed in any known
order.)

Proposition 2.13 ([GPV08, Theorem 4.1]). There exists a probabilistic polynomial-time algorithm that,
given any basis B of an n-dimensional lattice Λ and any r ≥ maxi‖b̃i‖ · ω(

√
log n), outputs a sample from

a distribution that is within negl(n) statistical distance of DΛ,r.

3 Classical Hardness of LWE

In this section we show that certain versions of the learning with errors problem are at least as hard as
classically solving corresponding versions of the shortest vector problem.

3.1 Main Theorem

Theorem 3.1. Let α = α(n) ∈ (0, 1) and γ = γ(n) ≥ n/(α
√

log n). Let ζ = ζ(n) ≥ γ(n) and
q = q(n) ≥ ζ(n) · ω(

√
log n/n).

There is a probabilistic polynomial-time reduction from solving GapSVPζ,γ in the worst case (with
overwhelming probability) to solving LWEq,Ψα using poly(n) samples.

Remark 3.2. GapSVPζ,γ is potentially hard in the worst case whenever ζ > 2γ, so Theorem 3.1 allows for a
choice of q as small as

q > 2γ · ω(
√

log n/n) = ω(
√
n/α).

Remark 3.3. Using bounds from [Pei08a] on the smoothing parameter in terms of other `p norms, Theorem 3.1
can easily be generalized to work for GapSVPζ,γ in any `p norm, 2 < p ≤ ∞, for essentially the same
approximation γ(n) (up to O(log n) factors).

3.1.1 Regev’s Classical Reduction

We rely crucially on the classical component of Regev’s reduction, restated here. Briefly stated, this
component reduces a (worst-case) bounded-distance decoding problem to the LWE problem.

Proposition 3.4 ([Reg05, Lemma 3.4]). Let ε = ε(n) be a negligible function, q = q(n) ≥ 2 be an integer,
α = α(n) ∈ (0, 1) and φ = Ψα. There is a classical probabilistic polynomial-time reduction RW,D(B, r,x)
that, given as input any basis B of an n-dimensional lattice Λ = L(B), any real r ≥

√
2q · ηε(Λ∗), and any

target point x within distance αq/(
√

2r) < λ1(Λ)/2 of Λ, and given access to

1. an oracle W that solves LWEq,φ using poly(n) samples, and

2. an oracle D that generates samples from DΛ∗,r,

11



finds (the unique) v ∈ Λ closest to x with overwhelming probability.

Remark 3.5. Because they are particularly important for the proof of our main theorem, we want to stress the
effect of the main parameters α, q, and r on the decoding radius αq/(

√
2r) that the reduction R can handle.

The parameters q and r trade off against each other so that if, for example, the oracle D samples from a
very wide discrete Gaussian distribution (i.e., r is large), a correspondingly larger value of q can compensate
without hurting the decoding radius. The LWE noise parameter α also plays a role, but because it is typically
the inverse of some small polynomial, its effect on the decoding radius (or on q) is generally mild.

For self-containment, we give a brief description of the reduction R described in Proposition 3.4
(however, this is not required to understand the proof of our main theorem and may be safely skipped). Let
s = B−1v mod q be the coefficient vector of the v ∈ Λ closest to x, reduced modulo q. To generate a
sample from the LWE distribution As,φ, the reduction uses its oracle D to obtain a sample y← DΛ∗,r, lets
a = (B∗)−1y = Bty mod q, and outputs

(a , b = 〈y,x〉/q + e) ∈ Znq × T,

where e ∈ R is an additional small error term chosen from a continuous Gaussian. Finally, the oracle W is
invoked on these samples to solve for s = B−1v mod q, then the entire vector v can be obtained by iterating
the procedure as described in [Reg05, Lemma 3.5].

Omitting many details, the above procedure faithfully simulates the LWE distributionAs,φ for two reasons:
first, a ∈ Znq is essentially uniform because r ≥ q · ηε(Λ); second, because x and v are relatively close and y
is relatively short (and Gaussian),

〈y,x〉 ≈ 〈y,v〉 = 〈Bty,B−1v〉 = 〈a, s〉 mod q.

Of course, the error distribution in the 〈y,x〉 term above must be analyzed precisely, which requires some
care; we refer the reader to [Reg05] for the full details.

3.1.2 Proof of Main Theorem

Conceptually, the reduction described in our main theorem (Theorem 3.1) has two components. The first part
reduces GapSVP to a type of bounded-distance decoding (BDD) problem. The second part reduces BDD to
LWE using the reduction R described in Proposition 3.4, instantiating the oracle D with the discrete Gaussian
sampler described in Proposition 2.13. Due to the additional hypotheses of the GapSVPζ,γ problem that are
needed throughout our reduction, we elect to present these two parts as an integrated whole, but note that the
GapSVP to BDD component has been studied on its own in [LM09].

In a bit more detail, our reduction works as follows: given a lattice Λ, it first perturbs a point v ∈ Λ,
then invokes the reduction R from Proposition 3.4 on the perturbed point, and tests whether R successfully
returns v. The reduction works because when λ1(Λ) is large, R is obliged to return v by hypothesis. On
the other hand, when λ1(Λ) is small, the perturbation information-theoretically hides v from R (in some
precise sense), so R must guess incorrectly with noticeable probability. The behavior of R therefore allows
us to distinguish between these two cases. (In effect, the reduction R may be seen as playing the role of the
unbounded prover in the interactive Arthur-Merlin proof of Goldreich and Goldwasser [GG00].)

Proof of Theorem 3.1. The input to our reduction is an instance of GapSVPζ,γ , i.e., a pair (B, d) where
min‖b̃i‖ ≥ 1, the minimum distance λ1(L(B)) ≤ ζ, and 1 ≤ d ≤ ζ/γ. Let Λ = L(B).

