
Post-Quantum Cryptography

Chris Peikert
University of Michigan

Tutorial, QIP 2022
6 March

1 / 40

Public-Key Cryptography

I Cryptography since the ancients: Alice, Bob need the same secret key

I Alice creates (related) public key and secret key :

F Anyone can do ‘public’ ops using : encrypt, check authenticity

F Only Alice can do ‘privileged’ ops using : decrypt, attest

(Images courtesy xkcd.org) 2 / 40

Public-Key Cryptography

I A paradigm shift [Merkle’74,DH’76,RSA’77]: ‘public-key’ cryptography

I Alice creates (related) public key and secret key :

F Anyone can do ‘public’ ops using : encrypt, check authenticity

F Only Alice can do ‘privileged’ ops using : decrypt, attest

(Images courtesy xkcd.org) 2 / 40

Public-Key Cryptography

I A paradigm shift [Merkle’74,DH’76,RSA’77]: ‘public-key’ cryptography

I Alice creates (related) public key and secret key :

F Anyone can do ‘public’ ops using : encrypt, check authenticity

F Only Alice can do ‘privileged’ ops using : decrypt, attest

(Images courtesy xkcd.org) 2 / 40

Public-Key Cryptography

I A paradigm shift [Merkle’74,DH’76,RSA’77]: ‘public-key’ cryptography

I Alice creates (related) public key and secret key :

F Anyone can do ‘public’ ops using : encrypt, check authenticity

F Only Alice can do ‘privileged’ ops using : decrypt, attest

(Images courtesy xkcd.org) 2 / 40

Bread and Butter of PKC: Encryption

I Alice can use the secret key to decrypt the message.

I Eavesdropper who gets the public key and ciphertext learns nothing
about the message.

3 / 40

Bread and Butter of PKC: Encryption

c = Enc(surprise party for blackhat!)

I Alice can use the secret key to decrypt the message.

I Eavesdropper who gets the public key and ciphertext learns nothing
about the message.

3 / 40

Bread and Butter of PKC: Encryption

c = Enc()

I Alice can use the secret key to decrypt the message.

I Eavesdropper who gets the public key and ciphertext learns nothing
about the message.

3 / 40

Bread and Butter of PKC: Digital Signatures

47

I Alice uses her secret key to create a signature σ for a message.

I Bob can use the public key to verify that the signature is authentic
(for this specific message).

I Attacker can’t forge a valid signature σ∗ for an unsigned message.

4 / 40

Bread and Butter of PKC: Digital Signatures

‘I, Alice, being of sound mind. . . ’, σ

47

I Alice uses her secret key to create a signature σ for a message.

I Bob can use the public key to verify that the signature is authentic
(for this specific message).

I Attacker can’t forge a valid signature σ∗ for an unsigned message.

4 / 40

Bread and Butter of PKC: Digital Signatures

‘I, Alice, being of sound mind. . . ’, σ
4

7

I Alice uses her secret key to create a signature σ for a message.

I Bob can use the public key to verify that the signature is authentic
(for this specific message).

I Attacker can’t forge a valid signature σ∗ for an unsigned message.

4 / 40

Bread and Butter of PKC: Digital Signatures

4

7
‘I, Alice, give all my $ to blackhat’, σ∗

I Alice uses her secret key to create a signature σ for a message.

I Bob can use the public key to verify that the signature is authentic
(for this specific message).

I Attacker can’t forge a valid signature σ∗ for an unsigned message.

4 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

Hard Problems and PKC

I Public-key crypto inherently requires hard computational problems.

For one: must be hard to compute the secret key from the public key.

I Issue: we don’t know whether hard problems exist! (Maybe P=NP.)

I ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali

Case study:

1 RSA/DH ‘rely on’ the hardness of the factoring/dlog problems:

Breaking RSA is no harder than factoring: RSA ≤ factoring. Obvious.

2 RSA/DH are ‘based on’ the hardness of factoring/dlog variants:

Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!

5 / 40

How Hard, and Hard How?

I We need crypto problems to be infeasible for any attacker to solve.

I Traditionally, ‘attacker’ = classical algorithm.

