A Too $\lambda \kappa$ it for Ri $\nu \gamma$ - $\Lambda \Omega E \kappa \rho y \pi \tau o \gamma \rho \alpha \phi$

Vadim Lyubashevsky¹ |Chris Peikert²|

Oded Regev³

¹INRIA & ENS Paris

²Georgia Tech

³Courant Institute, NYU

Eurocrypt 2013 27 May

A Toolkit for Ring-LWE Cryptography

Vadim Lyubashevsky¹ |Chris Peikert²|

Oded Regev³

¹INRIA & ENS Paris

²Georgia Tech

³Courant Institute, NYU

Eurocrypt 2013 27 May

Offers worst-case hardness [Ajtai'96,...], asymptotic efficiency & parallelism, and (apparent) quantum resistance.

- Offers worst-case hardness [Ajtai'96,...], asymptotic efficiency & parallelism, and (apparent) quantum resistance.
- Many exciting developments in recent years:
 - ★ Encryption [R'05,PW'08,PVW'08,ACPS'09,...]
 - Signatures [LM'08,GPV'08,L'09,CHKP'10,B'10,GKV'10,BF'11ab,L'12,...]
 - * (H)IBE & FE [GPV'08,CHKP'10,ABB'10,AFV'11,...]
 - ★ FHE [G'09,vDGHV'10,SV'11,BV'11ab,BGV'12,B'12,...]
 - ★ Multi-linear maps

[GGH'13,CLT'13,...]

- Offers worst-case hardness [Ajtai'96,...], asymptotic efficiency & parallelism, and (apparent) quantum resistance.
- Many exciting developments in recent years:
 - ★ Encryption [R'05,PW'08,PVW'08,ACPS'09,...]
 - Signatures [LM'08,GPV'08,L'09,CHKP'10,B'10,GKV'10,BF'11ab,L'12,...]
 - ★ (H)IBE & FE [GPV'08,CHKP'10,ABB'10,AFV'11,...]
 - ★ FHE [G'09,vDGHV'10,SV'11,BV'11ab,BGV'12,B'12,...]
 - ★ Multi-linear maps [GGH'13,CLT'13,...]
- Most modern schemes are based on the SIS/LWE problems [A'96,R'05] and/or their ring variants [M'02,PR'06,LM'06,LPR'10].

- Offers worst-case hardness [Ajtai'96,...], asymptotic efficiency & parallelism, and (apparent) quantum resistance.
- Many exciting developments in recent years:
 - ★ Encryption [R'05,PW'08,PVW'08,ACPS'09,...]
 - Signatures [LM'08,GPV'08,L'09,CHKP'10,B'10,GKV'10,BF'11ab,L'12,...]
 - ★ (H)IBE & FE [GPV'08,CHKP'10,ABB'10,AFV'11,...]
 - ★ FHE [G'09,vDGHV'10,SV'11,BV'11ab,BGV'12,B'12,...]
 - ★ Multi-linear maps

[GGH'13,CLT'13,...]

Most modern schemes are based on the SIS/LWE problems [A'96,R'05] and/or their ring variants [M'02,PR'06,LM'06,LPR'10].

- \bigstar SIS/LWE aren't quite practical: $\Omega(n^2)$ key sizes and runtimes
- ✓ Ring-based primitives are! $\tilde{O}(n)$ complexity

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

$$\begin{array}{l} \operatorname{Ring} \ \overline{R} := \mathbb{Z}[X]/(1+X^n) & \text{for some } n = 2^k, \quad R_q := R/qR. \end{array}$$

$$\bullet \ \operatorname{For} \ s \leftarrow R_q, \ \operatorname{pairs} \ \{(a_i \ , \ b_i)\} \stackrel{c}{\approx} \ \operatorname{uniform} \ \{(a_i \ , \ b_i)\}: \\ a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q \\ \vdots \end{array}$$

$$\begin{array}{l} \operatorname{Ring} \ \overline{R := \mathbb{Z}[X]/(1+X^n)} \ \text{for some } n = 2^k, \quad R_q := R/qR. \end{array}$$

$$\bullet \ \operatorname{For} \ s \leftarrow R_q, \ \operatorname{pairs} \ \{(a_i \ , \ b_i)\} \stackrel{c}{\approx} \ \operatorname{uniform} \ \{(a_i \ , \ b_i)\}: \\ a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q \\ \vdots \end{array}$$

Error ("noise") terms $e(X) \in R$ are "short." What could this mean?

$$\begin{array}{l} \operatorname{Ring} \ \overline{R := \mathbb{Z}[X]/(1+X^n)} \ \text{for some } n = 2^k, \quad R_q := R/qR. \end{array}$$

$$\bullet \ \operatorname{For} \ s \leftarrow R_q, \ \operatorname{pairs} \ \{(a_i \ , \ b_i)\} \stackrel{c}{\approx} \ \operatorname{uniform} \ \{(a_i \ , \ b_i)\}: \\ a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q \\ \end{array}$$

Firror ("noise") terms $e(X) \in R$ are "short." What could this mean?

