Post-Quantum Cryptography

Chris Peikert
University of Michigan

Tutorial, QIP 2022
6 March

1/40

Public-Key Cryptography

P> Cryptography since the ancients: Alice, Bob need the same secret key

g

(Images courtesy xked.org) 2/40

Public-Key Cryptography

» A paradigm shift [Merkle'74,DH'76,RSA'77]: ‘public-key’ cryptography

(Images courtesy xked.org) 2/40

Public-Key Cryptography

» A paradigm shift [Merkle'74,DH'76,RSA'77]: ‘public-key’ cryptography

> Alice creates (related) public key 7 and secret key =

(Images courtesy xked.org) 2/40

Public-Key Cryptography

» A paradigm shift [Merkle'74,DH'76,RSA'77]: ‘public-key’ cryptography

> Alice creates (related) public key “077 and secret key @‘* :
* Anyone can do ‘public’ ops using “= : encrypt, check authenticity

* Only Alice can do ‘privileged’ ops using @“a“ decrypt, attest

(Images courtesy xked.org) 2/40

Bread and Butter of PKC: Encryption

3/40

Bread and Butter of PKC: Encryption

¢ = Enc(surprise party for blackhat!)

P Alice can use the secret key to decrypt the message.

3/40

Bread and Butter of PKC: Encryption

P Alice can use the secret key to decrypt the message.

» Eavesdropper who gets the public key and ciphertext learns nothing
about the message.

3/40

Bread and Butter of PKC: Digital Signatures

4/40

Bread and Butter of PKC: Digital Signatures

‘I, Alice, being of sound mind...’, o

P Alice uses her secret key to create a signature o for a message.

4/40

Bread and Butter of PKC: Digital Signatures

‘I, Alice, being of sound mind...’, o

P Alice uses her secret key to create a signature o for a message.

» Bob can use the public key to verify that the signature is authentic
(for this specific message).

4/40

Bread and Butter of PKC: Digital Signatures

S A8

‘I, Alice, give all my $ to blackhat’, o*

P Alice uses her secret key to create a signature o for a message.

» Bob can use the public key to verify that the signature is authentic
(for this specific message).

P Attacker can't forge a valid signature ¢* for an unsigned message.

4/40

Hard Problems and PKC

» Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

5/40

Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

> Issue: we don't know whether hard problems exist! (Maybe P=NP.)

5/40

Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

» Issue: we don't know whether hard problems exist! (Maybe P=NP.)

» ‘Solution’: conjecture that they do exist—in general, or specifically.

5/40

Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.
For one: must be hard to compute the secret key from the public key.

» Issue: we don't know whether hard problems exist! (Maybe P=NP.)

P ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

5/40

Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.
For one: must be hard to compute the secret key from the public key.

» Issue: we don't know whether hard problems exist! (Maybe P=NP.)

P ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” —Silvio Micali

5/40

Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.
For one: must be hard to compute the secret key from the public key.

» Issue: we don't know whether hard problems exist! (Maybe P=NP.)

P ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” —Silvio Micali

Case study:
@ RSA/DH ‘rely on' the hardness of the factoring/dlog problems:
Breaking RSA is no harder than factoring: RSA < factoring. Obvious.

5/40

Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.
For one: must be hard to compute the secret key from the public key.

» Issue: we don't know whether hard problems exist! (Maybe P=NP.)

P ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” —Silvio Micali

Case study:
@ RSA/DH ‘rely on' the hardness of the factoring/dlog problems:
Breaking RSA is no harder than factoring: RSA < factoring. Obvious.

® RSA/DH are ‘based on’ the hardness of factoring/dlog variants:
Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5/40

How Hard, and Hard How?

> We need crypto problems to be infeasible for any attacker to solve.

6/40

How Hard, and Hard How?

> We need crypto problems to be infeasible for any attacker to solve.

P Traditionally, ‘attacker’ = classical algorithm.

6/40

How Hard, and Hard How?

> We need crypto problems to be infeasible for any attacker to solve.
» Traditionally, ‘attacker’ = classical algorithm.

» But for quantum algorithms, ‘feasible’ appears broader:
[Feynman'82,Deutch'85,BV'93,Simon’94]

6/40

How Hard, and Hard How?

> We need crypto problems to be infeasible for any attacker to solve.
» Traditionally, ‘attacker’ = classical algorithm.

» But for quantum algorithms, ‘feasible’ appears broader:
[Feynman'82,Deutch'85,BV'93,Simon’'94]

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shor®

6/40

How Hard, and Hard How?

> We need crypto problems to be infeasible for any attacker to solve.
» Traditionally, ‘attacker’ = classical algorithm.

» But for quantum algorithms, ‘feasible’ appears broader:
[Feynman'82,Deutch'85,BV'93,Simon’94]

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shor®

> With a large-scale QC, [Shor'94] totally breaks DH, RSA, and all other
widely used public-key crypto!

6/40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

7/40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we've been widely using is
quantumly broken. (What rotten luck. ..)

7/40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we've been widely using is
quantumly broken. (What rotten luck. ..)

Post-Quantum Cryptography

7/40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we've been widely using is
quantumly broken. (What rotten luck. ..)

Post-Quantum Cryptography (a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, ...)

7/40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we've been widely using is
quantumly broken. (What rotten luck. ..)