I But for quantum algorithms, ‘feasible’ appears broader:
[Feynman’82,Deutch’85,BV’93,Simon’94]

I With a large-scale QC, [Shor’94] totally breaks DH, RSA, and all other
widely used public-key crypto!

6 / 40

How Hard, and Hard How?

I We need crypto problems to be infeasible for any attacker to solve.

I Traditionally, ‘attacker’ = classical algorithm.

I But for quantum algorithms, ‘feasible’ appears broader:
[Feynman’82,Deutch’85,BV’93,Simon’94]

I With a large-scale QC, [Shor’94] totally breaks DH, RSA, and all other
widely used public-key crypto!

6 / 40

How Hard, and Hard How?

I We need crypto problems to be infeasible for any attacker to solve.

I Traditionally, ‘attacker’ = classical algorithm.

I But for quantum algorithms, ‘feasible’ appears broader:
[Feynman’82,Deutch’85,BV’93,Simon’94]

I With a large-scale QC, [Shor’94] totally breaks DH, RSA, and all other
widely used public-key crypto!

6 / 40

How Hard, and Hard How?

I We need crypto problems to be infeasible for any attacker to solve.

I Traditionally, ‘attacker’ = classical algorithm.

I But for quantum algorithms, ‘feasible’ appears broader:
[Feynman’82,Deutch’85,BV’93,Simon’94]

I With a large-scale QC, [Shor’94] totally breaks DH, RSA, and all other
widely used public-key crypto!

6 / 40

How Hard, and Hard How?

I We need crypto problems to be infeasible for any attacker to solve.

I Traditionally, ‘attacker’ = classical algorithm.

I But for quantum algorithms, ‘feasible’ appears broader:
[Feynman’82,Deutch’85,BV’93,Simon’94]

I With a large-scale QC, [Shor’94] totally breaks DH, RSA, and all other
widely used public-key crypto!

6 / 40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we’ve been widely using is
quantumly broken. (What rotten luck. . .)

Post-Quantum Cryptography

(a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, . . .)

Design cryptosystems that can

run on (today’s) classical computers,

while being

secure against quantum attacks.

7 / 40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we’ve been widely using is
quantumly broken. (What rotten luck. . .)

Post-Quantum Cryptography

(a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, . . .)

Design cryptosystems that can

run on (today’s) classical computers,

while being

secure against quantum attacks.

7 / 40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we’ve been widely using is
quantumly broken. (What rotten luck. . .)

Post-Quantum Cryptography

(a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, . . .)

Design cryptosystems that can

run on (today’s) classical computers,

while being

secure against quantum attacks.

7 / 40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we’ve been widely using is
quantumly broken. (What rotten luck. . .)

Post-Quantum Cryptography (a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, . . .)

Design cryptosystems that can

run on (today’s) classical computers,

while being

secure against quantum attacks.

7 / 40

Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we’ve been widely using is
quantumly broken. (What rotten luck. . .)

Post-Quantum Cryptography (a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, . . .)

Design cryptosystems that can

run on (today’s) classical computers,

while being

secure against quantum attacks.

7 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent?

No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

“Who controls history controls the future.”
–George Orwell, 1984

–BTTF (1985)

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

“Who controls history controls the future.”
–George Orwell, 1984

–BTTF (1985)

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

What’s the Rush?

I Big QCs probably won’t exist for many years, if ever—can’t we wait
until they’re more imminent? No!

1 Harvesting attacks: store today’s keys/ciphertexts to break later.

2 Rewrite history: forge signatures for old keys (e.g., in blockchains).

3 Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. . . Our ultimate goal is to provide cost
effective security against a potential quantum computer.”

–NSA, 2015

I NIST PQC standardization process (2016–):
3rd round, finalists and alternates chosen, selections imminent

8 / 40

Tutorial Agenda

1 A highly selective tour of the PQC landscape:

concepts, key techniques, theory and practice

2 A lot/some/very little of what I know a lot/some/very little about:

lattices / isogenies / MQ and codes

3 Important problems that need more scrutiny from quantum experts!

9 / 40

Lattices

10 / 40

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

11 / 40

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

11 / 40

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

11 / 40

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

11 / 40

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

11 / 40

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

11 / 40

What’s a Lattice?
I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . .)

