Lattices:
 ... to Cryptography

Chris Peikert
 Georgia Institute of Technology

Visions of Cryptography
10 December 2013

Agenda

(1) The one main lattice-based OWF
(2) Two simple tricks that yield all* of lattice cryptography
(3) Lots of applications

A Hard Problem: Short Integer Solution

- Goal: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

(When $m \geq n \log q$, short solutions are guaranteed to exist.)

A Hard Problem: Short Integer Solution

- Goal: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathbf{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

(When $m \geq n \log q$, short solutions are guaranteed to exist.)

- Just SVP on random ' q-ary' lattice

$$
\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A} \mathbf{z}=\mathbf{0}\right\}
$$

A Hard Problem: Short Integer Solution

- Goal: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

(When $m \geq n \log q$, short solutions are guaranteed to exist.)

- Just SVP on random ' q-ary' lattice

$$
\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A} \mathbf{z}=\mathbf{0}\right\}
$$

- $\mathrm{x} \mapsto \mathrm{Ax}$ reduces x modulo $\mathcal{L}^{\perp}(\mathbf{A})$.

A Hard Problem: Short Integer Solution

- Goal: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

(When $m \geq n \log q$, short solutions are guaranteed to exist.)

Worst-Case/Average-Case Connection [Ajtai'96, . . .MR'04,GPV'08,MP'13]

Finding solution \mathbf{z} with $\|\mathbf{z}\| \leq \beta \ll q$
(for uniformly random A)
\Downarrow
solving GapSVP $\beta_{\beta \sqrt{n}}$ and SIVP $_{\beta \sqrt{n}}$ on any n-dim lattice.

A Hard Problem: Short Integer Solution

- Goal: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{lll}
\cdots & \text { A } & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

(When $m \geq n \log q$, short solutions are guaranteed to exist.)

One-Way \& Collision-Resistant Hash Function

- Set $m>n \lg q$. Define $f_{\mathrm{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ as

$$
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

A Hard Problem: Short Integer Solution

- Goal: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{ccc}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

(When $m \geq n \log q$, short solutions are guaranteed to exist.)

One-Way \& Collision-Resistant Hash Function

- Set $m>n \lg q$. Define $f_{\mathrm{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ as

$$
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

- Collision $\mathbf{x}, \mathbf{x}^{\prime} \in\{0,1\}^{m}$ where $\mathbf{A x}=\mathbf{A} \mathbf{x}^{\prime} \ldots$
\ldots yields solution $\mathbf{z}=\mathbf{x}-\mathbf{x}^{\prime} \in\{0, \pm 1\}^{m}$, of norm $\|\mathbf{z}\| \leq \sqrt{m}$.

Another (?) Hard (?) Problem: Learning With Errors

- Wlog, $\mathbf{A}=\left[\overline{\mathbf{A}} \mid \mathbf{I}_{n}\right] \in \mathbb{Z}_{q}^{n \times(m+n)}$.

For $m \geq n \log q$, function $\mathbf{x} \mapsto \mathbf{A} \mathbf{x}$ is regular (\Rightarrow many preimages).

Another (?) Hard (?) Problem: Learning With Errors

- Wlog, $\mathbf{A}=\left[\overline{\mathbf{A}} \mid \mathbf{I}_{n}\right] \in \mathbb{Z}_{q}^{n \times(m+n)}$.

For $m \geq n \log q$, function $\mathbf{x} \mapsto \mathbf{A} \mathbf{x}$ is regular (\Rightarrow many preimages).

- What about $m \ll n \log q$? E.g., $m=n$? $m=100$?

Map $\mathbf{x} \mapsto \mathbf{A x}=\mathbf{A} \mathbf{x}_{1}+\mathbf{x}_{2}$ is highly injective (whp).

Another (?) Hard (?) Problem: Learning With Errors

- Wlog, $\mathbf{A}=\left[\overline{\mathbf{A}} \mid \mathbf{I}_{n}\right] \in \mathbb{Z}_{q}^{n \times(m+n)}$.