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \longleftrightarrow \quad (e_0, e_1, \dots, e_{n-1}) \in \mathbb{Z}^n.$$

$$\begin{array}{l} \operatorname{Ring} \ \overline{R := \mathbb{Z}[X]/(1+X^n)} \ \text{for some } n = 2^k, \quad R_q := R/qR. \end{array}$$

$$\bullet \ \operatorname{For} \ s \leftarrow R_q, \ \operatorname{pairs} \ \{(a_i \ , \ b_i)\} \stackrel{c}{\approx} \ \operatorname{uniform} \ \{(a_i \ , \ b_i)\}: \\ a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q \\ \vdots \end{array}$$

Firror ("noise") terms $e(X) \in R$ are "short." What could this mean?

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \longleftrightarrow \quad (e_0, e_1, \dots, e_{n-1}) \in \mathbb{Z}^n.$$

Applications need (+, ·)-combinations of errors to remain short, so we can "decode" them modulo q. Significantly affects security.

$$\begin{array}{l} \operatorname{Ring} \ \overline{R := \mathbb{Z}[X]/(1+X^n)} \ \text{for some } n = 2^k, \quad R_q := R/qR. \end{array}$$

$$\bullet \ \operatorname{For} \ s \leftarrow R_q, \ \operatorname{pairs} \ \{(a_i \ , \ b_i)\} \stackrel{c}{\approx} \ \operatorname{uniform} \ \{(a_i \ , \ b_i)\}: \\ a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q \\ \vdots \end{array}$$

Firror ("noise") terms $e(X) \in R$ are "short." What could this mean?

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \longleftrightarrow \quad (e_0, e_1, \dots, e_{n-1}) \in \mathbb{Z}^n.$$

Applications need (+, ·)-combinations of errors to remain short, so we can "decode" them modulo q. Significantly affects security.

$$||e + e'|| \le ||e|| + ||e'||$$
 $||e \cdot e'|| \le \sqrt{n} \cdot ||e|| \cdot ||e'||.$

$$\begin{array}{l} \operatorname{Ring} \boxed{R := \mathbb{Z}[X]/(1+X^n)} \text{ for some } n = 2^k, \quad R_q := R/qR. \end{array}$$

$$\bullet \quad \operatorname{For} s \leftarrow R_q, \text{ pairs } \{(a_i \ , \ b_i)\} \stackrel{c}{\approx} \text{ uniform } \{(a_i \ , \ b_i)\}: \\ a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q \\ . \end{array}$$

Error ("noise") terms $e(X) \in R$ are "short." What could this mean?

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \longleftrightarrow \quad (e_0, e_1, \dots, e_{n-1}) \in \mathbb{Z}^n.$$

Applications need (+, ·)-combinations of errors to remain short, so we can "decode" them modulo q. Significantly affects security.

$$||e + e'|| \le ||e|| + ||e'|| \qquad ||e \cdot e'|| \le \sqrt{n} \cdot ||e|| \cdot ||e'||.$$

("Expansion factor" \sqrt{n} is worst-case, often quite loose.)

• Rings $\mathbb{Z}[X]/(1+X^{2^k})$ don't meet all our needs.

• Rings $\mathbb{Z}[X]/(1+X^{2^k})$ don't meet all our needs.

X They are rare — might make keys unnecessarily large in practice.

• Rings $\mathbb{Z}[X]/(1+X^{2^k})$ don't meet all our needs.

X They are rare — might make keys unnecessarily large in practice.

XX Many schemes cannot use them at all!

E.g., SIMD homom. encryption [SV'11] and applications [GHS'12abc]

• Rings $\mathbb{Z}[X]/(1+X^{2^k})$ don't meet all our needs.

X They are rare — might make keys unnecessarily large in practice.

XX Many schemes cannot use them at all!