The reduction runs the following procedure some large number N = poly(n) times.
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1. Choose a point w uniformly at random from the ball d′ · Bn where d′ = d ·
√
n/(4 log n), and let

x = w mod B.

2. Invoke the reduction R from Proposition 3.4 on B and x with parameter

r =
q ·
√

2n
γ · d

,

where the oracle D for sampling from DΛ∗,r is implemented by the algorithm from Proposition 2.13
on the reversed dual basis D of B. Let v be R’s output.

If v 6= x−w in any of the N iterations, then accept. Otherwise, reject.
We now analyze the reduction. First recall that maxi‖d̃i‖ = 1/mini‖b̃i‖ ≤ 1, and the parameter

r =
q ·
√

2n
γ · d

≥ q ·
√

2n
ζ

≥ ω(
√

log n)

by hypothesis on d and q, so the algorithm from Proposition 2.13 correctly samples from a distribution that is
within negligible statistical distance of DΛ∗,r.

Now consider the case when (B, d) is a NO instance, i.e., λ1(Λ) > γ · d. Then by Lemma 2.10, we have

ηε(Λ∗) ≤
√
n

γ · d

for ε(n) = 2−n = negl(n). Therefore r ≥
√

2q · ηε(Λ∗) as required by Proposition 3.4. Now because
x−w ∈ Λ, the distance from x to Λ is at most

d′ = d ·
√

n

4 log n
≤ α · γ · d√

4n
=

αq√
2r
,

by hypothesis on γ and the definition of r. Moreover, λ1(Λ) > γ · d > 2d′, so the reduction from
Proposition 3.4 must return v = x−w in each of the iterations (with overwhelming probability), and the
reduction rejects as desired.

Finally, consider the case when (B, d) is a YES instance, i.e., λ1(Λ) ≤ d. Let z ∈ Λ have norm
‖z‖ = λ1(Λ). Consider an alternate experiment in which w is replaced by w′ = z + w for w chosen
uniformly from d′ · Bn, so x′ = w′ mod B and R is invoked on x′. Then by Lemma 2.1 and the fact that
statistical distance cannot increase under any randomized function, we have

Pr[R(x) = x−w] ≤ 1− 1
poly(n) + Pr[R(x′) = x′ −w′]

≤ 2− 1
poly(n) − Pr[R(x′) = x′ −w].

But now notice that x′ = z + w = w mod B, so x′ is distributed identically to x in the real experiment, and
can replace x in the above expression. Rearranging, it follows that Pr[R(x) = x−w] ≤ 1− 1/ poly(n).
Then for a sufficiently large N = poly(n), we have v 6= x−w in at least one iteration and the reduction
accepts, as desired.
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3.2 Variants of LWE

The next two lemmas reduce the worst-case search version of LWE to an average-case decision problem,
which is more useful in cryptographic applications. The search-to-decision reduction in Lemma 3.6 is related
to prior reductions [BFKL93, Reg05], which require the modulus q to be prime and bounded by poly(n).
In contrast, the new reduction works for “smooth” moduli that are the product of distinct (and sufficiently
large) poly(n)-bounded primes. Interestingly, the new reduction applies to the continuous version of LWE
and makes explicit use of a Gaussian error distribution, whereas the prior ones work for arbitrary error
distributions over Zq. (We thank Oded Regev [Reg08] for his contributions to this result.)

Lemma 3.6 (Worst-Case Search to Decision). Let n ≥ 1 be an integer, let α = α(n) ∈ (0, 1) and φ = Ψα,
and let q = q1 · · · qt for distinct primes qj = poly(n) such that qj ≥ ω(

√
log n)/α. There is a probabilistic

polynomial-time reduction from solving LWEq,φ with overwhelming probability to distinguishing between
As,φ and U = U(Znq × T) for arbitrary s ∈ Znq with overwhelming advantage.

Proof. The factorization q1 · · · qt of q may computed efficiently because all the factors qj are bounded by
poly(n). It is enough to give a method for checking whether the ith coordinate si ∈ Zq of s is congruent to
0 modulo qj (for every i ∈ [n] and j ∈ [t]), by the following argument: we can ‘shift’ As,φ into As+t,φ for
any known t ∈ Znq by mapping each sample (a, b) to (a, b+ 〈a, t〉/q). Then given As,φ for unknown s, we
can discover the value of si mod qj for every i, j by shifting si by each residue ti modulo qj , and checking
whether si + ti is 0. (Note that this is efficient because every qj = poly(n)). We can then fully recover each
entry si ∈ Zq via the Chinese remainder theorem.

To check if si = 0 mod qj , consider the following transformation: given a pair (a, b) ∈ Znq × T,
randomize ai modulo qj , leaving its value modulo q/qj the same. That is, let a′ = a + ei · r · (q/qj) for
some uniformly random r ∈ Zqj (where ei ∈ Znq is the ith standard basis vector), and let b′ = b. Observe
that if si = 0 mod qj , the transformation maps As,φ to itself.

Now suppose that si 6= 0 mod qj . Clearly a′ ∈ Znq is uniformly random; moreover, conditioned on any
fixed value of a′, the value r ∈ Zqj is also uniformly random. Now by construction, b′ is of the form

b′ = 〈a′, s〉/q − (si · r)/qj + e ∈ T

for e← φ = Ψα. Because qj is prime, r′ = si · r mod qj is uniformly random in Zqj .
Now consider the probability density function of r′/qj + e ∈ T. The density for any particular z ∈ [0, 1)

is proportional to ρα(Z · 1/qj + z). Because α ≥ ω(
√

log n) · 1/qj ≥ ηε(Z · 1/qj) for some ε = negl(n)
by Lemma 2.11, the distribution of r′/qj + e mod 1 is within negl(n) statistical distance of uniform over
T by Lemma 2.12. Therefore, the transformation maps As,φ to U (up to negligible statistical distance), so
distinguishing between As,φ and U identifies whether si = 0 mod qj , and we are done.