For $m \geq n \log q$, function $\mathbf{x} \mapsto \mathbf{A} \mathbf{x}$ is regular (\Rightarrow many preimages).

- What about $m \ll n \log q$? E.g., $m=n$? $m=100$?

Map $\mathbf{x} \mapsto \mathbf{A x}=\mathbf{A} \mathbf{x}_{1}+\mathbf{x}_{2}$ is highly injective (whp).
Is it one-way? Pseudorandom?

Another (?) Hard (?) Problem: Learning With Errors

- Wlog, $\mathbf{A}=\left[\overline{\mathbf{A}} \mid \mathbf{I}_{n}\right] \in \mathbb{Z}_{q}^{n \times(m+n)}$.

For $m \geq n \log q$, function $\mathbf{x} \mapsto \mathbf{A} \mathbf{x}$ is regular (\Rightarrow many preimages).

- What about $m \ll n \log q$? E.g., $m=n$? $m=100$?

Map $\mathbf{x} \mapsto \mathbf{A x}=\mathbf{A x} \mathbf{x}_{1}+\mathrm{x}_{2}$ is highly injective (whp).
Is it one-way? Pseudorandom?

- Lattice interpretation: BDD on

$$
\mathcal{L}(\overline{\mathbf{A}})=\left\{\mathbf{v} \equiv \overline{\mathbf{A}} \mathbf{x}_{1} \bmod q\right\} .
$$

- Search \Leftrightarrow decision: Ax is pseudorandom.

Another (?) Hard (?) Problem: Learning With Errors

- Wlog, $\mathbf{A}=\left[\overline{\mathbf{A}} \mid \mathbf{I}_{n}\right] \in \mathbb{Z}_{q}^{n \times(m+n)}$.

For $m \geq n \log q$, function $\mathbf{x} \mapsto \mathbf{A} \mathbf{x}$ is regular (\Rightarrow many preimages).

- What about $m \ll n \log q$? E.g., $m=n$? $m=100$?

Map $\mathbf{x} \mapsto \mathbf{A x}=\mathbf{A x} \mathbf{x}_{1}+\mathrm{x}_{2}$ is highly injective (whp).
Is it one-way? Pseudorandom?

- Lattice interpretation: BDD on

$$
\mathcal{L}(\overline{\mathbf{A}})=\left\{\mathbf{v} \equiv \overline{\mathbf{A}} \mathbf{x}_{1} \bmod q\right\} .
$$

- Search \Leftrightarrow decision: Ax is pseudorandom.
- As hard as worst case problems on m-dim lattices [Regev'05,P'09].

The two amazingly simple tricks behind all of lattice cryptography...

Trick \#1: Generate Random Instance with Solution(s)

- Generate (pseudo)random \mathbf{A}^{\prime} with a short solution:

Trick \#1: Generate Random Instance with Solution(s)

- Generate (pseudo)random \mathbf{A}^{\prime} with a short solution:
(1) Choose $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and short \mathbf{x}.

Trick \#1: Generate Random Instance with Solution(s)

- Generate (pseudo)random \mathbf{A}^{\prime} with a short solution:
(1) Choose $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and short \mathbf{x}.
(2) Let $\mathbf{u}=-\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{x}$ and $\mathbf{A}^{\prime}=[\mathbf{u} \mid \mathbf{A}]$.

Then $\left[\mathbf{A}^{\prime} \mid \mathbf{I}_{n}\right]\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]=\mathbf{u}+\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{x}=\mathbf{0}$.

Trick \#1: Generate Random Instance with Solution(s)

- Generate (pseudo)random \mathbf{A}^{\prime} with a short solution:
(1) Choose $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and short \mathbf{x}.
(2) Let $\mathbf{u}=-\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{x}$ and $\mathbf{A}^{\prime}=[\mathbf{u} \mid \mathbf{A}]$.

$$
\text { Then }\left[\mathbf{A}^{\prime} \mid \mathbf{I}_{n}\right]\left[\begin{array}{l}
1 \\
\mathbf{x}
\end{array}\right]=\mathbf{u}+\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{x}=\mathbf{0} \text {. }
$$

- For many solutions, let $\mathbf{U}=-\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{X}$ and $\mathbf{A}^{\prime}=[\mathbf{U} \mid \mathbf{A}]$. Then $\left[\mathbf{A}^{\prime} \mid \mathbf{I}_{n}\right] \cdot\left[\begin{array}{l}\mathbf{I}_{k} \\ \mathbf{X}\end{array}\right]=\mathbf{0}$.