Post-Quantum Cryptography (a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, ...)
Design cryptosystems that can

run on (today’'s) classical computers,
while being

secure against quantum attacks.

7/40

What's the Rush?

» Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent?

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.

@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.

@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

“Who controls history controls the future.”
—George Orwell, 1984

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.

@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

“Who controls history controls the future.”
—George Orwell, 1984

~BTTF (1985)

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.
@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

©® Deploying new cryptography at scale takes a long time: 10+ years.

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.
@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

© Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. .. Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

-NSA, 2015

8/40

What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.
@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

© Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. .. Our ultimate goal is to provide cost

effective security against a potential quantum computer.”
-NSA, 2015

» NIST PQC standardization process (2016-):
3rd round, finalists and alternates chosen, selections imminent

8/40

Tutorial Agenda

@ A highly selective tour of the PQC landscape:

concepts, key techniques, theory and practice

® A lot/some/very little of what | know a lot/some/very little about:
lattices / isogenies / MQ and codes

© Important problems that need more scrutiny from quantum experts!

9/40

Lattices

10/40

Lattice-Based Cryptography

. (X)K)EX'W? .
Y =9 ;ED ¢--a- - > %E
roo = \

m’ wod N “y

e(g",9") %

11/40

Lattice-Based Cryptography

11/40

Lattice-Based Cryptography

> Efficient: linear, embarrassingly parallel operations

11/40

Lattice-Based Cryptography

> Efficient: linear, embarrassingly parallel operations

P Resists quantum attacks (so far)

11/40

Lattice-Based Cryptography

> Efficient: linear, embarrassingly parallel operations

P Resists quantum attacks (so far)

» Security from mild worst-case assumptions

11/40

Lattice-Based Cryptography

> Efficient: linear, embarrassingly parallel operations
P Resists quantum attacks (so far)

» Security from mild worst-case assumptions

» Solutions to ‘holy grail" problems in crypto: FHE and related

11/40

What's a Lattice?
> A periodic ‘grid’ in Z". (Formally: full-rank additive subgroup.)

12/40

What's a Lattice?

» A periodic ‘grid" in Z™. (Formally: full-rank additive subgroup.)

» Basis B={b,...,b,}:

L = i(Z -b;)
i=1

bo

12/40

What's a Lattice?

» A periodic ‘grid" in Z™. (Formally: full-rank additive subgroup.)

» Basis B={b,...,b,}:

L = i(Z -b;)
i=1

b,

b

12/40

What's a Lattice?

» A periodic ‘grid" in Z™. (Formally: full-rank additive subgroup.)

» Basis B={b,...,b,}:
m
L = > (Z-b)
i=1

(Other representations too .. .)

b,

ba

12/40

What's a Lattice?
> A periodic ‘grid’ in Z"". (Formally: full-rank additive subgroup.)

» Basis B={b,...,b,}:

£ - i(Z . bl) b1
=1

(Other representations too ...)

Hard Lattice Problems
» Find/detect ‘short’ nonzero lattice vectors: (Gap)SVP., SIVP,

> For v = poly(m), appears to require 2™ time and space,
even quantumly. [LLL'82,Schnorr'87,...,AKS'01,. . .]

12/40

Lattices

Foundations, Digital Signatures

13/40

A Hard Problem: Short Integer Solution [ajtai'os]

» Zy = n-dimensional integer vectors modulo ¢

14 /40

A Hard Problem: Short Integer Solution [ajtai'os]

» Zy = n-dimensional integer vectors modulo ¢

aj as . a,, ceZ?

14 /40

A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial z1,..., 2, € {0,£1} such that:

zi- lar] + 22 |a2] + - + 2z lan | =0 €Z]

14 /40

A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial ‘short’ z € Z™, ||z|| < 8 < ¢ such that:

A | |z|=0ez

14 /40

A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial ‘short’ z € Z™, ||z|| < 8 < ¢ such that:

A | |z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘compressing’ fa: {0,1}™ — Zg

fa(x) = Ax

14 /40

A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial ‘short’ z € Z™, ||z|| < 8 < ¢ such that:

A | |z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘compressing’ fa: {0,1}™ — Zg

fa(x) = Ax

» Collision x,x" € {0,1}™ where Ax = Ax’ ...

14 /40

A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial ‘short’ z € Z™, ||z|| < 8 < ¢ such that:

A | |z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘compressing’ fa: {0,1}™ — Zg

fa(x) = Ax

» Collision x,x" € {0,1}™ where Ax = Ax ...

.. .yields short solution z = x — x’ € {0, +1}™.

14 /40

Cool!l (But what does this have to do with lattices?)

15/40

Cool! (But what does this have to do with lattices?)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={z€Z™ : Az =0}

15/40

Cool! (But what does this have to do with lattices?)
(0,9)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={ze€Z™ : Az=0}DqZ™

15/40

Cool!l (But what does this have to do with lattices?)
(0,4q)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={ze€Z™ : Az=0}DqZ™

» ‘Short’ solutions z lie in Q o

15/40

Cool! (But what does this have to do with lattices?)
(0, 49)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={ze€Z™ : Az=0}DqZ™

» ‘Short’ solutions z lie in Q o

Worst-Case to Average-Case Reduction [Ajtai'96,. .]

