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Lattice- and Ring-Based Cryptography

I Offers worst-case hardness [Ajtai’96,. . . ], asymptotic efficiency &
parallelism, and (apparent) quantum resistance.

I Many exciting developments in recent years:
F Encryption [R’05,PW’08,PVW’08,ACPS’09,. . . ]

F Signatures [LM’08,GPV’08,L’09,CHKP’10,B’10,GKV’10,BF’11ab,L’12,. . . ]

F (H)IBE & FE [GPV’08,CHKP’10,ABB’10,AFV’11,. . . ]

F FHE [G’09,vDGHV’10,SV’11,BV’11ab,BGV’12,B’12,. . . ]

F Multi-linear maps [GGH’13,CLT’13,. . . ]

I Most modern schemes are based on the SIS/LWE problems [A’96,R’05]

and/or their ring variants [M’02,PR’06,LM’06,LPR’10].

7 SIS/LWE aren’t quite practical: Ω(n2) key sizes and runtimes

4 Ring-based primitives are! Õ(n) complexity
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LWE Over Rings, Over-Simplified [LPR’10]

Ring R := Z[X]/(1 +Xn) for some n = 2k, Rq := R/qR.

I For s← Rq, pairs {(ai , bi)}
c
≈ uniform {(ai , bi)}:

a1 ← Rq , b1 = a1 · s+ e1 ∈ Rq
a2 ← Rq , b2 = a2 · s+ e2 ∈ Rq

...

I Error (“noise”) terms e(X) ∈ R are “short.” What could this mean?

e(X) =

n−1∑
j=0

ejX
j ←→ (e0, e1, . . . , en−1) ∈ Zn.

I Applications need (+, ·)-combinations of errors to remain short,
so we can “decode” them modulo q. Significantly affects security.

‖e+ e′‖ ≤ ‖e‖+ ‖e′‖ ‖e · e′‖ ≤
√
n · ‖e‖ · ‖e′‖.

(“Expansion factor”
√
n is worst-case, often quite loose.)
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More Rings, Please!
I Rings Z[X]/(1 +X2k) don’t meet all our needs.

7 They are rare — might make keys unnecessarily large in practice.

77 Many schemes cannot use them at all!

E.g., SIMD homom. encryption [SV’11] and applications [GHS’12abc]

I The mth cyclotomic ring: R = Z[X]/Φm(X) where

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X], ωm = e2π
√
−1/m ∈ C.

Note: Φm(X) divides (Xm − 1), has degree n = ϕ(m) = deg(Φm).

“Power” Z-basis of R is {1, X,X2, . . . , Xn−1}.

I Examples: Φ2k+1(X) = 1 +X2k , Φ9(X) = 1 +X3 +X6.

4 Ring-LWE (appropriately defined) is hard in any cyclotomic [LPR’10]

. . . assuming problems on ideal lattices are quantum-hard in the worst case.
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The Form of Cyclotomic Polynomials

I For prime p,

Φp(X) = 1 +X +X2 + · · ·+Xp−1 and Φpe(X) = Φp(X
pe−1

).

Mod-Φpe(X) reduction is efficient; small(ish) expansion factor.

But still not enough: e.g., SIMD FHE likes m = 3 · 7 · 19 · 73.

I What about non-prime power m?

7 Φ21(X) = 1−X +X3 −X4 +X6 −X8 +X9 −X11 +X12

77 Φ105(X): degree 48; 33 monomials with {−2,−1, 1}-coefficients

777 Φ3·7·19·73(X): highly irregular; large coeffs

Yuck!!!

7 Irregular Φm(X) induces cumbersome, slower operations modulo Φm(X)

7 Large expansion factors — up to super-polynomial nω(1) [Erdős’46]

7 Provable & concrete security also degrade with expansion factor: pay twice!
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Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations (+, ·); noise generation & decoding;
conversions among the best representations for each task.
=⇒ Runtimes: O(n) per prime divisor of m, or O(n log n).

Tight Analysis: same noise growth and worst-case hardness in
all cyclotomics; optimal noise tolerance in decoding.
=⇒ No dependence on the form of m.

Key Ideas

1 In algorithms, use tensorial representations of ring elements.

4 No reduction modulo Φm(X) — in fact, don’t need Φm(X) at all!

2 In analysis, use canonical embedding to define geometry.

3 Use decoding basis of dual ideal R∨ for noise generation & decoding.

4 Corresponds to the “true” definition of ring-LWE.
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Tensorial Decomposition and the “Powerful” Basis

I Recall: Φp(X) = 1 +X + · · ·+Xp−1 and Φpe(X) = Φp(X
pe−1

).

Ancient Theorem [Kummer, 1840s]

I Let m =
∏
`m` be the prime-power factorization of m.

Then the mth cyclotomic ring R = Z[X]/Φm(X) is isomorphic to the
tensor product of all the m`th cyclotomic rings:

R ∼= Z[X1, X2, . . .]/(Φm1(X1),Φm2(X2), . . .).

Isomorphism identifies X` with Xm/m` .