Trick \#1: Generate Random Instance with Solution(s)

- Generate (pseudo)random \mathbf{A}^{\prime} with a short solution:
(1) Choose $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and short \mathbf{x}.
(2) Let $\mathbf{u}=-\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{x}$ and $\mathbf{A}^{\prime}=[\mathbf{u} \mid \mathbf{A}]$.

$$
\text { Then }\left[\mathbf{A}^{\prime} \mid \mathbf{I}_{n}\right]\left[\begin{array}{l}
1 \\
\mathbf{x}
\end{array}\right]=\mathbf{u}+\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{x}=\mathbf{0} \text {. }
$$

- For many solutions, let $\mathbf{U}=-\left[\mathbf{A} \mid \mathbf{I}_{n}\right] \cdot \mathbf{X}$ and $\mathbf{A}^{\prime}=[\mathbf{U} \mid \mathbf{A}]$. Then $\left[\mathbf{A}^{\prime} \mid \mathbf{I}_{n}\right] \cdot\left[\begin{array}{c}\mathbf{I}_{k} \\ \mathbf{X}\end{array}\right]=\mathbf{0}$.
- Of course, we can also multiply on the left:

Let $\mathbf{u}^{t}=\mathbf{x}^{t}\left[\begin{array}{c}\mathbf{A} \\ \mathbf{I}_{m}\end{array}\right]$ and $\mathbf{A}^{\prime}=\left[\begin{array}{c}\mathbf{u}^{t} \\ \mathbf{A}\end{array}\right]$.

Key Agreement/Encryption

Key Agreement/Encryption

Key Agreement/Encryption

Key Agreement/Encryption

$$
\mathbf{u}=\left[\mathbf{A} \mathbf{I}_{n}\right] \mathbf{Y}
$$

$$
\mathbf{v}^{t}=\mathbf{s}^{t}\left[\begin{array}{c}
\mathbf{A} \\
\mathbf{I}_{m}
\end{array}\right]
$$

$k_{a}=\mathbf{s}_{1}^{t} \cdot \mathbf{u}+\mathrm{err}$
$\approx \mathbf{s}_{1}^{t} \mathbf{A} \mathbf{r}_{1}$

$$
k_{b}=\mathbf{v}^{t} \cdot \mathbf{r}_{1}+\mathrm{err}
$$

$$
\approx \mathbf{s}_{1}^{t} \mathbf{A} \mathbf{r}_{1}
$$

$\left(\mathbf{A}, \mathbf{u}, \mathbf{v}, k_{a}\right)$

Key Agreement/Encryption

Key Agreement/Encryption

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathbf{g}^{t}=\left[\begin{array}{llll}124 \cdots & 2^{k-1} \geq \frac{q}{2}\end{array}\right]$ and

$$
\mathrm{G}=\left[\begin{array}{cccc}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k} .
$$

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathbf{g}^{t}=\left[\begin{array}{llll}124 \cdots & 2^{k-1} \geq \frac{q}{2}\end{array}\right]$ and

$$
\mathrm{G}=\left[\begin{array}{llll}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k} .
$$

- Invert SIS: given $\mathbf{u} \in \mathbb{Z}_{q}^{n}$, can compute $\mathbf{x} \in\{0,1\}^{n k}$ s.t. $\mathbf{G x}=\mathbf{u}$.