Finding ‘short’ (||z|| < 8 < ¢) nonzero z € L(A)
(for uniformly random A € Z3*™)

J
solving GapSVPB\/ﬁ and SIVPﬁ\/;Z on any n-dim lattice

15 /40

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

16 /40

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

» Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

16 /40

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

» Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS'02,NR'06,DN'12])

i
+y
g
Tt
+-#'++++
J;++++ +*
+++++1 #

+
t+
A+ o+
++ +
3 ot
tid :++ I
+, +t o+ + R ha
+ i e
- e et g e
ot + +
PR LY + i
A + +H4t
+EH + AR T
T - + AT
+ T T PR
i + Aty
St + ¥ e A
Fati S T S E A
HL AL+ +o+ + + o+ +
AT whet Ty

16 /40

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

» Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS'02,NR'06,DN'12])

+
b+
+
Tt
+-#'++++
J;++++ +*
+++++1¢
4
t+
£+ o+
+ +
+ R

+ +

+ ¥ +

R

+ + + + + + + 4 + o+
t:'+++++++.:_++++++++ T

» Verify(A, i1, z): check that Az = H(u) and z is sufficiently short.

16 /40

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

» Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS'02,NR'06,DN'12])

i
+y
g
Tt
+-#'++++
J;++++ +*
+ 4+ +
+
L 1+++

t+
A+ o+
.
M Fuy ++‘d++
HE o+ + T+
£ + b by +
+ i g ST
bk b o A AT
+ht b + +
Fha e L + - Hhh
PR AT + L
+++‘*_"_+++++ + - ++++++t_ Gy
+++++++++++ + F o e
ERRUE I R S S s s ot
T e e AT
R T

» Verify(A, i, z): check that Az = H(u) and z is sufficiently short.

P Security: forging a signature for a new message p* requires finding
short z* s.t. Az* = H(p*). This is SIS: hard!

16 /40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:

17 /40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:
@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]

17/40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:
@ Generating a 'hard’ lattice/trapdoor pair:
[GGH'97,A’99, HHPSW'01,AP'09,55'11,MP'12,PP'19, ...]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

17/40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:

@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

® Gaussian lattice sampling: [P'10,MP'12,DP'16,...]

17/40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:

@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

® Gaussian lattice sampling: [P'10,MP'12,DP'16,...]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

17/40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:
@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]
Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?
® Gaussian lattice sampling: [P'10,MP'12,DP'16,...]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky'09,'12]:
very simple signing algorithm! (No Gaussian sampling needed.)

17/40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:
@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]
Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?
® Gaussian lattice sampling: [P'10,MP'12,DP'16,...]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky'09,'12]:
very simple signing algorithm! (No Gaussian sampling needed.)

@ Is SIS (quantumly) hard for solution norm < ¢ in £o, norm?

17/40

Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:
@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]
Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?
® Gaussian lattice sampling: [P'10,MP'12,DP'16,...]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky'09,'12]:
very simple signing algorithm! (No Gaussian sampling needed.)

@ Is SIS (quantumly) hard for solution norm < ¢ in ¢, norm?

® Tighter security reduction in QROM, or exploit looseness?
See [BDF+'12,KLS'18,DFMS'19,L.7'19].

17/40

Lattices
Public-Key Encryption

18/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

19/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

a1<—ZZ , b= (s, a;)modgq

as+Zy , by=(s, az)modgq

19/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

al<—ZZ’ , bi=(s,a)+e €Z,
ag%ZZ s bQZ(S,a2>+62€Zq ’H “‘
ol [

V/n < error < gq, ‘rate’ a

19/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

|I|“ "ll.

v/ < error < g, ‘rate’ «

19/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

.|I|“ "ll.‘

v/ < error < g, ‘rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

19/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

.|I|“ "ll.‘

v/ < error < g, ‘rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

(n/a)-approx worst case
lattice problems r ¥

(quantum [R'05]) [BFKL'93,R'05,...]

< search-LWE < decision-LWE < crypto

19/40

Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

xll“ "ll.

v/ < error < g, ‘rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

(n/a)-approx worst case
lattice problems r ¥

(quantum [R'05]) [BFKL'93,R'05,...]

< search-LWE < decision-LWE < crypto

» Also fully classical reductions, for worse params [Peikert'09,BLPRS'13]

19/40

LWE is a Lattice Problem
» LWE is ‘dual’ to SIS. Let

L(A) ={z' =s'A mod ¢} . .

Given A and b = sA, find s.

20/40

LWE is a Lattice Problem
» LWE is ‘dual’ to SIS. Let

L(A) ={z' =s'A mod ¢} . .

Given A and b = sA, find s.

Bounded-Distance Decoding (BDD,,)

» Given a target that's ‘a-far’ from a
lattice point, find that point.

20/ 40

LWE is a Lattice Problem
» LWE is ‘dual’ to SIS. Let

L(A) ={z' =s'A mod ¢} . .

Given A and b = sA, find s.

Bounded-Distance Decoding (BDD,,)

» Given a target that's ‘a-far’ from a
lattice point, find that point.

Theorem [Regev'05]

solving BDD,, on lattice £

(quantum)

Gaussian sampling ‘(1/c)-short’ points from dual lattice £*

20/ 40

LWE is a Lattice Problem
» LWE is ‘dual’ to SIS. Let

L(A) ={z' =s'A mod ¢} . .

