Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem

 $\begin{array}{l} Chris \ Peikert \\ SRI \rightarrow Georgia \ Tech \end{array}$

Impagliazzo's World Workshop

1 State of Lattice-Based Cryptography

2 Main Result: Public-Key Encryption based on GapSVP

3 Proof & Future Work

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is:

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is:

Shortest Vector Problem (γ -GapSVP)

• Given **B**, decide: $\lambda \leq 1$ or $\lambda > \gamma$?

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is:

Shortest Vector Problem (γ -GapSVP)

• Given **B**, decide: $\lambda \leq 1$ or $\lambda > \gamma$?

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is:

Shortest Vector Problem (γ -GapSVP)

• Given **B**, decide: $\lambda \leq 1$ or $\lambda > \gamma$?

Unique SVP (γ -uSVP)

Given B with 'γ-unique' shortest vector, find it.

Worst-Case Complexity

GapSVP

Worst-Case Complexity

GapSVP

For $\gamma = poly(n)$, best algorithm is 2^n time & space [AKS01]

Worst-Case Complexity

GapSVP

For $\gamma = poly(n)$, best algorithm is 2^n time & space [AKS01]

'minicrypt'

OWF [Ajt96,...]

Sigs [LM08,GPV08]

ID schemes [MV03,Lyu08]

'minicrypt'

OWF [Ajt96,...]

Sigs [LM08,GPV08]

ID schemes [MV03,Lyu08]

IS GapSVP etc. hard

'minicrypt'

OWF [Ajt96,...]

Sigs [LM08,GPV08]

ID schemes [MV03,Lyu08] **CRYPTOMANIA**

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

IS GapSVP etc. hard

'minicrypt'

OWF [Ajt96,...]

Sigs

ID schemes [MV03,Lyu08]

CRYPTOMANIA

PKE [AD97, Reg03, Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09], homom [G09], KDM [ACPS09], HIBE [P09])

I GapSVP etc. hard

'minicrypt'

OWF [Ajt96,...]

Sigs [LM08,GPV08]

ID schemes [MV03,Lyu08]

IS GapSVP etc. hard

'CRYPTOMANIA'

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09], homom [G09], KDM [ACPS09], HIBE [P09])

🖙 uSVP hard

SapSVP etc. quantum-hard

• Generalizes 'learning parity with noise': dim n, modulus $q \ge 2$

- Generalizes 'learning parity with noise': dim n, modulus $q \ge 2$
- Search: find $\mathbf{s} \in \mathbb{Z}_a^n$ given 'noisy random inner products'

÷

$$\begin{aligned} \mathbf{a}_1 &, \quad b_1 \approx \langle \mathbf{a}_1 \;, \, \mathbf{s} \rangle \mod q \\ \mathbf{a}_2 &, \quad b_2 \approx \langle \mathbf{a}_2 \;, \, \mathbf{s} \rangle \mod q \end{aligned}$$

- Generalizes 'learning parity with noise': dim n, modulus $q \ge 2$
- ▶ Search: find $\mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

 $\mathbf{a}_1 \quad , \quad b_1 = \langle \mathbf{a}_1 \ , \ \mathbf{s} \rangle + x_1 \mod q$ $\mathbf{a}_2 \quad , \quad b_2 = \langle \mathbf{a}_2 \ , \ \mathbf{s} \rangle + x_2 \mod q$ \vdots Uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$, Gaussian errors x_i $\alpha \cdot q > \sqrt{n}$

• Generalizes 'learning parity with noise': dim n, modulus $q \ge 2$

▶ Search: find $\mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

: Uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$, Gaussian errors x_i

 $\alpha \cdot q \ge \sqrt{n}$

Decision: distinguish from uniform (a_i, b_i)