Lemma 3.7 (Worst-Case to Average-Case Decision [Reg05, Lemma 4.1]). Let n, q ≥ 1 be integers and let φ
be an arbitrary distribution on T. There is a probabilistic polynomial-time reduction from distinguishing
between As,φ and U(Znq × T) with overwhelming advantage for arbitrary s ∈ Znq , to distinguishing between
As,φ and U(Znq × T) with non-negligible advantage for uniformly random s ∈ Znq .

Proof. For self-containment we briefly sketch the proof, which is a standard amplification argument: note
that we can randomize the secret s in the LWE distribution As,φ by transforming samples (a, b) ∈ Znq × T
into (a, b+ 〈a, t〉/q) for a uniformly random t ∈ Znq . This transformation also maps the uniform distribution
to itself. Therefore, the distinguishing advantage for a uniformly random s ∈ Znq may be amplified to be
overwhelming for all s.
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4 Public-Key Cryptosystems

In this section we develop public-key encryption schemes that are based on the LWE problem. The remainder
is organized as follows: in Section 4.1 we introduce additional useful notation and recall some necessary
cryptographic definitions and background. In Section 4.2 we briefly consider prior LWE-based cryptosystems
that are secure against passive (eavesdropping) attacks, adapted to our new hardness results. In Section 4.3
we develop a certain family of LWE-based trapdoor functions, which are at the heart of the chosen ciphertext-
secure cryptosystem developed in Section 4.4.

4.1 Notation and Cryptographic Background

In our applications it will be helpful to have some additional notation. For a modulus q′ ≥ 2, let Tq′ ⊂ T be
the additive subgroup of integer multiples of 1

q′ , i.e., Tq′ = {0, 1
q′ , . . . ,

q′−1
q′ } with modulo-1 addition. For

any x ∈ T, let bxeq′ ∈ Tq′ denote the element of Tq′ closest to x modulo 1, i.e., bxeq′ = bx · q′e/q′ mod 1.
Extend b·eq′ to vectors in the natural way.

For any distribution D over Znq × T, we can define the discretized distribution D̄ over Znq × Tq′ , which
is obtained by drawing a sample (a, b) from D and outputting (a, b̄ = bbeq′). Clearly, D̄ is uniform if the
original D is uniform (over Znq × T). Therefore, the discretized distribution Ās,φ is pseudorandom over
Znq × Tq′ if the distribution As,φ is pseudorandom over Znq × T.

We now recall some standard cryptographic concepts and definitions. For all schemes the main cryp-
tographic security parameter is n, and all algorithms (including the adversary) are implicitly given the
security parameter n in unary. For a (possibly interactive) algorithm A having binary output, we define its
distinguishing advantage between two distributions X and Y to be |Pr[A(X ) = 1]− Pr[A(Y) = 1]|.

We present our encryption schemes in the framework of key encapsulation, which simplifies the definitions
and allows for more modular constructions. (For example, a KEM is often useful in “hybrid” encryption
schemes that incorporate both asymmetric- and symmetric-key components.)

Definition 4.1 (Key-Encapsulation Mechanism (KEM)). A KEM for keys of length ` = `(n) is a triple of
probabilistic polynomial-time algorithms as follows:

• Gen() outputs a public key pk and a secret key sk.

• Encaps(pk) outputs a key κ ∈ {0, 1}` and its encapsulation τ ∈ {0, 1}∗.

• Decaps(sk, τ) outputs a key κ.

The correctness requirement is: for (pk, sk) ← Gen() and (κ, τ) ← Encaps(pk), Decaps(sk, τ) should
output κ with overwhelming probability (over all the randomness in the experiment).

We consider two notions of security for a KEM. The first is indistinguishability under a passive (chosen-
plaintext) attack, often called ind-cpa security. The attack is defined as follows: generate (pk, sk)← Gen(),
(κ∗, τ∗) ← Encaps(pk), and κ′ ← {0, 1}` (chosen uniformly and independently of the other values). The
advantage of an adversary A in the attack is defined as its distinguishing advantage between (pk, τ∗, κ∗)
and (pk, τ∗, κ′). We say that a KEM scheme is ind-cpa-secure if for every probabilistic polynomial-time
adversary A, its advantage in the attack is negl(n).

The second, much stronger notion of security is indistinguishability under an active (chosen-ciphertext)
attack, usually called ind-cca security [NY90, RS91]. The attack is defined as follows: generate (pk, sk)←
Gen(), (κ∗, τ∗)← Encaps(pk), and κ′ ← {0, 1}`. The advantage of an adversary A in the attack is defined
as its distinguishing advantage between (pk, τ∗, κ∗) and (pk, τ∗, κ′), where A is also given access to an
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oracle that computes Decaps(sk, ·) on all inputs except the challenge string τ∗ (for which the oracle simply
returns ⊥). We say that a KEM is ind-cca-secure if for every probabilistic polynomial-time adversary A, its
advantage in the attack is negl(n).

Definition 4.2 (Injective Trapdoor Functions). A family {ga : D → R} of (probabilistic) injective trapdoor
functions from a domain D to range R is given by a triple TDF = (Gen,Eval, Invert) of polynomial-time
algorithms as follows:

• Gen() is a randomized algorithm that outputs a function description a and trapdoor t.