E.g., SIMD homom. encryption [SV'11] and applications [GHS'12abc]

• The *m*th cyclotomic ring: $R = \mathbb{Z}[X]/\Phi_m(X)$ where

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega_m^i) \in \mathbb{Z}[X], \quad \omega_m = e^{2\pi\sqrt{-1}/m} \in \mathbb{C}.$$

Note: $\Phi_m(X)$ divides $(X^m - 1)$, has degree $n = \varphi(m) = \deg(\Phi_m)$. "Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

• Rings $\mathbb{Z}[X]/(1+X^{2^k})$ don't meet all our needs.

X They are rare — might make keys unnecessarily large in practice.

XX Many schemes cannot use them at all! E.g., SIMD homom. encryption [SV'11] and applications [GHS'12abc]

• The *m*th cyclotomic ring: $R = \mathbb{Z}[X]/\Phi_m(X)$ where

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega_m^i) \in \mathbb{Z}[X], \quad \omega_m = e^{2\pi\sqrt{-1}/m} \in \mathbb{C}.$$

Note: $\Phi_m(X)$ divides $(X^m - 1)$, has degree $n = \varphi(m) = \deg(\Phi_m)$. "Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

• Examples: $\Phi_{2^{k+1}}(X) = 1 + X^{2^k}$, $\Phi_9(X) = 1 + X^3 + X^6$.

• Rings $\mathbb{Z}[X]/(1+X^{2^k})$ don't meet all our needs.

X They are rare — might make keys unnecessarily large in practice.

XX Many schemes cannot use them at all! E.g., SIMD homom. encryption [SV'11] and applications [GHS'12abc]

• The *m*th cyclotomic ring: $R = \mathbb{Z}[X]/\Phi_m(X)$ where

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega_m^i) \in \mathbb{Z}[X], \quad \omega_m = e^{2\pi\sqrt{-1}/m} \in \mathbb{C}.$$

Note: $\Phi_m(X)$ divides $(X^m - 1)$, has degree $n = \varphi(m) = \deg(\Phi_m)$. "Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

- Examples: $\Phi_{2^{k+1}}(X) = 1 + X^{2^k}$, $\Phi_9(X) = 1 + X^3 + X^6$.
- ✓ Ring-LWE (appropriately defined) is hard in any cyclotomic [LPR'10] ...assuming problems on ideal lattices are quantum-hard in the worst case.

For prime p,

$$\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$$
 and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

► For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1} \quad \text{and} \quad \Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

 $Mod-\Phi_{p^e}(X)$ reduction is efficient; small(ish) expansion factor.

For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$ and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

 $\operatorname{Mod}-\Phi_{p^e}(X)$ reduction is efficient; small(ish) expansion factor. But still not enough: e.g., SIMD FHE likes $m = 3 \cdot 7 \cdot 19 \cdot 73$.

For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$ and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

$$\begin{split} & \mathsf{Mod}\text{-}\Phi_{p^e}(X) \text{ reduction is efficient; small(ish) expansion factor.} \\ & \mathsf{But still not enough: e.g., SIMD FHE likes } m = 3 \cdot 7 \cdot 19 \cdot 73. \end{split}$$

What about non-prime power m?

For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1} \text{ and } \Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$ Mod- $\Phi_{p^e}(X)$ reduction is efficient; small(ish) expansion factor. But still not enough: e.g., SIMD FHE likes $m = 3 \cdot 7 \cdot 19 \cdot 73.$ Mhat about non-prime power m?

★
$$\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$$

For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1} \quad \text{and} \quad \Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

 $\operatorname{Mod}-\Phi_{p^e}(X)$ reduction is efficient; small(ish) expansion factor. But still not enough: e.g., SIMD FHE likes $m = 3 \cdot 7 \cdot 19 \cdot 73$.

What about non-prime power m?

 $x Φ_{21}(X) = 1 − X + X^3 − X^4 + X^6 − X^8 + X^9 − X^{11} + X^{12}$

XX $\Phi_{105}(X)$: degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients

For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1} \text{ and } \Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

 $\operatorname{Mod}-\Phi_{p^e}(X)$ reduction is efficient; small(ish) expansion factor. But still not enough: e.g., SIMD FHE likes $m = 3 \cdot 7 \cdot 19 \cdot 73$.

What about non-prime power m?

 $x Φ_{21}(X) = 1 − X + X^3 − X^4 + X^6 − X^8 + X^9 − X^{11} + X^{12}$

XX $\Phi_{105}(X)$: degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients **XXX** $\Phi_{3:7:19:73}(X)$: highly irregular; large coeffs

For prime *p*,

 $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1} \text{ and } \Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}).$

Mod- $\Phi_{p^e}(X)$ reduction is efficient; small(ish) expansion factor. But still not enough: e.g., SIMD FHE likes $m = 3 \cdot 7 \cdot 19 \cdot 73$.