Given A and b =~ sA, find s.

Bounded-Distance Decoding (BDD,,)

» Given a target that's ‘a-far’ from a
lattice point, find that point.

Theorem [Regev'05]

solving BDD,, on lattice £

(quantum)

Gaussian sampling ‘(1/c)-short’ points from dual lattice £*

> Key Open Problem: ‘dequantize’ this theorem!

20/40

LWE is Versatile
Cryptography we can build from LWE:

21/40

LWE is Versatile
Cryptography we can build from LWE:

v/ Key Exchange and Public Key Encryption
v/ Oblivious Transfer
v Actively Secure Encryption (w/o random oracles)

v Low-Depth Pseudorandom Functions

21/40

LWE is Versatile
Cryptography we can build from LWE:
v/ Key Exchange and Public Key Encryption
v/ Oblivious Transfer
v Actively Secure Encryption (w/o random oracles)

v Low-Depth Pseudorandom Functions

Vv ldentity-Based Encryption (w/o RO)
vV Hierarchical ID-Based Encryption (w/o RO)
vV Noninteractive Zero Knowledge for NP

21/40

LWE is Versatile
Cryptography we can build from LWE:

v

Key Exchange and Public Key Encryption
Oblivious Transfer
Actively Secure Encryption (w/o random oracles)

Low-Depth Pseudorandom Functions

Identity-Based Encryption (w/o RO)
Hierarchical ID-Based Encryption (w/o RO)

Noninteractive Zero Knowledge for NP

Fully Homomorphic Encryption

Attribute-Based Encryption for arbitrary access policies

and much, much more. ..

21/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) s < Z" (short) %

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

utzrt-AEZ’q1

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

ut%rt-AEZ’q1

V%A-SGZZ

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

ut%rt-AEZ’q1

va-SEZZ

rt-vartAs~ k E~ul-s~rtAseZ

q

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

ut%rt-AEZ’q1

va-SEZZ

rt - varltAs~k km~u'-s~r'As € Z,

c=k+bit-4cZ,

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

ut%rt-AEZ’q1

va-SEZZ

rt - varltAs~k km~u'-s~r'As € Z,

c=k+bit-4cZ,

(A'7 u’ V7 k)

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

ut%rt-AEZ’q1

va-SEZZ

rt - varltAs~k km~u'-s~r'As € Z,

c=k+bit-4cZ,

(A'7 u’ V’ k)
by decision-LWE

22/40

Key Exchange/Encryption from LWE [Regev'05,LPS'10,LP'11]

/g r < Z" (short) A 7y s < Z" (short) %

ut%rt-AEZ’q1

va-SEZZ

rt - varltAs~k km~u'-s~r'As € Z,

c=k+bit-4cZ,

(A'7 u’ V’ k)
by decision-LWE

22/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

> Uses Gaussian error of std dev 1.4 < o < 2.8 < \/n.

23/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.

» These params seem hard, according to cryptanalysis. Any theory?

23/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.
» These params seem hard, according to cryptanalysis. Any theory?

P> Regev's full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS < LWE’ does.

23/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.
» These params seem hard, according to cryptanalysis. Any theory?

P> Regev's full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS < LWE’ does.

BDD with DGS (implicit in [AR'04,R'05,LLM’06,DRS'14])

» Solve BDD to distance d, given N Gaussian samples of width (say)
> 2y/log N /d over the dual lattice.

23/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.
» These params seem hard, according to cryptanalysis. Any theory?

P> Regev's full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS < LWE’ does.

BDD with DGS (implicit in [AR'04,R'05,LLM’06,DRS'14])

» Solve BDD to distance d, given N Gaussian samples of width (say)
> 2y/log N /d over the dual lattice.

» Known algorithms can exploit narrower samples, but not these (7).

23/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.
» These params seem hard, according to cryptanalysis. Any theory?

P> Regev's full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS < LWE’ does.

BDD with DGS (implicit in [AR'04,R'05,LLM’06,DRS'14])

» Solve BDD to distance d, given N Gaussian samples of width (say)
> 2+/log N /d over the dual lattice.

» Known algorithms can exploit narrower samples, but not these (?).

@ Is BDD w/DGS actually hard? What effect does N have?

23/40

LWE In Practice: Frodo(KEM) [Bcp+'16,ABD+'17]
NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.
» These params seem hard, according to cryptanalysis. Any theory?

P> Regev's full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS < LWE’ does.

BDD with DGS (implicit in [AR'04,R'05,LLM’06,DRS'14])

» Solve BDD to distance d, given N Gaussian samples of width (say)
> 2+/log N /d over the dual lattice.

» Known algorithms can exploit narrower samples, but not these (?).

@ Is BDD w/DGS actually hard? What effect does N have?
@® Tightness of the BDD w/DGS < LWE reduction in N, 0.

23/40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

8765
9 3
10 2

11 1
12 0

24 /40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

7 6 5
8 4
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
13 23
14 22
15 21
16 17 18 19 20

24 /40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
14 22
15 21
16 17 18 19 20

24/40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

24/40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

7 6 5
8 4
> KEY IDEA: generate error deterministically, by o 32

rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122

16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs

(a,; , (s, azﬂp) €EZLg XLy .