• Eval(a, s;x) is a randomized algorithm that evaluates the (randomized) function ga(s;x) on input
s ∈ D with randomness x (drawn from some efficiently sampleable distribution), outputting b ∈ R.
(We often omit the randomness argument x from Eval(a, s) and ga(s), taking it to be implicit.)

• Invert(t, b) is a deterministic inversion algorithm that outputs some s ∈ D.

(To be completely formal, we consider an ensemble of families {ga : Dn → Rn}n∈N indexed by the security
parameter n, which is implicitly provided in unary to all algorithms.)

The correctness requirement is that for any s ∈ D, and for (a, t)← Gen(), b← Eval(a, s), Invert(t, b)
should output s with overwhelming probability (over all the randomness of the experiment). One security
requirement is that (informally) the function ga(·) should be one-way (hard to invert) without knowledge of t;
we omit a precise security definition because our application will exploit some additional properties of the
particular construction.

Definition 4.3 (Signature Scheme). A signature scheme SS is a triple of probabilistic polynomial-time
algorithms as follows:

• Gen() outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given sk and a message µ ∈ {0, 1}∗, outputs a signature σ ∈ {0, 1}∗.

• Ver(vk, µ, σ) either accepts or rejects the signature σ for message µ.

The correctness requirement is: for any message µ ∈ M, and for (vk, sk) ← Gen(), σ ← Sign(sk, µ),
Ver(vk, µ, σ) should accept with overwhelming probability (over all the randomness of the experiment).

The notion of security we require for our ind-cca application is strong existential unforgeability under a
one-time chosen-message attack, or seu-1cma security. The attack is defined as follows: generate (vk, sk)←
Gen() and give vk to the adversary A, which then outputs a message µ. Generate σ ← Sign(sk, µ) and
give σ to A. The advantage of A in the attack is the probability that it outputs some (µ∗, σ∗) 6= (µ, σ) such
that Ver(vk, µ∗, σ∗) accepts. We say that SS is seu-1cma-secure if for every probabilistic polynomial-time
adversary A, its advantage in the attack is negl(n).

An seu-1cma-secure signature scheme can be constructed from any one-way function [Gol04], and more
efficiently from collision-resistant hash functions [HWZ07]. Both primitives are efficiently realizable under
the same worst-case lattice assumptions that we use for our cryptosystems.
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4.2 Passively Secure Cryptosystem

There are several prior LWE-based cryptosystems that enjoy semantic security against passive eavesdropping
attacks (ind-cpa security): the original scheme of Regev [Reg05], a more efficient amortized version [PVW08],
and a “dual” (also amortized) scheme that is the foundation for identity-based encryption [GPV08]. In all
cases, the only complexity assumption in their security proof is that the (discretized) LWE distribution
is pseudorandom, i.e., indistinguishable from uniform on the average. In Section 3 we established this
pseudorandomness property (for moduli q of a certain form) assuming the worst-case hardness of GapSVPζ,γ ,
so all the prior proofs go through under that assumption as well.

When using a large value of q (e.g., q = 2O(n)), however, the efficiency of the prior schemes is
suboptimal, because the plaintext-to-ciphertext expansion factor (even in the amortized schemes) is at least
lg q. Fortunately, it is possible to improve their efficiency (without sacrificing correctness) by discretizing the
LWE distribution more ‘coarsely’ using a relatively small modulus q′ = poly(n).

As an illustrative example, here we briefly adapt the “dual” cryptosystem from [GPV08] to our setting.
(The schemes from [Reg05, PVW08] may be adapted similarly.) The cryptosystem is presented as a KEM
(see Definition 4.1), with the following parameters as functions of the main security parameter n: let q ≥ 2,
m = (1 + δ)n lg q for some constant δ > 0, q′ ≥ 4(m+ 1), and ` ≥ 1 be integers with log q, m, q′, and ` all
bounded by poly(n). Let α ∈ (0, 1) be such that 1/α ≥

√
m+ 1 · ω(

√
log n), and let φ = Ψα.

• Gen(): Choose A ∈ Zn×mq uniformly at random, and secret key sk = X ∈ {0, 1}m×` uniformly at

random. The public key is pk = (A,U = AX) ∈ Zn×(m+`)
q .

• Encaps(pk = (A,U)): choose key k ∈ {0, 1}` and s ∈ Znq uniformly at random. Let

b̄1 = b(Ats)/q + x1eq′ and b̄2 = b(Uts)/q + x2 + k/2eq′ ,

where x = (x1,x2)← Ψm+`
α . Output the encapsulation b̄ = (b̄1, b̄2) ∈ Tm+`

q′ .

• Decaps(sk = X, b̄ = (b̄1, b̄2)): compute h = b̄2 −Xtb̄1 ∈ T`q′ . Output k ∈ {0, 1}`, computed as
follows: for each i ∈ [`], let ki = 0 if hi is closer to 0 (modulo 1) than to 1/2, otherwise let ki = 1.

We briefly summarize the efficiency, correctness, and security analysis of the scheme, the details of which
are by now quite routine (see [Reg05, PVW08, GPV08] for full proofs).

Efficiency. The amortized time- and space-efficiency of the scheme is optimized when ` = O(m), so
suppose ` = m for simplicity. Then the public key size is O(n2 log2 q), and the plaintext expansion factor is
O(log q′) = O(log n). As observed in [KTX07, PVW08], it is even possible to reduce the expansion to O(1)
by fitting Ω(log q′) bits of key material into each entry of b̄2, at the expense of a smaller (but still inverse
polynomial) parameter α.

Correctness. The scheme’s correctness (with overwhelming probability) follows by bounding the accumu-
lated error terms in each entry of the decapsulation algorithm’s vector

h = b̄2 −Xtb̄1 ≈ k/2 + (Uts−XtAts)/q = k/2 ∈ T`.