• Generalizes 'learning parity with noise': dim n, modulus $q \ge 2$

 $\mathbf{a}_1 \quad , \quad b_1 = \langle \mathbf{a}_1 \ , \ \mathbf{s} \rangle + x_1 \mod q$ $\mathbf{a}_2 \quad , \quad b_2 = \langle \mathbf{a}_2 \ , \ \mathbf{s} \rangle + x_2 \mod q$

Search: find $s \in \mathbb{Z}_q^n$ given 'noisy random inner products'

Uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$, Gaussian errors x_i

Decision: distinguish from uniform (\mathbf{a}_i, b_i)

State of the Art

 $\alpha \cdot q > \sqrt{n}$

First public-key encryption based on classical GapSVP hardness

First public-key encryption based on classical GapSVP hardness

Classical reduction: GapSVP \leq Learning With Errors

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP \leq Learning With Errors

★ Standard (n/α) -GapSVP: large LWE modulus $q \ge 2^n$

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP \leq Learning With Errors

- ★ Standard (n/α) -GapSVP: large LWE modulus $q \ge 2^n$
- * 'Improve ζ to (n/α) '-GapSVP: $q \approx \zeta$ [= poly(n)]

First public-key encryption based on classical GapSVP hardness

● Classical reduction: GapSVP ≤ Learning With Errors

- ★ Standard (n/α) -GapSVP: large LWE modulus $q \ge 2^n$
- * 'Improve ζ to (n/α) '-GapSVP: $q \approx \zeta$ [= poly(n)]

2 LWE search = decision for large q [$\gg poly(n)$]

 \Rightarrow GapSVP-hardness of prior LWE-based crypto [Reg05,...]

First public-key encryption based on classical GapSVP hardness

● Classical reduction: GapSVP ≤ Learning With Errors

- ★ Standard (n/α) -GapSVP: large LWE modulus $q \ge 2^n$
- * 'Improve ζ to (n/α) '-GapSVP: $q \approx \zeta$ [= poly(n)]

2 LWE search = decision for large $q [\gg poly(n)]$

 \Rightarrow GapSVP-hardness of prior LWE-based crypto [Reg05,...]

New LWE-based chosen ciphertext-secure encryption

* Much simpler, milder assumption than prior CCA [PW08]

"Obvious" answer: iterative step

"Obvious" answer: iterative step

- Another answer: to make use of BDD/LWE oracle
 - 1 Choose some $x \in \mathcal{L}$
 - 2 Perturb to $\mathbf{y} \approx \mathbf{x}$
 - Invoke oracle on y

"Obvious" answer: iterative step

Another answer: to make use of BDD/LWE oracle

"Obvious" answer: iterative step

- Another answer: to make use of BDD/LWE oracle
 - 1 Choose some $x \in \mathcal{L}$
 - 2 Perturb to $\mathbf{y} \approx \mathbf{x}$
 - Invoke oracle on y
 - 4 Returns x we already knew that!
 - ✓ Quantum can "uncompute" x

Our Approach

New way of solving GapSVP in a reduction

Our Approach

X

Our Approach

Our Approach

Our Approach

Our Approach

View as [GoldGold98] AM proof between reduction and oracle

Technical Obstacles

Technical Obstacles

* Use [GPV08] sampling algorithm with 'best available' basis for \mathcal{L}^* .

Technical Obstacles () What about in $BDD \rightarrow LWE$ reduction? (No quantum allowed!)

* Use [GPV08] sampling algorithm with 'best available' basis for \mathcal{L}^* .

' ζ -good' basis \Rightarrow LWE modulus $q \approx \zeta$.

(LLL-reduced basis is 2^n -good.)

★ Use [GPV08] sampling algorithm with 'best available' basis for \mathcal{L}^* .

' ζ -good' basis \Rightarrow LWE modulus $q \approx \zeta$.

(LLL-reduced basis is 2ⁿ-good.)

★ 'One shot' (non-iterative) reduction

 $\star\,$ Use [GPV08] sampling algorithm with 'best available' basis for $\mathcal{L}^*.$

' ζ -good' basis \Rightarrow LWE modulus $q \approx \zeta$.