What about non-prime power m?

× $Φ_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$

XX $\Phi_{105}(X)$: degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients **XX** $\Phi_{3,7,19,73}(X)$: highly irregular; large coeffs

Yuck!!!

- \checkmark Irregular $\Phi_m(X)$ induces cumbersome, slower operations modulo $\Phi_m(X)$
- **X** Large expansion factors up to super-polynomial $n^{\omega(1)}$ [Erdős'46]
- X Provable & concrete security also degrade with expansion factor: pay twice!

A toolkit of simple, fast algorithms and tight error analyses for working with ring-LWE in arbitrary cyclotomics

A toolkit of simple, fast algorithms and tight error analyses for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations $(+, \cdot)$; noise generation & decoding; conversions among the best representations for each task. \implies Runtimes: O(n) per prime divisor of m, or $O(n \log n)$.

A toolkit of simple, fast algorithms and tight error analyses for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations $(+, \cdot)$; noise generation & decoding; conversions among the best representations for each task. \implies Runtimes: O(n) per prime divisor of m, or $O(n \log n)$.

Tight Analysis: same noise growth and worst-case hardness in all cyclotomics; optimal noise tolerance in decoding. \implies No dependence on the form of m.

A toolkit of simple, fast algorithms and tight error analyses for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations $(+, \cdot)$; noise generation & decoding; conversions among the best representations for each task. \implies Runtimes: O(n) per prime divisor of m, or $O(n \log n)$.

Tight Analysis: same noise growth and worst-case hardness in all cyclotomics; optimal noise tolerance in decoding. \implies No dependence on the form of m.

Key Ideas

1 In algorithms, use tensorial representations of ring elements.

✓ No reduction modulo $\Phi_m(X)$ — in fact, don't need $\Phi_m(X)$ at all!

A toolkit of simple, fast algorithms and tight error analyses for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations $(+, \cdot)$; noise generation & decoding; conversions among the best representations for each task. \implies Runtimes: O(n) per prime divisor of m, or $O(n \log n)$.

Tight Analysis: same noise growth and worst-case hardness in all cyclotomics; optimal noise tolerance in decoding. \implies No dependence on the form of m.

Key Ideas

In algorithms, use tensorial representations of ring elements.

- ✓ No reduction modulo $\Phi_m(X)$ in fact, don't need $\Phi_m(X)$ at all!
- 2 In analysis, use canonical embedding to define geometry.

A toolkit of simple, fast algorithms and tight error analyses for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations $(+, \cdot)$; noise generation & decoding; conversions among the best representations for each task. \implies Runtimes: O(n) per prime divisor of m, or $O(n \log n)$.

Tight Analysis: same noise growth and worst-case hardness in all cyclotomics; optimal noise tolerance in decoding. \implies No dependence on the form of m.

Key Ideas

In algorithms, use tensorial representations of ring elements.

- ✓ No reduction modulo $\Phi_m(X)$ in fact, don't need $\Phi_m(X)$ at all!
- 2 In analysis, use canonical embedding to define geometry.
- **3** Use decoding basis of dual ideal R^{\vee} for noise generation & decoding.
 - ✓ Corresponds to the "true" definition of ring-LWE.

Tensorial Decomposition and the "Powerful" Basis

• Recall:
$$\Phi_p(X) = 1 + X + \dots + X^{p-1}$$
 and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}})$.

Tensorial Decomposition and the "Powerful" Basis

• Recall:
$$\Phi_p(X) = 1 + X + \dots + X^{p-1}$$
 and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}})$.

Ancient Theorem [Kummer, 1840s]

• Let $m = \prod_{\ell} m_{\ell}$ be the prime-power factorization of m.

Then the *m*th cyclotomic ring $R = \mathbb{Z}[X]/\Phi_m(X)$ is isomorphic to the tensor product of all the m_ℓ th cyclotomic rings:

$$R \cong \mathbb{Z}[X_1, X_2, \ldots]/(\Phi_{m_1}(X_1), \Phi_{m_2}(X_2), \ldots).$$

Isomorphism identifies X_{ℓ} with $X^{m/m_{\ell}}$.

Tensorial Decomposition and the "Powerful" Basis

• Recall:
$$\Phi_p(X) = 1 + X + \dots + X^{p-1}$$
 and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}})$.