The accumulated error h − k/2 comes from two sources, the Gaussian distribution φ = Ψα and the
discretization (rounding) step. Because each ‖xi‖ ≤

√
m, and rounding a single entry introduces at most

1/(2q′) error, the accumulated rounding error in each hi is at most
√
m+ 1 ·

√
m+ 1/(2q′) ≤ 1/8
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by the Cauchy-Schwarz inequality and by hypothesis on q′. Similarly, the accumulated Gaussian error (before
rounding) in each hi is distributed as a Gaussian with parameter at most α ·

√
m+ 1 ≤ 1/ω(

√
log n), hence

has magnitude less than 1/8 with overwhelming probability by the Gaussian tail bound. Therefore, the total
accumulated error in every hi term is less than 1/4 (except with negligible probability), and decapsulation
successfully recovers k ∈ {0, 1}`.

Security. The argument for ind-cpa security relies on the assumption that As,φ is pseudorandom on the
average. (Using the results of Section 3, this assumption follows from the worst-case hardness of GapSVPζ,γ
whenever

q ≥ ζ > γ = Õ(n/α) = Õ(n1.5
√

log q).)

By the leftover hash lemma [HILL99], the public key (A,U) is within negligible statistical distance of
uniform over Zn×(m+`)

q . Therefore, the public key together with the vectors (Ats)/q + x1, (Uts)/q + x2

constitute m + ` = poly(n) independent samples from As,φ, which are indistinguishable from uniform
samples over Znq × T by hypothesis. Thus the entire view of the adversary is indistinguishable from uniform
for any encapsulated key k, which implies ind-cpa security.

4.3 Trapdoor Functions

Our chosen ciphertext-secure cryptosystem is based on a family of LWE-based injective trapdoor functions
similar to those described in [GPV08], which are related to the proposal of [GGH97]. Due to some significant
modifications that are especially important for the security of our cryptosystem, we present a full description
here.

4.3.1 Background

We start with some notation and geometric perspectives that are helpful for understanding the construction.
Let A ∈ Zn×mq be arbitrary. We recall two integer lattices associated with A:

Λ⊥(A) = {x ∈ Zm : Ax = 0 ∈ Znq }
Λ(A) = {x ∈ Zm : ∃ s ∈ Znq such that x = Ats mod q}

It can be verified that Λ⊥(A) and Λ(A) are q-periodic, i.e., they both contain q · Zm as sublattices, and are
dual to each other up to a scaling factor q. Alternately — and this is the perspective that we find most useful
below — Λ(A)/q is 1-periodic and is the dual lattice of Λ⊥(A).

Lemma 4.4. Let q ≥ 2 and let A ∈ Zn×mq be uniformly random. Then the probability that there exists a
nonzero s ∈ Zn such that Ats = 0 mod q is at most at most qn/2m. In particular, for m ≥ (1 + δ)n lg q
(where δ > 0 is some constant), the probability is at most q−δn = negl(n).

Proof. We show that for any fixed nonzero s ∈ Znq , Ats 6= 0 mod q except with probability at most 2−m;
the claim follows by applying the union bound over all nonzero s ∈ Znq .

Let 0 6= s ∈ Znq , and assume without loss of generality that s1 6= 0. Define the (additive) subgroup
G ⊆ Zq as the set of x ∈ Zq for which x · s1 = 0 mod q, and observe that |G| ≤ gcd(s1, q) ≤ q/2. Then
for any fixed a2, . . . , an, the set of a1 ∈ Zq such that 〈a, s〉 = 0 mod q is either the empty set or is a coset
of G, hence has size at most q/2. If follows that 〈a, s〉 = 0 with probability at most 1/2 over the uniformly
random choice of a, and Ats = 0 ∈ Zmq with probability at most 2−m, as desired.
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Lemma 4.4 implies that with overwhelming probability over the choice of A, the vector s ∈ Znq is
uniquely determined by the lattice point y = (Ats)/q ∈ Λ(A)/q. Furthermore, s may be recovered
efficiently from A and y using, e.g., Gaussian elimination. For the remainder of the paper we implicitly
ignore the rare possibility that these properties fail to hold for uniformly random A.

Our trapdoor functions use a special algorithm for generating a (nearly) uniform matrix A ∈ Zn×mq

together with a certain ‘good’ trapdoor basis T ∈ Zm×m of Λ⊥(A) whose vectors (or whose Gram-Schmidt
orthogonalized vectors T̃) are relatively short. Ajtai [Ajt99] gave the first such generation algorithm, and
Alwen and Peikert [AP09] recently improved Ajtai’s method to yield optimal bounds on the lengths of the
basis vectors.

Proposition 4.5 ([AP09, Theorems 3.1 and 3.2]). There is a probabilistic polynomial-time algorithm that,
on input a positive integer n (in unary), positive integer q ≥ 2 (in binary), and a poly(n)-bounded positive
integer m ≥ 2n lg2 q, outputs a pair (A ∈ Zn×mq ,T ∈ Zm×mq ) such that:

• A is within negl(n) statistical distance of uniform,

• T is a basis of Λ⊥(A), and

• ‖T‖ ≤ L = O(
√
n lg q).

Alternately, for odd q and m ≥ 6n lg q, there is another algorithm that outputs (A,T) satisfying the first
two properties above, where ‖T̃‖ ≤ L̃ = O(

√
n log q) with overwhelming probability.

4.3.2 Construction

We now describe our family of trapdoor functions and its properties. The family {gA : Znq → Tmq′ } is a set

of randomized functions parameterized by moduli q, q′, a dimension m and bound L or L̃ as described in
Proposition 4.5, and an error parameter α ∈ (0, 1). The randomness in the evaluation of gA(s; x) is an error
term x ∈ Tm drawn from Ψm

α ; recall that x is not considered to be an explicit input to the function, and in
particular it need not (and will not) be recovered by the inversion algorithm.