(LLL-reduced basis is 2ⁿ-good.)

★ 'One shot' (non-iterative) reduction

2 LWE search / decision equivalence?

(Normally requires prime q = poly(n)...)

 $\star\,$ Use [GPV08] sampling algorithm with 'best available' basis for $\mathcal{L}^*.$

' ζ -good' basis \Rightarrow LWE modulus $q \approx \zeta$.

(LLL-reduced basis is 2^n -good.)

★ 'One shot' (non-iterative) reduction

2 LWE search / decision equivalence?

(Normally requires prime q = poly(n)...)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for 'smooth' q and Gaussian error

Given any (" ζ -good") B:

1 Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$

Given any (" ζ -good") B:

- **1** Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$
- $\textbf{2 Let } y = e \bmod B$

Given any (" ζ -good") B:

- **1** Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$
- $\textbf{2 Let } y = e \bmod B$
- $\textbf{3} \ (\text{Get some } x \in \mathcal{L} \text{ from LWE oracle somehow}...)$

Given any (" ζ -good") B:

- **1** Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$
- $2 \text{ Let } y = e \mod B$
- 3 (Get some $x \in \mathcal{L}$ from LWE oracle somehow...)
- 4 If y x = e, output "large," else output "small"

Given any (" ζ -good") B:

- **1** Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$
- $2 \text{ Let } y = e \mod B$
- $\textbf{3} \text{ (Get some } x \in \mathcal{L} \text{ from LWE oracle somehow...)}$
- 4 If y x = e, output "large," else output "small"

Let $0 \neq v \in \mathcal{L}$ be shortest.

Given any (" ζ -good") B:

- **1** Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$
- $2 \text{ Let } y = e \mod B$
- $\textbf{3} \text{ (Get some } x \in \mathcal{L} \text{ from LWE oracle somehow} \dots \text{)}$
- 4 If y x = e, output "large," else output "small"

Analysis for $\lambda \leq 1$:

Let $0 \neq v \in \mathcal{L}$ be shortest.

 $(\sqrt{n} \cdot \mathcal{B}_n) \cap (\mathbf{v} + \sqrt{n} \cdot \mathcal{B}_n)$ is a noticeable fraction of $\sqrt{n} \cdot \mathcal{B}_n$.

Given any (" ζ -good") B:

- **1** Choose $\mathbf{e} \leftarrow \sqrt{n} \cdot \mathcal{B}_n$
- $\textbf{2 Let } y = e \bmod B$
- $\textbf{3} \text{ (Get some } x \in \mathcal{L} \text{ from LWE oracle somehow} \dots)$
- 4 If y x = e, output "large," else output "small"

Analysis for $\lambda \leq 1$:

Let $0 \neq v \in \mathcal{L}$ be shortest.

 $(\sqrt{n} \cdot \mathcal{B}_n) \cap (\mathbf{v} + \sqrt{n} \cdot \mathcal{B}_n)$ is a noticeable fraction of $\sqrt{n} \cdot \mathcal{B}_n$.

⇒ Step 3 (no matter what it is!) can't guess original e.

Given " ζ -good" **B** and $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} = \mathbf{Bc} \in \mathcal{L}$ and $\|\mathbf{e}\| \leq \sqrt{n}$.

Given " ζ -good" **B** and $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} = \mathbf{Bc} \in \mathcal{L}$ and $\|\mathbf{e}\| \leq \sqrt{n}$.

To generate sample (\mathbf{a}, b) from $A_{\mathbf{s},\alpha}$ for $\mathbf{s} = \mathbf{c} \mod q$ and $q = \zeta \cdot (\sqrt{n}/\alpha)$:

Given " ζ -good" **B** and $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} = \mathbf{Bc} \in \mathcal{L}$ and $\|\mathbf{e}\| \leq \sqrt{n}$.