Ancient Theorem [Kummer, 1840s]

• Let $m = \prod_{\ell} m_{\ell}$ be the prime-power factorization of m.

Then the *m*th cyclotomic ring $R = \mathbb{Z}[X]/\Phi_m(X)$ is isomorphic to the tensor product of all the m_ℓ th cyclotomic rings:

$$R \cong \mathbb{Z}[X_1, X_2, \ldots]/(\Phi_{m_1}(X_1), \Phi_{m_2}(X_2), \ldots).$$

Isomorphism identifies X_{ℓ} with $X^{m/m_{\ell}}$.

The Powerful Basis

▶ It's the natural \mathbb{Z} -basis $\{X_1^{j_1}X_2^{j_2}\cdots\} = \bigotimes_{\ell} \{X_{\ell}^{j_{\ell}}\}, 0 \le j_{\ell} < \varphi(m_{\ell}).$

Tensorial Decomposition and the "Powerful" Basis

• Recall:
$$\Phi_p(X) = 1 + X + \dots + X^{p-1}$$
 and $\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}})$.

Ancient Theorem [Kummer, 1840s]

• Let $m = \prod_{\ell} m_{\ell}$ be the prime-power factorization of m.

Then the *m*th cyclotomic ring $R = \mathbb{Z}[X]/\Phi_m(X)$ is isomorphic to the tensor product of all the m_ℓ th cyclotomic rings:

$$R \cong \mathbb{Z}[X_1, X_2, \ldots] / (\Phi_{m_1}(X_1), \Phi_{m_2}(X_2), \ldots).$$

Isomorphism identifies X_{ℓ} with $X^{m/m_{\ell}}$.

The Powerful Basis

- ▶ It's the natural \mathbb{Z} -basis $\{X_1^{j_1}X_2^{j_2}\cdots\} = \bigotimes_{\ell} \{X_{\ell}^{j_{\ell}}\}, \ 0 \leq j_{\ell} < \varphi(m_{\ell}).$
- ▶ It is not the "power" basis $\{1, X, X^2, ..., X^{\varphi(m)-1}\}$ of $\mathbb{Z}[X]/\Phi_m(X)$. E.g., for m = 15 it's $\{X^j\}$ for $j \in \{0, 3, 5, 6, 8, 9, 11, 14\}$.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Algebra: Exposes fine-grained structure of the ring and its relationships with other cyclotomic rings.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Algebra: Exposes fine-grained structure of the ring and its relationships with other cyclotomic rings.

E.g.: has applications in "ring-switching" [GHPS'12] and new bootstrapping [AP'13] algorithms for FHE.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Algebra: Exposes fine-grained structure of the ring and its relationships with other cyclotomic rings.

E.g.: has applications in "ring-switching" [GHPS'12] and new bootstrapping [AP'13] algorithms for FHE.

Algorithms: Efficiently reduces all operations to the prime-power case, by dealing with each X_{ℓ} independently.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Algebra: Exposes fine-grained structure of the ring and its relationships with other cyclotomic rings.

E.g.: has applications in "ring-switching" [GHPS'12] and new bootstrapping [AP'13] algorithms for FHE.

Algorithms: Efficiently reduces all operations to the prime-power case, by dealing with each X_{ℓ} independently.

E.g.: simple, fast conversions to/from "evaluation (CRT) representation," via sequence of prime-power FFTs.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Algebra: Exposes fine-grained structure of the ring and its relationships with other cyclotomic rings.

E.g.: has applications in "ring-switching" [GHPS'12] and new bootstrapping [AP'13] algorithms for FHE.

Algorithms: Efficiently reduces all operations to the prime-power case, by dealing with each X_ℓ independently.

E.g.: simple, fast conversions to/from "evaluation (CRT) representation," via sequence of prime-power FFTs.

Geometry: Norms, singular values, Gram-Schmidt orthogonalization, dual basis, etc. all behave well under tensoring.

Tensorial decomposition with the powerful basis is algebraically, computationally, and geometrically preferable to $\mathbb{Z}[X]/\Phi_m(X)$ with the power basis.

Algebra: Exposes fine-grained structure of the ring and its relationships with other cyclotomic rings.

E.g.: has applications in "ring-switching" [GHPS'12] and new bootstrapping [AP'13] algorithms for FHE.

Algorithms: Efficiently reduces all operations to the prime-power case, by dealing with each X_ℓ independently.