• Gen(): run the appropriate algorithm from Proposition 4.5 to generate function index A ∈ Zn×mq and
trapdoor basis T ∈ Zm×m of Λ⊥(A) such that ‖T‖ ≤ L or ‖T̃‖ ≤ L̃, whichever is desired. (The
trapdoor information also implicitly includes the function index A.)

• Eval(A, s): choose x← Ψm
α and output

b̄ = gA(s; x) = b(Ats)/q + xeq′ ∈ Tmq′ .

• Invert(T, b̄): do one of the following to compute some y ∈ Λ(A)/q:

– First option: run Babai’s simple rounding algorithm with basis T−t and point b̄. That is, compute

y = T−t · bTt · b̄e ∈ Λ(A)/q.

– Second option: run the nearest-plane algorithm with basis T−t and point b̄, yielding y ∈ Λ(A)/q.

Finally, compute and output s ∈ Znq such that (Ats)/q = y mod 1.
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Lemma 4.6. Let q′ ≥ 2L
√
m and 1/α ≥ L · ω(

√
log n). Then for any s ∈ Znq , the first (simple rounding)

algorithm Invert(T, b̄ = gA(s; x)) correctly outputs s with overwhelming probability over the choice of
x← Ψm

α .
The same is true for the second (nearest-plane) inversion algorithm, with L̃ replacing L in the above

bounds for q′ and α.

Proof. Consider the first (simple rounding) inversion algorithm, and let D = T−t be the dual basis of the
lattice Λ(A)/q. By the behavior of the simple rounding algorithm, it suffices to show that b̄ = gA(s; x) ∈ Tmq′
lies in y + P1/2(D) for y = (Ats)/q ∈ Λ(A)/q.

By definition of the evaluation procedure, we can write b̄ as

b̄ = (Ats)/q + (x + w) mod 1

for some Gaussian error term x ← Dm
α and some rounding term w ∈ Rm such that ‖w‖ ≤

√
m/(2q′) ≤

1/(4L). It therefore suffices to show that with overwhelming probability both w,x ∈ 1
2P1/2(D), which is

equivalent to the condition Ttw,Ttx ∈ [−1
4 ,

1
4)n.

First, observe that for all i ∈ [n],

|〈ti,w〉| ≤ ‖ti‖ · ‖w‖ ≤ L/(4L) = 1/4

with certainty, by the Cauchy-Schwarz inequality. Next, 〈ti,x〉 is distributed as the Gaussian Dα·‖ti‖, where
α · ‖ti‖ ≤ 1/ω(

√
log n) by hypothesis. Then by the tail bound on Gaussian distributions, |〈ti,x′〉| < 1/4

except with negligible probability.
For the second (nearest-plane) inversion algorithm, the exact same argument applies, with T̃ and L̃

replacing T and L, respectively.

4.3.3 Chosen-Output Security

As shown in Lemma 4.6, the trapdoor functions described above are injective (with high probability) when the
function is computed with the prescribed error distribution. However, in the context of a chosen-ciphertext
attack, the adversary may construct output values b̄ ∈ Tmq′ adversarially. We need the behavior of the
inversion algorithm on such adversarial outputs not to leak any information about the secret trapdoor basis;
the notion of chosen-output security ensures that this is the case.

Definition 4.7 (Chosen Output-Secure TDF). Augment Definition 4.2 of a family {ga : D → R} of trapdoor
functions given by TDF = (Gen,Eval, Invert) with an additional deterministic polynomial-time algorithm
Ver(a, s, b), called the preimage verifier, which takes as input a function description a, an input s ∈ D, and
an output b ∈ R.

We say that the family is chosen output-secure if the following properties hold with overwhelming
probability over the choice of (a, t)← Gen():

1. Completeness. For any x ∈ D, Ver(a, s, b) accepts with overwhelming probability over the choice of
b← ga(s).

2. Unique preimage. For every b ∈ R, there is at most one value of s for which V (a, s, b) accepts.

3. Findable preimage. For any b ∈ R, if b has a legal preimage s (i.e., for which V (a, s, b) accepts), then
Invert(t, b) outputs s.
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The definition of chosen-output security immediately implies the following property, which holds with
overwhelming probability over the choice of (a, t) ← Gen(): for any value b ∈ R (possibly generated
adversarially), the following two deterministic processes produce the same output:

1. Invert a given output and verify: Given a, t, and b, let s = Invert(t, b); accept if Ver(a, s, b) accepts.

2. Verify a given input/output pair: Given a, s, and b, accept if Ver(a, s, b) accepts.

This identical behavior is the crucial property in the security proof for chosen-ciphertext attacks.

Realizing chosen-output security. Note that in the description of the family {gA} from Section 4.3.2
above, any s ∈ Znq is a potential preimage of any b̄ ∈ Tmq′ , under the (perhaps very unlikely) error
vector x = b̄ − (Ats)/q ∈ Tm. Therefore, we need to restrict the notion of a legal preimage to satisfy
Definition 4.7. We do so by requiring the output b̄ to be sufficiently close (modulo 1) to the lattice point
(Ats)/q corresponding to the purported preimage s.

In more detail, for x ∈ T represented as a real x̂ ∈ [0, 1), define |x| = min{x̂, 1− x̂} ∈ R, and extend
|·| coordinate-wise to Tm. The preimage verifier Verα(A, s, b̄) is parameterized by the α associated with the
collection, and operates as follows: let x′ = |b̄− (Ats)/q| ∈ Rm, and accept if ‖x′‖ ≤ 2α

√
m; otherwise,

reject. (Implicitly, Verα rejects if any input is malformed, e.g., not from the appropriate domain.)