To generate sample (\mathbf{a}, b) from $A_{\mathbf{s},\alpha}$ for $\mathbf{s} = \mathbf{c} \mod q$ and $q = \zeta \cdot (\sqrt{n}/\alpha)$:

() Using $\mathbf{B}^* = \mathbf{B}^{-t}$, sample $\mathbf{z} \leftarrow D_{\mathcal{L}^*,\zeta}$ using [GPV08]

Given " ζ -good" **B** and $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} = \mathbf{Bc} \in \mathcal{L}$ and $\|\mathbf{e}\| \leq \sqrt{n}$.

To generate sample (\mathbf{a}, b) from $A_{\mathbf{s},\alpha}$ for $\mathbf{s} = \mathbf{c} \mod q$ and $q = \zeta \cdot (\sqrt{n}/\alpha)$:

() Using $\mathbf{B}^* = \mathbf{B}^{-t}$, sample $\mathbf{z} \leftarrow D_{\mathcal{L}^*,\zeta}$ using [GPV08]

(i) Write $\mathbf{v} = \mathbf{B}^* \mathbf{z}$ for $\mathbf{z} \in \mathbb{Z}^n$. Output

 $\mathbf{a} = \mathbf{z} \mod q$ and $b \simeq \langle \mathbf{v}, \mathbf{y} \rangle \mod q$

Given " ζ -good" **B** and $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} = \mathbf{Bc} \in \mathcal{L}$ and $\|\mathbf{e}\| \leq \sqrt{n}$.

To generate sample (\mathbf{a}, b) from $A_{\mathbf{s},\alpha}$ for $\mathbf{s} = \mathbf{c} \mod q$ and $q = \zeta \cdot (\sqrt{n}/\alpha)$:

() Using $\mathbf{B}^* = \mathbf{B}^{-t}$, sample $\mathbf{z} \leftarrow D_{\mathcal{L}^*, \zeta}$ using [GPV08]

(i) Write $\mathbf{v} = \mathbf{B}^* \mathbf{z}$ for $\mathbf{z} \in \mathbb{Z}^n$. Output

 $\mathbf{a} = \mathbf{z} \mod q$ and $b \simeq \langle \mathbf{v}, \mathbf{y} \rangle \mod q$

<u>Analysis for $\lambda > n/\alpha$:</u> $\downarrow \zeta \ge q \cdot (\sqrt{n}/\lambda) \Rightarrow \text{ uniform } \mathbf{a} \in \mathbb{Z}_a^n. \text{ [MR04]}$

Given " ζ -good" **B** and $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} = \mathbf{Bc} \in \mathcal{L}$ and $\|\mathbf{e}\| \leq \sqrt{n}$.

To generate sample (\mathbf{a}, b) from $A_{\mathbf{s},\alpha}$ for $\mathbf{s} = \mathbf{c} \mod q$ and $q = \zeta \cdot (\sqrt{n}/\alpha)$:

() Using $\mathbf{B}^* = \mathbf{B}^{-t}$, sample $\mathbf{z} \leftarrow D_{\mathcal{L}^*, \zeta}$ using [GPV08]

(i) Write $\mathbf{v} = \mathbf{B}^* \mathbf{z}$ for $\mathbf{z} \in \mathbb{Z}^n$. Output

$$\mathbf{a} = \mathbf{z} \mod q$$
 and $b \simeq \langle \mathbf{v}, \mathbf{y}
angle \mod q$

Analysis for $\lambda > n/\alpha$:

- $\blacktriangleright \ \zeta \geq q \cdot (\sqrt{n}/\lambda) \ \Rightarrow \ {\rm uniform} \ {\bf a} \in \mathbb{Z}_q^n. \ {\rm [MR04]}$
- Condition on **a**. Then $b = \langle \mathbf{v}, \mathbf{x} + \mathbf{e} \rangle$

 $= \langle \mathbf{B}^* \mathbf{z}, \mathbf{B} \mathbf{c} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle \simeq \langle \mathbf{a}, \mathbf{s} \rangle + D_{\zeta \cdot ||\mathbf{e}||} \bmod q.$

Finally, $\zeta \cdot \|\mathbf{e}\| \leq \alpha \cdot q$.