E.g.: simple, fast conversions to/from "evaluation (CRT) representation," via sequence of prime-power FFTs.

Geometry: Norms, singular values, Gram-Schmidt orthogonalization, dual basis, etc. all behave well under tensoring.

E.g.: powerful basis is better-conditioned than power basis.

• Consider
$$R = \mathbb{Z}[X]/\Phi_p(X)$$
 with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$\begin{array}{rcl} X^j & \longleftrightarrow & (0,\ldots,0,1,0,\ldots,0), \quad (j=0,\ldots,p-2) \\ X^{p-1} & \longleftrightarrow & (-1,-1,\ldots,-1) \end{array}$$

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$\begin{array}{rcl} X^j & \longleftrightarrow & (0,\ldots,0,1,0,\ldots,0), \quad (j=0,\ldots,p-2) \\ X^{p-1} & \longleftrightarrow & (-1,-1,\ldots,-1) \end{array}$$

We want a basis-independent geometry.

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$\begin{array}{rcl} X^j & \longleftrightarrow & (0,\ldots,0,1,0,\ldots,0), \quad (j=0,\ldots,p-2) \\ X^{p-1} & \longleftrightarrow & (-1,-1,\ldots,-1) \end{array}$$

We want a basis-independent geometry.

► The canonical embedding $\sigma \colon R \to \mathbb{C}^{p-1}$ evaluates at all roots of Φ_p : $\sigma(e(X)) = \left(e(\omega_p^1), e(\omega_p^2), \dots, e(\omega_p^{p-1})\right)$

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$X^j \longleftrightarrow (0, \dots, 0, 1, 0, \dots, 0), \quad (j = 0, \dots, p-2)$$
$$X^{p-1} \longleftrightarrow (-1, -1, \dots, -1)$$

We want a basis-independent geometry.

► The canonical embedding $\sigma \colon R \to \mathbb{C}^{p-1}$ evaluates at all roots of Φ_p : $\sigma(e(X)) = \left(e(\omega_p^1), e(\omega_p^2), \dots, e(\omega_p^{p-1})\right)$

Define all geometric quantities using σ : e.g., $\|e\|_2 := \|\sigma(e)\|_2$.

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$X^j \quad \longleftrightarrow \quad (0, \dots, 0, 1, 0, \dots, 0), \quad (j = 0, \dots, p - 2)$$
$$X^{p-1} \quad \longleftrightarrow \quad (-1, -1, \dots, -1)$$

We want a basis-independent geometry.

► The canonical embedding $\sigma \colon R \to \mathbb{C}^{p-1}$ evaluates at all roots of Φ_p : $\sigma(e(X)) = \left(e(\omega_p^1), e(\omega_p^2), \dots, e(\omega_p^{p-1})\right)$

Define all geometric quantities using σ : e.g., $\|e\|_2 := \|\sigma(e)\|_2$.

Nice Features of the Canonical Embedding

$$\checkmark \ \left\|X^{j}\right\|_{\infty} = 1 \text{ and } \left\|X^{j}\right\|_{2} = \sqrt{p-1} \text{ for all } j.$$

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$X^j \quad \longleftrightarrow \quad (0, \dots, 0, 1, 0, \dots, 0), \quad (j = 0, \dots, p - 2)$$
$$X^{p-1} \quad \longleftrightarrow \quad (-1, -1, \dots, -1)$$

We want a basis-independent geometry.

► The canonical embedding $\sigma \colon R \to \mathbb{C}^{p-1}$ evaluates at all roots of Φ_p : $\sigma(e(X)) = \left(e(\omega_p^1), e(\omega_p^2), \dots, e(\omega_p^{p-1})\right)$

Define all geometric quantities using σ : e.g., $\|e\|_2 := \|\sigma(e)\|_2$.

Nice Features of the Canonical Embedding

$$\checkmark \ \|X^j\|_{\infty} = 1 \text{ and } \|X^j\|_2 = \sqrt{p-1} \text{ for all } j.$$

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$.

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$X^j \quad \longleftrightarrow \quad (0, \dots, 0, 1, 0, \dots, 0), \quad (j = 0, \dots, p - 2)$$
$$X^{p-1} \quad \longleftrightarrow \quad (-1, -1, \dots, -1)$$

We want a basis-independent geometry.

► The canonical embedding $\sigma \colon R \to \mathbb{C}^{p-1}$ evaluates at all roots of Φ_p : $\sigma(e(X)) = \left(e(\omega_p^1), e(\omega_p^2), \dots, e(\omega_p^{p-1})\right)$

Define all geometric quantities using σ : e.g., $\|e\|_2 := \|\sigma(e)\|_2$.