Lemma 4.8. For q′ ≥ 1/(2α) and 1/α > 4L
√
m (or 1/α > 4L̃

√
m), the collection {gA} using the first

(respectively, second) inversion algorithm and preimage verifier Verα is chosen-output secure, i.e., satisfies
Definition 4.7.

Proof. First we prove Property 1 (completeness). For b̄← gA(s), we can write b̄ as

b̄ = (Ats)/q + (x + w) mod 1

for some Gaussian error term x ← Dm
α and some rounding term w ∈ Rm such that ‖w‖ ≤

√
m/(2q′) ≤

α
√
m. By the tail bound on m-dimensional Gaussians, we have ‖x‖ ≤ α

√
m except with 2−m = negl(n)

probability, hence ‖x + w‖ ≤ 2α
√
m < 1/2. Therefore, Verα(A, s, b̄) computes its x′ as x′ = x + w, and

accepts.
We now prove Property 2 (unique preimage). Let D = T−t be the dual basis of T. In order for

Verα(A, s, b̄) to accept, there must exist an x′ ∈ Rm such that ‖x′‖ ≤ 2α
√
m and b̄ = (Ats)/q+x′ mod 1.

Now because Ats = 0 mod q has no nonzero solutions s ∈ Znq , the regions (Ats)/q + P(D) mod 1 are
disjoint for each distinct s ∈ Znq . (In fact, these regions exactly partition Tm.) Moreover, P(D) contains the
Euclidean ball of radius 2α

√
m, because for any x′ in the ball we have |〈ti,x′〉| ≤ L · 2α

√
m < 1/2 by the

Cauchy-Schwarz inequality. Therefore, Verα accepts at most one preimage s for any value b̄.
To prove Property 3 (findable preimage), suppose that b̄ and s are such that Verα(A, s, b̄) accepts. Then

there exists an x′ ∈ Rm such that ‖x′‖ ≤ 2α
√
m < 1/2 and

b̄ = (Ats)/q + x′ mod 1.

To see that the first (simple rounding) inversion algorithm returns s given T and b̄, simply note that x′ ∈ P(D)
as shown in the prior paragraph, so the inverter returns s. (Likewise, for the nearest-plane inversion algorithm,
x′ ∈ P(D̃).)
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Remark 4.9. The bound on the parameter 1/α in Lemma 4.8 (for chosen-output security) is a Θ̃(
√
m) factor

larger than the one in Lemma 4.6 (for correct inversion). This is due to the ‘worst-case’ nature of the
findable-preimage property, versus the ‘average-case’ nature of the inversion task when the function gA is
evaluated with the prescribed error distribution. Using the bounds on m and L̃ from Proposition 4.5, the
worst-case approximation factor for GapSVP underlying our chosen output-secure trapdoor functions can be
as small as

γ(n) = Õ(n/α) = Õ(n · L̃
√
m) = Õ(n2 log q).

4.4 Chosen Ciphertext-Secure Cryptosystem

To construct a cryptosystem that enjoys security under chosen-ciphertext attacks, we use the witness-
recovering decryption paradigm recently proposed by Peikert and Waters [PW08], some additional ideas of
Rosen and Segev [RS09], and specific properties of the LWE problem.

A key observation for our scheme is the following: assuming that the LWE distribution As,φ is pseudoran-
dom on the average, any k = poly(n) independently chosen functions gA1 , . . . , gAk

are also pseudorandom,
even when evaluated on the same input s ∈ Znq (but with independent error terms x1, . . . ,xk, respectively).
This is because the function indices Ai and outputs b̄i = gAi(s; xi) are simply made up of k ·m independent
(discretized) samples from the LWE distribution As,φ. Essentially, this means that our trapdoor functions are
one-way and pseudorandom under “correlated inputs,” a notion defined in [RS09] as a relaxation of “lossy”
trapdoor functions [PW08]. Moreover, even given all of the above function indices and outputs, additional
samples from As,φ remain pseudorandom as well.

Rosen and Segev [RS09] construct an ind-cca-secure cryptosystem based on any family of injective
trapdoor functions that are one-way under a general notion of correlated inputs (which captures the type
enjoyed by our functions). Their construction closely resembles that of Dolev, Dwork and Naor [DDN00],
but uses such trapdoor functions (instead of a generic ind-cpa-secure encryption scheme) to achieve witness-
recovering decryption as in [PW08]. However, the construction and proof from [RS09] implicitly assume
several additional properties of the trapdoor functions, e.g., that preimages are unique even for adversarially
chosen outputs, and always findable given the trapdoor. In addition, their scheme uses generic hard-core bits
to conceal the encrypted message, which, while completely general, limits the scheme to short messages.

A careful reading of the proof from [RS09] reveals that all of the necessary properties of the trapdoor
functions are indeed guaranteed by our definition of chosen-output security. Moreover, the pseudorandomness
of As,φ can be exploited to handle arbitrarily long messages with good efficiency (just as in the passively
secure scheme from Section 4.2). Aside from these two main differences, our construction and proof are
essentially identical to those in [RS09]. For completeness, we give a complete description of our scheme and
a (brief) proof of security.

4.4.1 Construction

Our scheme uses the chosen output-secure trapdoor functions given by TDF = (Gen,Eval, Invert,Verα)
constructed above in Section 4.3.3. It also relies upon a strongly unforgeable one-time signature scheme
SS = (Gen, Sign,Ver) whose verification keys are exactly k bits long. The description of the scheme is as
follows.

• Gen(): select U ∈ Zn×`q uniformly at random, and for each i ∈ [k] and b ∈ {0, 1}, generate
(Ai,b,Ti,b)← TDF.Gen().2 Output public key pk = ({Ai,b},U) and secret key sk = (T1,0,T1,1, pk).