24 /40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]
7 6 5
> KEY IDEA: generate error deterministically, by 0l XY e ?
rounding Z, to a ‘sparser’ subset. u g 1
Let p < ¢ and define |z], := [z - p/q]| mod p. 112

. . 14
(LWE decryption uses this to remove error!) 15

21

16 0

17 18 192

» LWR problem: find s (or distinguish from random), given pairs

(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

24 /40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs

(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR'12,...]

» For g >p-E-2* LWR is no easier than LWE with error size E,
for security parameter = \.

24 /40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs
(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR'12,...]

> Forg>p-E - 22X LWR is no easier than LWE with error size E,
for security parameter &~ A. (Error width ¢/p > 2*, rate a = E/q < 27.)

24 /40

Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs
(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR'12,...]

> Forg>p-E - 22X LWR is no easier than LWE with error size E,
for security parameter &~ A. (Error width ¢/p > 2, rate a = E/q < 27.)

Proof idea: w.h.p., (a;, |[(s,a;) +e]p) = (a;, |[(s,a)]p).

24 /40

LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p.

25 /40

LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p.

» But systems use small ¢/p, e.g., ¢/p ~ 3 or 8.

25 /40

LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p.
» But systems use small ¢/p, e.g., ¢/p ~ 3 or 8.

P Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’!

25 /40

LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p. 0 S\A_I.,./‘l 3
2
» But systems use small ¢/p, e.g., ¢/p ~ 3 or 8. f;_é 43 2 1O 3 1)
P Heuristically, seems to resist known attacks. 1?4 %, 06 T 2223
But little public scrutiny of such ‘small rounding’! 1516/1; 1|8 Vo

Open Questions

@ Any theoretical support for small rounding?
Tighter connection to LWE? ‘Native’ worst-case hardness?

25 /40

LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p. 0 S\A_I.,./‘l 3
2
» But systems use small ¢/p, e.g., ¢/p ~ 3 or 8. f;_é 43 2 1O 3 1)
P Heuristically, seems to resist known attacks. 1?4 %, 06 T 2223
But little public scrutiny of such ‘small rounding’! 1516/1; 1|8 Vo

Open Questions

@ Any theoretical support for small rounding?
Tighter connection to LWE? ‘Native’ worst-case hardness?

@® (Quantum) attacks that exploit small rounding?

25 /40

LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p. 0 S\Z_.i.i/‘l 3
2
» But systems use small ¢/p, e.g., ¢/p ~ 3 or 8. f;_é 43 2 1O 3 t)
P Heuristically, seems to resist known attacks. 1?4 %, 06 T 2223
But little public scrutiny of such ‘small rounding’! 1516/1; 1|8 Vo

Open Questions

@ Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

@® (Quantum) attacks that exploit small rounding?

Regev’'02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(y/log |G|) quantum algorithm.
Could those techniques be useful here?

25 /40

Lattices

Efficiency from Algebraic Structure

26 /40

SIS/LWE/LWR are Efficient(-ish)

» Getting one random-looking
scalar b; € Zq requires an n-dim
mod-q inner product

(cai) |s|+e = biez,

27 /40

SIS/LWE/LWR are Efficient(-ish)

» Getting one random-looking
scalar b; € Zq requires an n-dim
mod-q inner product

(' A) s|te =b€Z Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

27 /40

SIS/LWE/LWR are Efficient(-ish)

» Getting one random-looking
scalar b; € Zq requires an n-dim
mod-q inner product

(' Ay) s|+e = b€ » Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

» Cryptosystems have rather large keys:

27 /40

SIS/LWE/LWR are Efficient(-ish)

» Getting one random-looking
scalar b; € Zq requires an n-dim
mod-q inner product

(' Ay) s|+e = b€ » Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

» Cryptosystems have rather large keys:

pk = A , b Q(n)

n

» Inherently > n? time to encrypt & decrypt an n-bit message.

27 /40

Wishful Thinking. . .

P> Get d pseudorandom scalars
from just one (cheap)

alx|sl+lel = |b|ezd product operation?
q

> Replace Z2*?-chunks by Z{.

28/40

Wishful Thinking. ..

P> Get d pseudorandom scalars
from just one (cheap)

alx|sl+lel = |b|ezd product operation?
q

> Replace Z2*?-chunks by Z{.

» How to define the product ‘*' so that (a, b) is pseudorandom?

28 /40

Wishful Thinking. ..

P> Get d pseudorandom scalars
from just one (cheap)

alx|sl+lel = |b|ezd product operation?
q

> Replace Z2*?-chunks by Z{.

» How to define the product ‘*' so that (a, b) is pseudorandom?

» Careful! With small error, coordinate-wise multiplication is insecure!

28/40

Wishful Thinking. . .

P> Get d pseudorandom scalars
from just one (cheap)

alx|sl+lel = |b|ezd product operation?
q

> Replace Z2*?-chunks by Z{.

» How to define the product ‘*' so that (a, b) is pseudorandom?

» Carefull With small error, coordinate-wise multiplication is insecure!

Answer

> ‘x' = multiplication in a polynomial ring: e.g., Z,[X]/(X¢ + 1).

Fast and practical with FFT: dlog d operations mod q.

v
8740

Wishful Thinking. . .

P> Get d pseudorandom scalars
from just one (cheap)

alx|sl+lel = |b|ezd product operation?
q

> Replace Z2*?-chunks by Z{.