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathrm{g}^{t}=\left[\begin{array}{llll}124 \cdots & 2^{k-1} \geq \frac{q}{2}\end{array}\right]$ and

$$
\mathbf{G}=\left[\begin{array}{llll}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k} .
$$

- Invert SIS: given $\mathbf{u} \in \mathbb{Z}_{q}^{n}$, can compute $\mathbf{x} \in\{0,1\}^{n k}$ s.t. $\mathbf{G x}=\mathbf{u}$. More generally, can sample a Gaussian $\mathbf{x} \leftarrow \mathrm{G}^{-1}(\mathbf{u})$.

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathrm{g}^{t}=\left[\begin{array}{llll}124 \cdots & 2^{k-1} \geq \frac{q}{2}\end{array}\right]$ and

$$
\mathbf{G}=\left[\begin{array}{cccc}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k} .
$$

- Invert SIS: given $\mathbf{u} \in \mathbb{Z}_{q}^{n}$, can compute $\mathbf{x} \in\{0,1\}^{n k}$ s.t. $\mathbf{G x}=\mathbf{u}$. More generally, can sample a Gaussian $\mathbf{x} \leftarrow \mathrm{G}^{-1}(\mathbf{u})$.

Can generate (\mathbf{x}, \mathbf{u}) in two equivalent ways:

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathrm{g}^{t}=\left[\begin{array}{llll}1 & 2 & 4 & \cdots\end{array} 2^{k-1} \geq \frac{q}{2}\right]$ and

$$
\mathbf{G}=\left[\begin{array}{cccc}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathbf{g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}
$$

- Invert LWE: given $\mathbf{v}=\mathbf{x}^{t}\left[\begin{array}{c}\mathbf{G} \\ \mathbf{I}\end{array}\right] \approx\left[\begin{array}{llll}x_{1} & 2 x_{1} & \cdots & 2^{k-1} x_{1} \cdots\end{array}\right]$, find \mathbf{x}.

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathrm{g}^{t}=\left[\begin{array}{llll}124 \cdots & 2^{k-1} \geq \frac{q}{2}\end{array}\right]$ and

$$
\mathbf{G}=\left[\begin{array}{cccc}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k} .
$$

- Invert LWE: given $\mathbf{v}=\mathbf{x}^{t}\left[\begin{array}{c}\mathbf{G} \\ \mathbf{I}\end{array}\right] \approx\left[\begin{array}{llll}x_{1} & 2 x_{1} & \cdots & 2^{k-1} x_{1} \cdots\end{array}\right]$, find \mathbf{x}.

Say $q=2^{k}$. Can recover bits of x_{1} with errors, then x_{2}, etc.

Trick \#2: Inverting an Easy Function

- A special parity-check matrix: let $\mathrm{g}^{t}=\left[\begin{array}{llll}124 \cdots & 2^{k-1} \geq \frac{q}{2}\end{array}\right]$ and

$$
\mathbf{G}=\left[\begin{array}{cccc}
\cdots \mathrm{g}^{t} \cdots & & & \\
& \cdots \mathrm{~g}^{t} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g}^{t} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}
$$

- Invert LWE: given $\mathbf{v}=\mathbf{x}^{t}\left[\begin{array}{c}\mathbf{G} \\ \mathbf{I}\end{array}\right] \approx\left[\begin{array}{llll}x_{1} & 2 x_{1} & \cdots & 2^{k-1} x_{1} \cdots\end{array}\right]$, find \mathbf{x}.

Say $q=2^{k}$. Can recover bits of x_{1} with errors, then x_{2}, etc.
(Something similar works for any q.)

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- Let $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{G}-\mathbf{A R}]$, so $\mathbf{A}^{\prime}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$. Trapdoor $=\mathbf{R}$.