Suppose *D* distinguishes $(\mathbf{a} \in \mathbb{Z}_q^n, b \approx \langle \mathbf{a}, \mathbf{s} \rangle) \leftarrow A_{\mathbf{s},\alpha}$ from uniform.

- Suppose *D* distinguishes $(\mathbf{a} \in \mathbb{Z}_q^n, b \approx \langle \mathbf{a}, \mathbf{s} \rangle) \leftarrow A_{\mathbf{s},\alpha}$ from uniform.
- Let $q = q_1 \cdots q_t$ [$\gg poly(n)$] for distinct $(1/\alpha) \le q_i \le poly(n)$.

Suppose *D* distinguishes $(\mathbf{a} \in \mathbb{Z}_q^n, b \approx \langle \mathbf{a}, \mathbf{s} \rangle) \leftarrow A_{\mathbf{s},\alpha}$ from uniform.

• Let $q = q_1 \cdots q_t$ [$\gg poly(n)$] for distinct $(1/\alpha) \le q_i \le poly(n)$.

Find s: Chinese remaindering & "smoothing"

• To test if $s_1 = 0 \mod q_i$:

$$(\mathbf{a} \ , \ b) \mapsto (\mathbf{a} + r \cdot \mathbf{e}_1 \ , \ b) \quad \text{for} \quad r \leftarrow (q/q_i) \cdot \mathbb{Z}_{q_i}$$

Suppose *D* distinguishes $(\mathbf{a} \in \mathbb{Z}_q^n, b \approx \langle \mathbf{a}, \mathbf{s} \rangle) \leftarrow A_{\mathbf{s},\alpha}$ from uniform.

• Let $q = q_1 \cdots q_t$ [$\gg poly(n)$] for distinct $(1/\alpha) \le q_i \le poly(n)$.

Find s: Chinese remaindering & "smoothing"

• To test if $s_1 = 0 \mod q_i$:

$$(\mathbf{a} , b) \mapsto (\mathbf{a} + r \cdot \mathbf{e}_1 , b) \quad \text{for} \quad r \leftarrow (q/q_i) \cdot \mathbb{Z}_{q_i}$$

If yes, maps $A_{s,\alpha}$ to itself. If not, maps $A_{s,\alpha}$ to uniform ?

Suppose *D* distinguishes $(\mathbf{a} \in \mathbb{Z}_q^n, b \approx \langle \mathbf{a}, \mathbf{s} \rangle) \leftarrow A_{\mathbf{s},\alpha}$ from uniform.

• Let $q = q_1 \cdots q_t$ [$\gg poly(n)$] for distinct $(1/\alpha) \le q_i \le poly(n)$.

Find s: Chinese remaindering & "smoothing"

• To test if $s_1 = 0 \mod q_i$:

$$(\mathbf{a}, b) \mapsto (\mathbf{a} + r \cdot \mathbf{e}_1, b) \text{ for } r \leftarrow (q/q_i) \cdot \mathbb{Z}_{q_i}$$

If yes, maps A_{s,α} to itself. If not, maps A_{s,α} to uniform !
 Gaussians of width αq ≥ (q/q_i) separated by (q/q_i)
 ⇒ uniform* by smoothing bounds [MicReg04]

Suppose *D* distinguishes $(\mathbf{a} \in \mathbb{Z}_q^n, b \approx \langle \mathbf{a}, \mathbf{s} \rangle) \leftarrow A_{\mathbf{s},\alpha}$ from uniform.

• Let $q = q_1 \cdots q_t$ [$\gg poly(n)$] for distinct $(1/\alpha) \le q_i \le poly(n)$.