» How to define the product ‘*' so that (a, b) is pseudorandom?

» Carefull With small error, coordinate-wise multiplication is insecure!

Answer

> ‘x' = multiplication in a polynomial ring: e.g., Z,[X]/(X¢ + 1).
Fast and practical with FFT: dlogd operations mod q.

» Same ring structures used in NTRU cryptosystem [HPS'98],
compact one-way / CR hash functions [Mic'02,PR'06,LM'06,. ..]

v
8740

Wishful Thinking. . .

P> Get d pseudorandom scalars

: 5 : : from just one (cheap)
al«|s|l+lel = | bl e Z;l product operation?
: : : : > Replace Z2*?-chunks by Z{.

IFYOU,LWE IT
-

=

iv / * ~

V4 V
TIIE YOU Slllllllll PUTA
RINGONIT

lllllllll :generator.net

28/40

LWE Over Rings/Modules, Over Simplified [LPr10,86v'11,L5'12]

> Let

R=7[X]/(X4+1)

for d a power of two, and | R, = R/qR

29 /40

LWE Over Rings/Modules, Over Simplified [LPr10,86v'11,L5'12]

> Let|R=Z[X]/(X9+1)

for d a power of two, and | R, = R/qR

* Elements of R, are degree < d polynomials with mod-¢ coefficients

* Operations in R, are very efficient using FFT-like algorithms

29 /40

LWE Over Rings/Modules, Over Simplified [LPr10,86v'11,L5'12]

> Let|R=Z[X]/(X9+1)

for d a power of two, and | R, = R/qR

* Elements of R, are degree < d polynomials with mod-gq coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret vector of polynomials s € R¥, given:

k ~
a] <« Rq s b1 ~ <s,a1

a <—R’; , by = (s ag) €

€ R,
Rq

29/40

LWE Over Rings/Modules, Over Simplified [LPr10,86v'11,L5'12]

> Let|R=Z[X]/(X%+1)|for d a power of two, and | R, = R/qR

* Elements of R, are degree < d polynomials with mod-gq coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret vector of polynomials s € R¥, given:

. * Each eq. is d related eq.'s on a
ai < Ry , bhi=(s,a) €Ry secret of dim n = kd over Z,.

as < R]; , by =~ <s,a2> S Rq

29/40

LWE Over Rings/Modules, Over Simplified [LPr10,86v'11,L5'12]

> Let|R=Z[X]/(X%+1)|for d a power of two, and | R, = R/qR

* Elements of R, are degree < d polynomials with mod-gq coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret vector of polynomials s € R¥, given:

. * Each eq. is d related eq.'s on a
ai < Ry , bhi=(s,a) €Ry secret of dim n = kd over Z,.

a2<—R§ , b2%<s,a2>€Rq f IWE d—1k—n

Ring-LWE: d =n,k = 1.
Module-LWE: interpolate.

29/40

LWE Over Rings/Modules, Over Simplified [LPr10,86v'11,L5'12]

> Let|R=Z[X]/(X%+1)|for d a power of two, and | R, = R/qR

* Elements of R, are degree < d polynomials with mod-gq coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret vector of polynomials s € R¥, given:

. * Each eq. is d related eq.'s on a
ai < Ry , bhi=(s,a) €Ry secret of dim n = kd over Z,.

a2<—R§ , b2%<s,a2>€Rq f IWE d—1k—n

Ring-LWE: d =n,k = 1.
Module-LWE: interpolate.

» Decision: distinguish (a; , b;) from uniform (a; , b;) € ng X Ry

29/40

Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. .]

worst-case approx-SVPon bk | \WE < decision RF-LWE

rank-k module lattices over R 5 5
(quantum, (classical,
any R = Ok) any R = Ok)

30/40

Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. .]

worst-case approx-SVPon bk | \WE < decision RF-LWE

rank-k module lattices over R 5 5
(quantum, (classical,
any R = Ok) any R = Ok)

v

Open Questions

@ Can we ‘de-quantize’ the worst-case/average-case reduction?

4
30/40

Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. .]

worst-case approx-SVPon bk | \WE < decision RF-LWE

rank-k module lattices over R 5 5
(quantum, (classical,
any R = Ok) any R = Ok)

v

Open Questions

@ Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP < LWE reduction is of limited use: for the relevant factors,
GapSVP for ideals (k = 1) is easy.

4
30/40

Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. .]

worst-case approx-SVPon bk | \WE < decision RF-LWE

rank-k module lattices over R 5 5
(quantum, (classical,
any R = Ok) any R = Ok)

v

Open Questions

@ Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP < LWE reduction is of limited use: for the relevant factors,
GapSVP for ideals (k = 1) is easy.

@® How hard (or not) is approx-SVP on ideal /module lattices?

4
30/40

Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. .]

= -SVP
WOrstease approxeoVimon - arch RF-LWE < decision RF-LWE
rank-k module lattices over R 5 5

(quantum, (classical,
any R = Ok) any R = Ok)

Open Questions
@ Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP < LWE reduction is of limited use: for the relevant factors,
GapSVP for ideals (k = 1) is easy.
® How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for & > 1:

[CGS’'15,CDPR'16,CDW'17,PHS'19,. . .]

4
307740

Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. .]