O

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), appears to require 2Ω(m) time and space,
even quantumly. [LLL’82,Schnorr’87,. . . ,AKS’01,. . .]

12 / 40

What’s a Lattice?
I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . .)

O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), appears to require 2Ω(m) time and space,
even quantumly. [LLL’82,Schnorr’87,. . . ,AKS’01,. . .]

12 / 40

What’s a Lattice?
I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . .)

O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), appears to require 2Ω(m) time and space,
even quantumly. [LLL’82,Schnorr’87,. . . ,AKS’01,. . .]

12 / 40

What’s a Lattice?
I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . .) O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), appears to require 2Ω(m) time and space,
even quantumly. [LLL’82,Schnorr’87,. . . ,AKS’01,. . .]

12 / 40

What’s a Lattice?
I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . .) O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), appears to require 2Ω(m) time and space,
even quantumly. [LLL’82,Schnorr’87,. . . ,AKS’01,. . .]

12 / 40

Lattices
Foundations, Digital Signatures

13 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial ‘short’ z ∈ Zm, ‖z‖ ≤ β � q such that:

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial ‘short’ z ∈ Zm, ‖z‖ ≤ β � q such that:

z1 ·

 |a1

|

+ z2 ·

 |a2

|

+

· · ·

+ zm ·

 |am
|

=

 |0
|

∈ Znq

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z1, . . . , zm ∈ {0,±1} such that:

z1 ·

 |a1

|

 + z2 ·

 |a2

|

 + · · · + zm ·

 |am
|

 =

 |0
|

 ∈ Znq

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial ‘short’ z ∈ Zm, ‖z‖ ≤ β � q such that:

· · · · A · · · ·

︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial ‘short’ z ∈ Zm, ‖z‖ ≤ β � q such that:

· · · · A · · · ·

︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function
I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial ‘short’ z ∈ Zm, ‖z‖ ≤ β � q such that:

· · · · A · · · ·

︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function
I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial ‘short’ z ∈ Zm, ‖z‖ ≤ β � q such that:

· · · · A · · · ·

︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function
I Set m > n log2 q. Define ‘compressing’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields short solution z = x− x′ ∈ {0,±1}m.

14 / 40

Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) := {z ∈ Zm : Az = 0}

⊇ qZm

I ‘Short’ solutions z lie in
O

Worst-Case to Average-Case Reduction [Ajtai’96,. . .]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×mq)

⇓
solving GapSVPβ

√
n and SIVPβ

√
n on any n-dim lattice

15 / 40

Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) := {z ∈ Zm : Az = 0}

⊇ qZm

I ‘Short’ solutions z lie in

O

Worst-Case to Average-Case Reduction [Ajtai’96,. . .]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×mq)

⇓
solving GapSVPβ

√
n and SIVPβ

√
n on any n-dim lattice

15 / 40

Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) := {z ∈ Zm : Az = 0} ⊇ qZm

I ‘Short’ solutions z lie in

O

(0, q)

(q, 0)

Worst-Case to Average-Case Reduction [Ajtai’96,. . .]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×mq)

⇓
solving GapSVPβ

√
n and SIVPβ

√
n on any n-dim lattice

15 / 40

Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) := {z ∈ Zm : Az = 0} ⊇ qZm

I ‘Short’ solutions z lie in
O

(0, q)

(q, 0)

Worst-Case to Average-Case Reduction [Ajtai’96,. . .]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×mq)

⇓
solving GapSVPβ

√
n and SIVPβ

√
n on any n-dim lattice

15 / 40

Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) := {z ∈ Zm : Az = 0} ⊇ qZm

I ‘Short’ solutions z lie in
O

(0, q)

(q, 0)

Worst-Case to Average-Case Reduction [Ajtai’96,. . .]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×mq)

⇓
solving GapSVPβ

√
n and SIVPβ

√
n on any n-dim lattice

15 / 40

Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS’02,NR’06,DN’12])

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

16 / 40

Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS’02,NR’06,DN’12])

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

16 / 40

Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS’02,NR’06,DN’12])

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

16 / 40

Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS’02,NR’06,DN’12])

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

16 / 40

Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS’02,NR’06,DN’12])

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

16 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Signatures In Practice: Falcon [FHK+’17], Dilithium [DKL+’17]

Refinements to the two components of the [GPV’08] framework:

1 Generating a ‘hard’ lattice/trapdoor pair:
[GGH’97,A’99,HHPSW’01,AP’09,SS’11,MP’12,PP’19, . . .]

Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?