2Strictly speaking, we need only generate trapdoor information Ti,b for i = 1, and all the other Ai,b ∈ Zn×mq may be generated

22



• Encaps(pk): generate (vk, skSS) ← SS.Gen(). Choose key k ∈ {0, 1}` and s ∈ Znq uniformly at
random. For each i ∈ [k], let b̄i ← TDF.Eval(Ai,vki , s), and let

b̄0 = b(Uts)/q + x0 + k/2eq′ ,

where x0 ← Ψ`
α. Let b̄ = (b̄0, b̄1, . . . , b̄k) ∈ Tkm+`

q′ . Compute a signature σ ← SS.Sign(skSS, b̄).
Finally, output the encapsulation

τ = (vk, b̄, σ).

• Decaps(sk, τ = (vk, b̄, σ)): perform each of the following steps:

1. Parse b̄ as (b̄0, b̄1, . . . , b̄k), where b̄i ∈ Tmq′ for i ∈ [k] and b̄0 ∈ T`q′ (if b̄ cannot be parsed in
this way, output ⊥).

2. Run SS.Ver(vk, b̄, σ), and output ⊥ if Ver rejects.

3. Let s = TDF.Invert(T1,vk1 , b̄1) ∈ Znq .

4. For each i ∈ [k], run TDF.Verα(Ai,vki , s, b̄i), and output ⊥ if any execution rejects.

5. Compute h = b̄0− (Uts)/q ∈ T`, and output k ∈ {0, 1}` computed as follows: for each i ∈ [`],
let ki = 0 if hi is closer to 0 (modulo 1) than to 1/2, otherwise let ki = 1.

4.4.2 Security Proof

Theorem 4.10. Assuming the seu-1cma security of SS and the pseudorandomness of As,Ψα (on the average,
for uniformly random s ∈ Znq ), the KEM described above is ind-cca-secure.

Proof. First observe that decapsulation succeeds with overwhelming probability, by the completeness property
of the chosen output-secure trapdoor functions and the usual Gaussian tail bounds applied to b̄0.

For security, we give an extended proof sketch; full details may be extracted from [RS09]. We consider a
sequence of experiments in which the adversary A operates.

Experiment 0: This is exactly the standard chosen-ciphertext attack as described in Definition 4.1.

Experiment 1: This is the same as the previous experiment, but A’s oracle computing Decaps(sk, ·) is
modified to output ⊥ on any input of the form (vk∗, ·, ·) (even if the signature verifies in Step 2), where
vk∗ is the first component of the challenge encapsulation τ∗ = (vk∗, b̄∗, σ∗).

Experiment 2: This is the same as the previous experiment, but the b̄∗ ∈ Tkm+`
q′ component of the challenge

ciphertext τ∗ = (vk∗, b̄∗, σ∗) is uniformly random and independent of all other variables.

By the seu-1cma security of SS, the distinguishing advantages of any polynomial-time A in experiments
0 and 1 can differ by only negl(n); the proof is routine.

Now we show that assuming the pseudorandomness of As,Ψα , the distinguishing advantages of any
polynomial-time A in experiments 1 and 2 can differ by only negl(n). Consider the following reduction S,
which is given access to a distribution D that is either As,Ψα or U(Znq × T), and interacts with A to simulate
either experiment 1 or 2. S operates as follows:

1. Generate (vk∗, sk∗SS)← SS.Gen() and choose k ∈ {0, 1}` uniformly at random.

uniformly without trapdoors. We adopt the above form merely for the sake of uniform notation.
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2. Draw km+ ` samples (ai, bi) from D and use them all to form the matrices A1,vk1 , . . . ,Ak,vkk ,U
and discretized vector b̄∗ ∈ Tkm+`

q′ for the challenge encapsulation in the natural way.

3. Compute a signature σ∗ ← SS.Sign(skSS, b̄) and generate the challenge τ∗ = (vk∗, b̄∗, σ∗).

4. For each i ∈ [k], generate (Ai,1−vki ,Ti,1−vki)← TDF.Gen().

5. Give the public key pk = ({Ai,b},U), challenge τ∗, and k to the adversary A.

6. Answer A’s decryption queries as follows: given a query τ = (vk, b̄, σ), if vk = vk∗ then answer ⊥.
Now parse b̄ as in Step 1 of Decaps and answer ⊥ if τ or b̄ cannot be parsed properly. Else, as in
Step 2 of Decaps, run SS.Ver(vk, b̄, σ) and answer ⊥ if Ver rejects. Else let i be such that vki 6= vk∗i ,
and let s = TDF.Invert(Ti,vki , b̄i). (Note the possibly different index i 6= 1 used here versus in
Decaps.) Finally, execute Steps 4 and 5 just as in Decaps.

It can verified that when the distribution D provided to S is As,Ψα , S simulates experiment 1 (up to
negl(n) statistical distance). The main observation is that by the definition of chosen-output security, in order
for all of the executions of TDF.Verα in Step 4 of Decaps to accept for some s ∈ Znq (which must be unique
if it exists), it must be the case that TDF.Invert(Ti,vki , b̄i) outputs the same s for all i ∈ [k]. So the result of
Step 3 in Decaps and corresponding recovery of s by S are the same.

On the other hand, when the distribution D provided to S is uniform, S simulates experiment 2 (up to
negl(n) statistical distance) because b̄∗ is uniform and independent of all other variables.

Finally, observe that in experiment 2 the challenge vector b̄∗ is uniform and independent of the key
k; therefore, the distinguishing advantage of any (even unbounded) A is zero. We conclude that the
distinguishing advantage of A in the real chosen-ciphertext attack is negl(n), and we are done.
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