Find s: Chinese remaindering & "smoothing"

• To test if
$$s_1 = 0 \mod q_i$$
:

$$(\mathbf{a}, b) \mapsto (\mathbf{a} + r \cdot \mathbf{e}_1, b) \quad \text{for} \quad r \leftarrow (q/q_i) \cdot \mathbb{Z}_{q_i}$$

- ► If yes, maps $A_{s,\alpha}$ to itself. If not, maps $A_{s,\alpha}$ to uniform ! Gaussians of width $\alpha q \ge (q/q_i)$ separated by (q/q_i) \Rightarrow uniform* by smoothing bounds [MicReg04]
- (NB: for general error dists, hybrid argument over q_i's fails.)

Intuitive Definition [RS91,DDN91,NY95]

Encryption conceals message, even given decryption oracle

Intuitive Definition [RS91,DDN91,NY95]

Encryption conceals message, even given decryption oracle

Elementary Construction

Follows "witness-recovering decryption" approach [PW08].

Intuitive Definition [RS91,DDN91,NY95]

Encryption conceals message, even given decryption oracle

Elementary Construction

- Follows "witness-recovering decryption" approach [PW08].
- Define $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{A}^t \mathbf{s} + \mathbf{x}$.

Can generate A with "trapdoor" for g_A^{-1} [GGH97,Ajt99,AP09]

Intuitive Definition [RS91,DDN91,NY95]

Encryption conceals message, even given decryption oracle

Elementary Construction

- Follows "witness-recovering decryption" approach [PW08].
- ► Define $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{A}^{t}\mathbf{s} + \mathbf{x}$. Can generate \mathbf{A} with "trapdoor" for $g_{\mathbf{A}}^{-1}$ [GGH97,Ajt99,AP09]
- ▶ Distinguish g_{A1}(s, x₁),..., g_{Ak}(s, x_k) [same s!] ⇔ solve LWE So g_{A1},..., g_{Ak} pseudorandom under 'correlated inputs' [RS09]

Intuitive Definition [RS91,DDN91,NY95]

Encryption conceals message, even given decryption oracle

Elementary Construction

- Follows "witness-recovering decryption" approach [PW08].
- ► Define $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{A}^{t}\mathbf{s} + \mathbf{x}$. Can generate \mathbf{A} with "trapdoor" for $g_{\mathbf{A}}^{-1}$ [GGH97,Ajt99,AP09]
- ▶ Distinguish g_{A1}(s, x₁), ..., g_{Ak}(s, x_k) [same s!] ⇔ solve LWE So g_{A1}, ..., g_{Ak} pseudorandom under 'correlated inputs' [RS09]
- Correlation-secure injective TDF \Rightarrow CCA-secure encryption But much care needed to make g_A "chosen-output secure."

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

 $(\gamma \sqrt{n})$ -GapSVP $\leq \gamma$ -uSVP \leq crypto [AjtaiDwork97,Regev03]

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

 $(\gamma \sqrt{n})$ -GapSVP $\leq \gamma$ -uSVP $| \leq$ crypto [AjtaiDwork97,Regev03]

"Unifies" two styles of cryptosystems [AD97,Reg03] and [Reg05,...] under (almost) same assumption.

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

 $(\gamma \sqrt{n})$ -GapSVP $\leq \gamma$ -uSVP $| \leq$ crypto [AjtaiDwork97,Regev03]

"Unifies" two styles of cryptosystems [AD97,Reg03] and [Reg05,...] under (almost) same assumption.

2 Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small q = poly(n)
Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

 $(\gamma \sqrt{n})$ -GapSVP $\leq \gamma$ -uSVP \leq crypto [AjtaiDwork97,Regev03]

"Unifies" two styles of cryptosystems [AD97,Reg03] and [Reg05,...] under (almost) same assumption.

2 Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small q = poly(n)

3 Open: complexity of 'Improve ζ to γ '-GapSVP?

NP-hard for nontrivial ζ ? Better algorithms?