Nice Features of the Canonical Embedding

$$\checkmark \ \|X^j\|_{\infty} = 1 \text{ and } \|X^j\|_2 = \sqrt{p-1} \text{ for all } j.$$

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$. Makes expansion very easy to analyze: e.g., $||a \cdot b||_2 \le ||a||_{\infty} \cdot ||b||_2$.

• Consider $R = \mathbb{Z}[X]/\Phi_p(X)$ with power basis $\{1, X, X^2, \dots, X^{p-2}\}$.

Geometrically, associating elements with their coeff vectors is strange:

$$X^j \quad \longleftrightarrow \quad (0, \dots, 0, 1, 0, \dots, 0), \quad (j = 0, \dots, p - 2)$$
$$X^{p-1} \quad \longleftrightarrow \quad (-1, -1, \dots, -1)$$

We want a basis-independent geometry.

► The canonical embedding $\sigma \colon R \to \mathbb{C}^{p-1}$ evaluates at all roots of Φ_p : $\sigma(e(X)) = \left(e(\omega_p^1), e(\omega_p^2), \dots, e(\omega_p^{p-1})\right)$

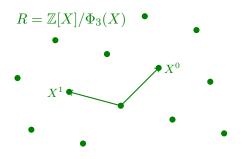
Define all geometric quantities using σ : e.g., $\|e\|_2 := \|\sigma(e)\|_2$.

Nice Features of the Canonical Embedding

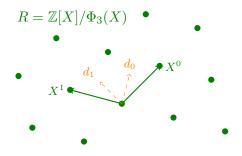
$$\checkmark \|X^j\|_{\infty} = 1 \text{ and } \|X^j\|_2 = \sqrt{p-1} \text{ for all } j.$$

 ✓ Under σ, both + and · are coordinate-wise: σ(a · b) = σ(a) ⊙ σ(b). Makes expansion very easy to analyze: e.g., ||a · b||₂ ≤ ||a||_∞ · ||b||₂.
 ✓ Ring-LWE is provably hard with (spherical) Gaussian noise under σ.

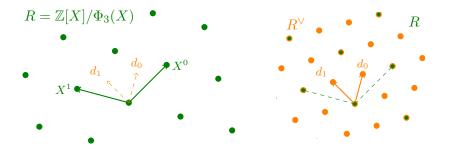
• $R = \mathbb{Z}[X]/\Phi_p(X)$ under embedding σ is a lattice in \mathbb{C}^{p-1} .



- $R = \mathbb{Z}[X]/\Phi_p(X)$ under embedding σ is a lattice in \mathbb{C}^{p-1} .
- ► Its dual R^{\vee} has \mathbb{Z} -basis $\{d_j\}$, given by $\langle \sigma(d_j), \sigma(X^{j'}) \rangle = \delta_{j,j'}$. We call $\{d_j\}$ the decoding basis. (It also has a tensor form...)



- $R = \mathbb{Z}[X]/\Phi_p(X)$ under embedding σ is a lattice in \mathbb{C}^{p-1} .
- ► Its dual R^{\vee} has \mathbb{Z} -basis $\{d_j\}$, given by $\langle \sigma(d_j), \sigma(X^{j'}) \rangle = \delta_{j,j'}$. We call $\{d_j\}$ the decoding basis. (It also has a tensor form...)
- ▶ R^{\vee} is a (fractional) ideal, and $pR^{\vee} \subseteq R \subseteq R^{\vee}$, with $pR^{\vee} \approx R$.



▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .

- ▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .
- ▶ In decryption, we need to recover $e \in R^{\vee}$, given $\bar{e} = e \mod qR^{\vee}$.

- ▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .
- In decryption, we need to recover e ∈ R[∨], given ē = e mod qR[∨]. How: represent ē in decoding basis with Z_q-coeffs, then "lift" to Z.

- ▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .
- In decryption, we need to recover e ∈ R[∨], given ē = e mod qR[∨]. How: represent ē in decoding basis with Z_a-coeffs, then "lift" to Z.

Key Facts

For short $e \in R^{\vee}$ (under σ), coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_{j} d_{j} \quad (e_{j} \in \mathbb{Z}) \implies |e_{j}| = \left| \left\langle \sigma(e) \,, \, \sigma(X^{j}) \right\rangle \right| \le \|e\| \cdot \sqrt{n}.$$

- ▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .
- In decryption, we need to recover e ∈ R[∨], given ē = e mod qR[∨]. How: represent ē in decoding basis with Z_a-coeffs, then "lift" to Z.