= -SVP
WOrstease approxeoVimon - arch RF-LWE < decision RF-LWE
rank-k module lattices over R 5 5

(quantum, (classical,
any R = Ok) any R = Ok)

Open Questions
@ Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP < LWE reduction is of limited use: for the relevant factors,
GapSVP for ideals (k = 1) is easy.
® How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for & > 1:

[CGS’'15,CDPR'16,CDW'17,PHS'19,. . .]

© Are there reverse reductions? (Seems not, without increasing k. . .)

4
307740

Ring/Module-LWE In Practice: Kyber, SABER, NTRU(")

» NTRU(’) use fixed rank k = 1 over rings of increasing degree d.
Kyber, SABER use increasing rank k over a ring of fixed degree d.

31/40

Ring/Module-LWE In Practice: Kyber, SABER, NTRU(")

» NTRU(’) use fixed rank k = 1 over rings of increasing degree d.
Kyber, SABER use increasing rank k over a ring of fixed degree d.

Cryptanalysis suggests that n = kd mainly controls hardness,
even though increasing k yields ‘less structure’. Any distinction?

31/40

Ring/Module-LWE In Practice: Kyber, SABER, NTRU(")

» NTRU(') use fixed rank k = 1 over rings of increasing degree d.
Kyber, SABER use increasing rank k over a ring of fixed degree d.

Cryptanalysis suggests that n = kd mainly controls hardness,
even though increasing k yields ‘less structure’. Any distinction?

» Theorems require moderate error sizes >> y/n in each coefficient.
Systems use small error sizes € [1,7].
Seems hard according to cryptanalysis. Theory? (Quantum) attacks?

31/40

Lattices: Closing Thoughts

@ Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

32/40

Lattices: Closing Thoughts

@ Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

@® There are (moderate to huge) gaps between theorems and practical
parameters. Narrow them, exploit them—or both!

32/40

Lattices: Closing Thoughts

@ Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

@® There are (moderate to huge) gaps between theorems and practical
parameters. Narrow them, exploit them—or both!

©® Many important questions need attention from quantum experts.
The future of our digital security may depend on it!

32/40

Bonus: Isogenies

33/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%) € F? to
v =23 +tar+b

for suitable fixed a,b € F, plus a ‘point at infinity’ O.

34/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.

» With suitable ‘point addition,” E' is a group with identity O.

34/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.
» With suitable ‘point addition,” E' is a group with identity O.

P Since 1980s, cryptography has used dlog problem on ECs over finite FF.

34/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.
» With suitable ‘point addition,” E' is a group with identity O.

P Since 1980s, cryptography has used dlog problem on ECs over finite FF.
But this is quantumly broken by Shor's algorithm.

34/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.
» With suitable ‘point addition,” E' is a group with identity O.

P Since 1980s, cryptography has used dlog problem on ECs over finite FF.
But this is quantumly broken by Shor's algorithm.
So are ECs hopeless for crypto? Maybe not!

34/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.
» With suitable ‘point addition,” E' is a group with identity O.

P Since 1980s, cryptography has used dlog problem on ECs over finite FF.
But this is quantumly broken by Shor's algorithm.
So are ECs hopeless for crypto? Maybe not!

» An isogeny is a map from one elliptic curve E/F to another E’/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

34/40

Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.
» With suitable ‘point addition,” E' is a group with identity O.

P Since 1980s, cryptography has used dlog problem on ECs over finite FF.
But this is quantumly broken by Shor's algorithm.
So are ECs hopeless for crypto? Maybe not!

» An isogeny is a map from one elliptic curve E/F to another E’/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

P There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34/40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

35/40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

Real instantiation: CSIDH [CLMPR'18]. Very small (?), not so fast.

35/40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

Real instantiation: CSIDH [CLMPR'18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS'18/'20,P'20].

35/40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

Real instantiation: CSIDH [CLMPR'18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS'18/'20,P'20].

® Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut'11].

35/40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

Real instantiation: CSIDH [CLMPR'18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS'18/'20,P'20].

® Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut'11].

Real instantiation: NIST alternate SIKE [JAC+'17]. Small, not so fast.

35/40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

Real instantiation: CSIDH [CLMPR'18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS'18/'20,P'20].

® Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut'11].
Real instantiation: NIST alternate SIKE [JAC+'17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35/40

CSI DH (‘sea—side') [CastryckLangeMartindalePannyRenes'18]

P Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes'97,RostovtsevStolbunov’04]: abelian group G, set Z, action

*x:GXZ— 7.

36/40

CSI DH (‘sea—side') [CastryckLangeMartindalePannyRenes'18]

P Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes'97,RostovtsevStolbunov’04]: abelian group G, set Z, action

*x:GXZ— 7.

DiffieHellman-style noninteractive key exchange with public param z € Z:
Alice: secret a € G, publicpy =axz€ Z
Bob: secret b € G, public pp =bxz € Z

Shared key: a*pp =bxpa = (a+ b) x z, by commutativity

36/40

CSI DH (‘sea—side') [CastryckLangeMartindalePannyRenes'18]

P Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes'97,RostovtsevStolbunov’04]: abelian group G, set Z, action

*x:GXZ— 7.