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- Let $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{G}-\mathbf{A R}]$, so $\mathbf{A}^{\prime}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$. Trapdoor $=\mathbf{R}$.
- Invert LWE: given $\mathbf{v}^{t}=\mathbf{s}^{t}\left[\begin{array}{c}\mathbf{A}^{\prime} \\ \mathbf{I}\end{array}\right]$, recover \mathbf{s} from

$$
\mathbf{v}^{t}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{R} \\
\mathbf{I}
\end{array}\right] \approx \mathbf{s}_{1}^{t} \mathbf{G} .
$$

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- Let $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{G}-\mathbf{A R}]$, so $\mathbf{A}^{\prime}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$. Trapdoor $=\mathbf{R}$.
- Invert LWE: given $\mathbf{v}^{t}=\mathbf{s}^{t}\left[\begin{array}{c}\mathbf{A}^{\prime} \\ \mathbf{I}\end{array}\right]$, recover \mathbf{s} from

$$
\mathbf{v}^{t}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t}\left[\begin{array}{c}
\mathbf{G} \\
\mathbf{R} \\
\mathbf{I}
\end{array}\right] \approx \mathbf{s}_{1}^{t} \mathbf{G} .
$$

- Invert SIS: given target \mathbf{u}, output $\mathbf{x}=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \cdot \mathbf{G}^{-1}(\mathbf{u})$. Then

$$
\mathbf{A}^{\prime} \mathbf{x}=\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u})=\mathbf{u}
$$

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- Let $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{G}-\mathbf{A R}]$, so $\mathbf{A}^{\prime}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$. Trapdoor $=\mathbf{R}$.
- Invert LWE: given $\mathbf{v}^{t}=\mathbf{s}^{t}\left[\begin{array}{c}\mathbf{A}^{\prime} \\ \mathbf{I}\end{array}\right]$, recover \mathbf{s} from

$$
\mathbf{v}^{t}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t}\left[\begin{array}{c}
\mathbf{G} \\
\mathbf{R} \\
\mathbf{I}
\end{array}\right] \approx \mathbf{s}_{1}^{t} \mathbf{G} .
$$

- Invert SIS: given target \mathbf{u}, output $\mathbf{x}=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \cdot \mathbf{G}^{-1}(\mathbf{u})$. Then

$$
\mathbf{A}^{\prime} \mathbf{x}=\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u})=\mathbf{u}
$$

Problem: \mathbf{x} is 'skewed,' leaks trapdoor \mathbf{R} !

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- Let $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{G}-\mathbf{A R}]$, so $\mathbf{A}^{\prime}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$. Trapdoor $=\mathbf{R}$.
- Invert LWE: given $\mathbf{v}^{t}=\mathbf{s}^{t}\left[\begin{array}{c}\mathbf{A}^{\prime} \\ \mathbf{I}\end{array}\right]$, recover \mathbf{s} from

$$
\mathbf{v}^{t}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t}\left[\begin{array}{c}
\mathbf{G} \\
\mathbf{R} \\
\mathbf{I}
\end{array}\right] \approx \mathbf{s}_{1}^{t} \mathbf{G} .
$$

- Invert SIS: given target \mathbf{u}, output $\mathbf{x}=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \cdot \mathbf{G}^{-1}(\mathbf{u})$. Then

$$
\mathbf{A}^{\prime} \mathbf{x}=\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u})=\mathbf{u}
$$

Problem: \mathbf{x} is 'skewed,' leaks trapdoor \mathbf{R} !

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- Let $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{G}-\mathbf{A R}]$, so $\mathbf{A}^{\prime}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$. Trapdoor $=\mathbf{R}$.
- Invert LWE: given $\mathbf{v}^{t}=\mathbf{s}^{t}\left[\begin{array}{c}\mathbf{A}_{\mathbf{I}}^{\prime}\end{array}\right]$, recover \mathbf{s} from

$$
\mathbf{v}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t}\left[\begin{array}{c}
\mathrm{R} \\
\mathbf{R} \\
\mathbf{I}
\end{array}\right] \approx \mathbf{s}_{1}^{t} \mathbf{G} .
$$

- Invert SIS: given target \mathbf{u}, output $\mathbf{x}=\left[\begin{array}{c}\mathrm{R} \\ \mathrm{I}\end{array}\right] \cdot \mathrm{G}^{-1}(\mathbf{u})$. Then

$$
\mathbf{A}^{\prime} \mathbf{x}=\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u})=\mathbf{u} .
$$

Problem: x is 'skewed,' leaks trapdoor \mathbf{R} !
Solution: output $\mathbf{x}=\mathbf{p}+\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \cdot \mathbf{G}^{-1}\left(\mathbf{u}-\mathbf{A}^{\prime} \mathbf{p}\right)$ for 'perturbation' \mathbf{p}.