The Powerful Basis

I It’s the natural Z-basis {Xj1
1 X

j2
2 · · ·} =

⊗
`{X

j`
` }, 0 ≤ j` < ϕ(m`).

I It is not the “power” basis {1, X,X2, . . . , Xϕ(m)−1} of Z[X]/Φm(X).

E.g., for m = 15 it’s {Xj} for j ∈ {0, 3, 5, 6, 8, 9, 11, 14}.
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If You Remember Only One Thing From This Talk. . .

Tensorial decomposition with the powerful basis is
algebraically, computationally, and geometrically preferable to

Z[X]/Φm(X) with the power basis.

Algebra: Exposes fine-grained structure of the ring and its
relationships with other cyclotomic rings.

E.g.: has applications in “ring-switching” [GHPS’12] and new
bootstrapping [AP’13] algorithms for FHE.

Algorithms: Efficiently reduces all operations to the prime-power case, by
dealing with each X` independently.

E.g.: simple, fast conversions to/from “evaluation (CRT)
representation,” via sequence of prime-power FFTs.

Geometry: Norms, singular values, Gram-Schmidt orthogonalization,
dual basis, etc. all behave well under tensoring.

E.g.: powerful basis is better-conditioned than power basis.
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Geometry of the Ring

I Consider R = Z[X]/Φp(X) with power basis {1, X,X2, . . . , Xp−2}.

I Geometrically, associating elements with their coeff vectors is strange:

Xj ←→ (0, . . . , 0, 1, 0, . . . , 0), (j = 0, . . . , p− 2)

Xp−1 ←→ (−1,−1, . . . ,−1)

We want a basis-independent geometry.

I The canonical embedding σ : R→ Cp−1 evaluates at all roots of Φp:

σ(e(X)) =
(
e(ω1

p), e(ω
2
p), . . . , e(ω

p−1
p )

)
Define all geometric quantities using σ: e.g., ‖e‖2 := ‖σ(e)‖2.

Nice Features of the Canonical Embedding

4 ‖Xj‖∞ = 1 and ‖Xj‖2 =
√
p− 1 for all j.

4 Under σ, both + and · are coordinate-wise: σ(a · b) = σ(a)� σ(b).

Makes expansion very easy to analyze: e.g., ‖a · b‖2 ≤ ‖a‖∞ · ‖b‖2.

4 Ring-LWE is provably hard with (spherical) Gaussian noise under σ.
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Dual Ideal R∨ and Decoding Basis

I R = Z[X]/Φp(X) under embedding σ is a lattice in Cp−1.

I Its dual R∨ has Z-basis {dj}, given by 〈σ(dj) , σ(Xj′)〉 = δj,j′ .

We call {dj} the decoding basis. (It also has a tensor form. . . )

I R∨ is a (fractional) ideal, and pR∨ ⊆ R ⊆ R∨, with pR∨ ≈ R.

R = Z[X]/Φ3(X)

X0

X1

R∨ R

d0
d1
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Dual Ideal R∨ and Decoding Basis

I In “true” ring-LWE, errors are Gaussian over R∨.

I In decryption, we need to recover e ∈ R∨, given ē = e mod qR∨.

How: represent ē in decoding basis with Zq-coeffs, then “lift” to Z.

Key Facts

I For short e ∈ R∨ (under σ), coeffs in decoding basis {dj} are small:

e =
∑

j
ejdj (ej ∈ Z) =⇒ |ej | =

∣∣〈σ(e) , σ(Xj)
〉∣∣ ≤ ‖e‖ · √n.

I Moreover, |ej | are optimally small given “density” of R∨,
because powerful basis {Xj} is optimally short given density of R.

I By contrast, such optimal decoding is not possible for R/qR,
because R∨ lacks optimally short elements for its density.

I Bottom line: using R∨ is actually beneficial in applications!
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How: represent ē in decoding basis with Zq-coeffs, then “lift” to Z.

Key Facts

I For short e ∈ R∨ (under σ), coeffs in decoding basis {dj} are small:

e =
∑

j
ejdj (ej ∈ Z) =⇒ |ej | =

∣∣〈σ(e) , σ(Xj)
〉∣∣ ≤ ‖e‖ · √n.

I Moreover, |ej | are optimally small given “density” of R∨,
because powerful basis {Xj} is optimally short given density of R.

I By contrast, such optimal decoding is not possible for R/qR,
because R∨ lacks optimally short elements for its density.

I Bottom line: using R∨ is actually beneficial in applications!

(And “advanced” applications benefit even more from its algebraic properties.)

11 / 12



Dual Ideal R∨ and Decoding Basis

I In “true” ring-LWE, errors are Gaussian over R∨.

I In decryption, we need to recover e ∈ R∨, given ē = e mod qR∨.
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Concluding Thoughts

I The “right” choices of

mathematical objects and representations
(canonical embedding, R∨) (tensor bases)

come together perfectly, yielding:

provable hardness, fast algorithms, tight analysis — no compromises.

I Much more in the paper: “regularity” lemma, (homomorphic)
encryption schemes, implementation advice, . . .

I Implementations coming soon!

Thanks!

Full version: ePrint #2013/293
http://eprint.iacr.org/2013/293
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