DiffieHellman-style noninteractive key exchange with public param z € Z:
Alice: secret a € G, publicpy =axz€ Z
Bob: secret b € G, public pp =bxz € Z

Shared key: a*pp =bxpa = (a+ b) x z, by commutativity

> Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

36/40

CSI DH (‘sea—side') [CastryckLangeMartindalePannyRenes'18]

P Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes'97,RostovtsevStolbunov’04]: abelian group G, set Z, action

*x:GXZ— 7.

DiffieHellman-style noninteractive key exchange with public param z € Z:
Alice: secret a € G, publicpy =axz€ Z
Bob: secret b € G, public pp =bxz € Z
Shared key: a*pp =bxpa = (a+ b) x z, by commutativity

> Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

P Signatures [Stolbunov'12,DeFeoGalbraith'19,BeullensKleinjungVercauteren'19]:
pk + sig = 1468 bytes at same claimed security level

36/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] 29(v™) oracle queries and qubits (n =log|G])

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] 29(v™) oracle queries and qubits (n =log|G])

[Regev'04] 20(vn1ogn) oracle queries, only poly(n) qubits

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] 29(v™) oracle queries and qubits (n =log|G])

[Regev'04] 20(vn1ogn) oracle queries, only poly(n) qubits

[Kuperberg'11] 20(vV) oracle queries and bits of quantum-accessible RAM.

37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] 29(v™) oracle queries and qubits (n =log|G])

[Regev'04] 20(vn1ogn) oracle queries, only poly(n) qubits

[Kuperberg'11] 20(v1) oracle queries and bits of quantum-accessible RAM.
‘Collimation sieve' subsumes prior two, offers more tradeoffs.

.
37/40

Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

| \

[Kuperberg'03] 29(v™) oracle queries and qubits (n =log|G])
[Regev'04] 20(vn1ogn) oracle queries, only poly(n) qubits

[Kuperberg'11] 20(v1) oracle queries and bits of quantum-accessible RAM.
‘Collimation sieve' subsumes prior two, offers more tradeoffs.
E.g., log(queries) - log(QRACM) 2 n.

.
37/40

Prior Security Estimates for CSIDH-512

» Oracle costs < 2%%3 T-gates (4+ much cheaper linear gates)
for 'best case,’ somewhat non-uniform superposition [BLMP'19]

38,40

Prior Security Estimates for CSIDH-512

» Oracle costs < 2433 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP'19]

Good reason to expect similar cost for uniform superposition [BKV'19]

38/40

Prior Security Estimates for CSIDH-512

» Oracle costs < 2433 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP'19]

Good reason to expect similar cost for uniform superposition [BKV'19]

» Sijeve costs:

Work Algorithm Oracle queries Sieve memory

262

CSIDH paper [CLMPR'18] [Regev'04] poly(n)

38/40

Prior Security Estimates for CSIDH-512

» Oracle costs < 2433 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP'19]

Good reason to expect similar cost for uniform superposition [BKV'19]

» Sijeve costs:

Work Algorithm Oracle queries Sieve memory
CSIDH paper [CLMPR'18] [Regev'04] 262 poly(n)
[BonnetainSchrottenloher'18] [Kuperberg'03] 232:5 231 qubits

38/40

Prior Security Estimates for CSIDH-512

» Oracle costs < 2433 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP'19]

Good reason to expect similar cost for uniform superposition [BKV'19]

» Sijeve costs:

Work Algorithm Oracle queries Sieve memory
CSIDH paper [CLMPR'18] [Regev'04] 262 poly(n)
onnetainSchrottenloher'18 uperberg'03) ubits
B inSch loher' Kuperberg’ 2325 231 qubit
None prior! [Kuperberg'11] 7 77

38/40

C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’” and analyze its concrete
complexity on proposed CSIDH parameters.

39/40

C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22°7-1,

39/40

C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete

complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22571,

Work Algorithm Oracle queries Sieve memory
[CLMPR'18] [Regev'04] 262 poly(n)
[BS'18] [Kuperberg'03] 2325 231 qubits
2187 232 bits QRACM
This work [Kuperberg'11] 215.7 240 bits QRACM
2141 28 bits QRACM

39/40

C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22571,

Work Algorithm Oracle queries Sieve memory
[CLMPR'18] [Regev'04] 262 poly(n)
[BS'18] [Kuperberg'03] 2325 231 qubits
2187 232 bits QRACM
This work [Kuperberg'11] 215.7 240 bits QRACM
2141 28 bits QRACM

» Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of *.

39/40

C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22571,

Work Algorithm Oracle queries Sieve memory
[CLMPR'18] [Regev'04] 262 poly(n)
[BS'18] [Kuperberg'03] 2325 231 qubits
2187 232 bits QRACM
This work [Kuperberg'11] 215.7 240 bits QRACM
2141 28 bits QRACM

» Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of *.

*Independently, [BonnetainSchrottenloher'20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.

39/40

Isogenies: Closing Thoughts

@ Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

40/ 40

Isogenies: Closing Thoughts

@ Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

® However, they have received relatively little cryptanalysis so far, with
mixed results.

40/ 40

Isogenies: Closing Thoughts

@ Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

® However, they have received relatively little cryptanalysis so far, with
mixed results.

©® Fundamental questions need attention from quantum experts!

40/ 40

Isogenies: Closing Thoughts

@ Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

® However, they have received relatively little cryptanalysis so far, with
mixed results.

©® Fundamental questions need attention from quantum experts!

Thanks!

40/ 40