Put G in Evaluation Key \Rightarrow FHE $\quad\left[\mathrm{BV}^{\prime} 11\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, ciphertext $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ is s.t. $\mathbf{s}^{t} \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.

Put G in Evaluation Key \Rightarrow FHE $\quad\left[\mathrm{BV}^{\prime} 11\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, ciphertext $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ is s.t. $\mathbf{s}^{t} \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- Homomorphic mult:

$$
(\mathbf{s} \otimes \mathbf{s})^{t} \cdot \underbrace{\left(2 \mathbf{c}_{1} \otimes \mathbf{c}_{2}\right)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_{1} \mu_{2} .
$$

Problem: \mathbf{c}_{\times}has dimension n^{2} !

Put G in Evaluation Key \Rightarrow FHE $\quad\left[\mathrm{BV}^{\prime} 11\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, ciphertext $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ is s.t. $\mathbf{s}^{t} \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- Homomorphic mult:

$$
(\mathbf{s} \otimes \mathbf{s})^{t} \cdot \underbrace{\left(2 \mathbf{c}_{1} \otimes \mathbf{c}_{2}\right)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_{1} \mu_{2} .
$$

Problem: \mathbf{c}_{\times}has dimension n^{2} !

- "Compress" \mathbf{c}_{\times}by "recrypting:"
(1) Rewrite decryption expression as $(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G} \cdot \mathbf{G}^{-1}\left(\mathbf{c}_{\times}\right)$.

Put G in Evaluation Key \Rightarrow FHE $\quad\left[\mathrm{BV}^{\prime} 11\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, ciphertext $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ is s.t. $\mathbf{s}^{t} \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- Homomorphic mult:

$$
(\mathbf{s} \otimes \mathbf{s})^{t} \cdot \underbrace{\left(2 \mathbf{c}_{1} \otimes \mathbf{c}_{2}\right)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_{1} \mu_{2} .
$$

Problem: \mathbf{c}_{\times}has dimension n^{2} !

- "Compress" \mathbf{c}_{\times}by "recrypting:"
(1) Rewrite decryption expression as $(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G} \cdot \mathrm{G}^{-1}\left(\mathbf{c}_{\times}\right)$.
(2) Hide $(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G}$ in an evaluation key \mathbf{K} (having n rows):

$$
\mathbf{s}^{t} \cdot \mathbf{K} \approx(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G}
$$

Put G in Evaluation Key \Rightarrow FHE $\quad\left[\mathrm{BV}^{\prime} 11\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, ciphertext $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ is s.t. $\mathbf{s}^{t} \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- Homomorphic mult:

$$
(\mathbf{s} \otimes \mathbf{s})^{t} \cdot \underbrace{\left(2 \mathbf{c}_{1} \otimes \mathbf{c}_{2}\right)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_{1} \mu_{2} .
$$

Problem: \mathbf{c}_{\times}has dimension n^{2} !

- "Compress" \mathbf{c}_{\times}by "recrypting:"
(1) Rewrite decryption expression as $(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G} \cdot \mathrm{G}^{-1}\left(\mathbf{c}_{\times}\right)$.
(2) Hide $(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G}$ in an evaluation key \mathbf{K} (having n rows):

$$
\mathbf{s}^{t} \cdot \mathbf{K} \approx(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G}
$$

(3) Then

$$
\mathbf{s}^{t} \cdot \underbrace{\mathbf{K} \cdot \mathbf{G}^{-1}\left(\mathbf{c}_{\times}\right)}_{\mathbf{c}^{\prime}} \approx(\mathbf{s} \otimes \mathbf{s})^{t} \mathbf{G} \cdot \mathbf{G}^{-1}\left(\mathbf{c}_{\times}\right) \approx \mu_{1} \mu_{2} \cdot \frac{q+1}{2}
$$

Put G in Ciphertext \Rightarrow FHE [GSw'13]

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, public key \mathbf{A} satisfies $\mathbf{s}^{t} \mathbf{A} \approx \mathbf{0}$.