2 Gaussian lattice sampling: [P’10,MP’12,DP’16,. . .]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky’09,’12]:
very simple signing algorithm! (No Gaussian sampling needed.)

Questions

1 Is SIS (quantumly) hard for solution norm . q in `∞ norm?

2 Tighter security reduction in QROM, or exploit looseness?
See [BDF+’12,KLS’18,DFMS’19,LZ’19].

17 / 40

Lattices
Public-Key Encryption

18 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 ≈ 〈s , a1〉 mod q

a2 ← Znq , b2 ≈ 〈s , a2〉 mod q

...

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 = 〈s , a1〉+ e1 ∈ Zq
a2 ← Znq , b2 = 〈s , a2〉+ e2 ∈ Zq

... √
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . .]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

19 / 40

LWE is a Lattice Problem
I LWE is ‘dual’ to SIS. Let

L(A) = {zt ≡ stA mod q} .

Given A and b ≈ sA, find s.

Bounded-Distance Decoding (BDDα)

I Given a target that’s ‘α-far’ from a
lattice point, find that point.

b

Theorem [Regev’05]

solving BDDα on lattice L
(quantum)w�

Gaussian sampling ‘(1/α)-short’ points from dual lattice L∗

I Key Open Problem: ‘dequantize’ this theorem!

20 / 40

LWE is a Lattice Problem
I LWE is ‘dual’ to SIS. Let

L(A) = {zt ≡ stA mod q} .

Given A and b ≈ sA, find s.

Bounded-Distance Decoding (BDDα)

I Given a target that’s ‘α-far’ from a
lattice point, find that point.

b

Theorem [Regev’05]

solving BDDα on lattice L
(quantum)w�

Gaussian sampling ‘(1/α)-short’ points from dual lattice L∗

I Key Open Problem: ‘dequantize’ this theorem!

20 / 40

LWE is a Lattice Problem
I LWE is ‘dual’ to SIS. Let

L(A) = {zt ≡ stA mod q} .

Given A and b ≈ sA, find s.

Bounded-Distance Decoding (BDDα)

I Given a target that’s ‘α-far’ from a
lattice point, find that point.

b

Theorem [Regev’05]

solving BDDα on lattice L
(quantum)w�

Gaussian sampling ‘(1/α)-short’ points from dual lattice L∗

I Key Open Problem: ‘dequantize’ this theorem!

20 / 40

LWE is a Lattice Problem
I LWE is ‘dual’ to SIS. Let

L(A) = {zt ≡ stA mod q} .

Given A and b ≈ sA, find s.

Bounded-Distance Decoding (BDDα)

I Given a target that’s ‘α-far’ from a
lattice point, find that point.

b

Theorem [Regev’05]

solving BDDα on lattice L
(quantum)w�

Gaussian sampling ‘(1/α)-short’ points from dual lattice L∗

I Key Open Problem: ‘dequantize’ this theorem!

20 / 40

LWE is Versatile
Cryptography we can build from LWE:

4 Key Exchange and Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Low-Depth Pseudorandom Functions

44 Identity-Based Encryption (w/o RO)

44 Hierarchical ID-Based Encryption (w/o RO)

44 Noninteractive Zero Knowledge for NP

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary access policies

and much, much more. . .

21 / 40

LWE is Versatile
Cryptography we can build from LWE:

4 Key Exchange and Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Low-Depth Pseudorandom Functions

44 Identity-Based Encryption (w/o RO)

44 Hierarchical ID-Based Encryption (w/o RO)

44 Noninteractive Zero Knowledge for NP

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary access policies

and much, much more. . .