Key Facts

For short $e \in R^{\vee}$ (under σ), coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_{j} d_{j} \quad (e_{j} \in \mathbb{Z}) \implies |e_{j}| = \left| \left\langle \sigma(e) \,, \, \sigma(X^{j}) \right\rangle \right| \leq \|e\| \cdot \sqrt{n}.$$

Moreover, |e_j| are optimally small given "density" of R[∨], because powerful basis {X^j} is optimally short given density of R.

- ▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .
- In decryption, we need to recover e ∈ R[∨], given ē = e mod qR[∨]. How: represent ē in decoding basis with Z_a-coeffs, then "lift" to Z.

Key Facts

For short $e \in R^{\vee}$ (under σ), coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_{j} d_{j} \quad (e_{j} \in \mathbb{Z}) \implies |e_{j}| = \left| \left\langle \sigma(e) \,, \, \sigma(X^{j}) \right\rangle \right| \leq \|e\| \cdot \sqrt{n}.$$

- Moreover, |e_j| are optimally small given "density" of R[∨], because powerful basis {X^j} is optimally short given density of R.
- ▶ By contrast, such optimal decoding is not possible for R/qR, because R[∨] lacks optimally short elements for its density.

- ▶ In "true" ring-LWE, errors are Gaussian over R^{\vee} .
- In decryption, we need to recover e ∈ R[∨], given ē = e mod qR[∨]. How: represent ē in decoding basis with Z_a-coeffs, then "lift" to Z.

Key Facts

For short $e \in R^{\vee}$ (under σ), coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_{j} d_{j} \quad (e_{j} \in \mathbb{Z}) \implies |e_{j}| = \left| \left\langle \sigma(e) \,, \, \sigma(X^{j}) \right\rangle \right| \leq \|e\| \cdot \sqrt{n}.$$

- Moreover, |e_j| are optimally small given "density" of R[∨], because powerful basis {X^j} is optimally short given density of R.
- By contrast, such optimal decoding is not possible for R/qR, because R[∨] lacks optimally short elements for its density.
- ► Bottom line: using R[∨] is actually beneficial in applications! (And "advanced" applications benefit even more from its algebraic properties.)

► The "right" choices of

 $\begin{array}{ll} \mbox{mathematical objects} & \mbox{and} \\ \mbox{(canonical embedding, } R^{\vee}) \end{array}$

d representations (tensor bases)

come together perfectly, yielding:

The "right" choices of

mathematical objects and (canonical embedding, R^{\vee})

nd representations (tensor bases)

come together perfectly, yielding: provable hardness,

The "right" choices of

mathematical objects and (canonical embedding, R^{\vee})

nd representations (tensor bases)

come together perfectly, yielding: provable hardness, fast algorithms,

The "right" choices of

come together perfectly, yielding:

provable hardness, fast algorithms, tight analysis — no compromises.

The "right" choices of

 $\begin{array}{lll} \mbox{mathematical objects} & \mbox{and} & \mbox{representations} \\ \mbox{(canonical embedding, } R^{\vee} \mbox{)} & \mbox{(tensor bases)} \end{array}$

come together perfectly, yielding:

provable hardness, fast algorithms, tight analysis — no compromises.

Much more in the paper: "regularity" lemma, (homomorphic) encryption schemes, implementation advice, ...

The "right" choices of

 $\begin{array}{lll} \mbox{mathematical objects} & \mbox{and} & \mbox{representations} \\ \mbox{(canonical embedding, } R^{\vee} \mbox{)} & \mbox{(tensor bases)} \end{array}$

come together perfectly, yielding:

provable hardness, fast algorithms, tight analysis — no compromises.

- Much more in the paper: "regularity" lemma, (homomorphic) encryption schemes, implementation advice, ...
- Implementations coming soon!

The "right" choices of

 $\begin{array}{lll} \mbox{mathematical objects} & \mbox{and} & \mbox{representations} \\ \mbox{(canonical embedding, } R^{\vee} \mbox{)} & \mbox{(tensor bases)} \end{array}$

come together perfectly, yielding:

provable hardness, fast algorithms, tight analysis — no compromises.

- Much more in the paper: "regularity" lemma, (homomorphic) encryption schemes, implementation advice, ...
- Implementations coming soon!

Thanks!

Full version: ePrint #2013/293
http://eprint.iacr.org/2013/293