Put G in Ciphertext \Rightarrow FHE $\quad\left[G S w^{\prime} 13\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, public key \mathbf{A} satisfies $\mathbf{s}^{t} \mathbf{A} \approx \mathbf{0}$.
- Encrypt $\mu \in\{0,1\}$ as $\mathbf{C}=\mathbf{A R}+\mu \mathbf{G}$. Decryption relation is

$$
\mathbf{s}^{t} \mathbf{C} \approx \mu \cdot \mathbf{s}^{t} \mathbf{G}
$$

Put G in Ciphertext \Rightarrow FHE $\quad\left[G S w^{\prime} 13\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, public key \mathbf{A} satisfies $\mathbf{s}^{t} \mathbf{A} \approx \mathbf{0}$.
- Encrypt $\mu \in\{0,1\}$ as $\mathbf{C}=\mathbf{A R}+\mu \mathbf{G}$. Decryption relation is

$$
\mathbf{s}^{t} \mathbf{C} \approx \mu \cdot \mathbf{s}^{t} \mathbf{G}
$$

- Homomorphic mult: $\mathbf{C}_{\times}=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

Put G in Ciphertext \Rightarrow FHE $\quad\left[G S w^{\prime} 13\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, public key \mathbf{A} satisfies $\mathbf{s}^{t} \mathbf{A} \approx \mathbf{0}$.
- Encrypt $\mu \in\{0,1\}$ as $\mathbf{C}=\mathbf{A R}+\mu \mathbf{G}$. Decryption relation is

$$
\mathbf{s}^{t} \mathbf{C} \approx \mu \cdot \mathbf{s}^{t} \mathbf{G}
$$

- Homomorphic mult: $\mathbf{C}_{\times}=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s}^{t} \mathbf{C}_{\times} & =\mathbf{s}^{t} \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& \approx \mu_{1} \cdot \mathbf{s}^{t} \mathbf{G} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& \approx \mu_{1} \mu_{2} \cdot \mathbf{s}^{t} \mathbf{G}
\end{aligned}
$$

Put G in Ciphertext \Rightarrow FHE $\quad\left[G S w^{\prime} 13\right]$

- Secret key $\mathbf{s} \in \mathbb{Z}^{n}$, public key \mathbf{A} satisfies $\mathbf{s}^{t} \mathbf{A} \approx \mathbf{0}$.
- Encrypt $\mu \in\{0,1\}$ as $\mathbf{C}=\mathbf{A R}+\mu \mathbf{G}$. Decryption relation is

$$
\mathbf{s}^{t} \mathbf{C} \approx \mu \cdot \mathbf{s}^{t} \mathbf{G}
$$

- Homomorphic mult: $\mathbf{C}_{\times}=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s}^{t} \mathbf{C}_{\times} & =\mathbf{s}^{t} \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& \approx \mu_{1} \cdot \mathbf{s}^{t} \mathbf{G} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& \approx \mu_{1} \mu_{2} \cdot \mathbf{s}^{t} \mathbf{G}
\end{aligned}
$$

Error in \mathbf{C}_{\times}is $\mathbf{e}_{1}^{t} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)+\mu_{1} \cdot \mathbf{e}_{2}^{t}$.
Asymmetry allows homom mult with additive noise growth. [BV'13]

Concluding Thoughts

- Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf \& FE [GGHRSW'13], ...

Concluding Thoughts

- Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf \& FE [GGHRSW'13], ...

- Amazing amount of magic from such a small bag of tricks! A true case of making strength out of 'weakness.'

Concluding Thoughts

- Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf \& FE [GGHRSW'13], ...

- Amazing amount of magic from such a small bag of tricks! A true case of making strength out of 'weakness.'

Thanks!