21 / 40

LWE is Versatile
Cryptography we can build from LWE:

4 Key Exchange and Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Low-Depth Pseudorandom Functions

44 Identity-Based Encryption (w/o RO)

44 Hierarchical ID-Based Encryption (w/o RO)

44 Noninteractive Zero Knowledge for NP

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary access policies

and much, much more. . .

21 / 40

LWE is Versatile
Cryptography we can build from LWE:

4 Key Exchange and Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Low-Depth Pseudorandom Functions

44 Identity-Based Encryption (w/o RO)

44 Hierarchical ID-Based Encryption (w/o RO)

44 Noninteractive Zero Knowledge for NP

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary access policies

and much, much more. . .

21 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)

by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)

by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)

by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)

by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)

by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)

by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)
by decision-LWE

22 / 40

Key Exchange/Encryption from LWE [Regev’05,LPS’10,LP’11]

r← Zn (short) A← Zn×nq s← Zn (short)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs ≈ k k ≈ ut · s ≈ rtAs ∈ Zq

c = k + bit · q2 ∈ Zq

(A,u,v, k)
by decision-LWE

22 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

LWE In Practice: Frodo(KEM) [BCD+’16,ABD+’17]

NIST PQC alternate FrodoKEM: 640 ≤ n ≤ 1344 and q ∈ {215, 216}.
I Uses Gaussian error of std dev 1.4 ≤ σ ≤ 2.8�

√
n.

I These params seem hard, according to cryptanalysis. Any theory?

I Regev’s full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS ≤ LWE’ does.

BDD with DGS (implicit in [AR’04,R’05,LLM’06,DRS’14])

I Solve BDD to distance d, given N Gaussian samples of width (say)
≥ 2
√

logN/d over the dual lattice.

I Known algorithms can exploit narrower samples, but not these (?).

Questions

1 Is BDD w/DGS actually hard? What effect does N have?

2 Tightness of the BDD w/DGS ≤ LWE reduction in N, σ.

23 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ.

(Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ. (Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

Learning With Rounding (LWR) [BanerjeePeikertRosen’12]

I KEY IDEA: generate error deterministically, by
rounding Zq to a ‘sparser’ subset.

Let p < q and define bxep := bx · p/qe mod p.

(LWE decryption uses this to remove error!)

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2

I LWR problem: find s (or distinguish from random), given pairs(
ai , b〈s,ai〉ep

)
∈ Zq × Zp .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR’12,. . .]

I For q ≥ p · E · 2λ, LWR is no easier than LWE with error size E,
for security parameter ≈ λ. (Error width q/p > 2λ, rate α = E/q < 2−λ.)

Proof idea: w.h.p., (ai , b〈s,ai〉+ eep) = (ai , b〈s,ai〉ep).

24 / 40

LWR In Practice: SABER [DKRV’17], NTRU Prime [BCLV’17]

I Theorems require large ‘rounding width’ q/p.

I But systems use small q/p, e.g., q/p ≈ 3 or 8.

I Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’ !

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2
3

4
5

6
7

Open Questions

1 Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

2 (Quantum) attacks that exploit small rounding?

Regev’02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(

√
log |G|) quantum algorithm.

Could those techniques be useful here?

25 / 40

LWR In Practice: SABER [DKRV’17], NTRU Prime [BCLV’17]

I Theorems require large ‘rounding width’ q/p.

I But systems use small q/p, e.g., q/p ≈ 3 or 8.

I Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’ !

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2
3

4
5

6
7

Open Questions

1 Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

2 (Quantum) attacks that exploit small rounding?

Regev’02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(

√
log |G|) quantum algorithm.

Could those techniques be useful here?

25 / 40

LWR In Practice: SABER [DKRV’17], NTRU Prime [BCLV’17]

I Theorems require large ‘rounding width’ q/p.

I But systems use small q/p, e.g., q/p ≈ 3 or 8.

I Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’ !

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2
3

4
5

6
7

Open Questions

1 Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

2 (Quantum) attacks that exploit small rounding?

Regev’02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(

√
log |G|) quantum algorithm.

Could those techniques be useful here?

25 / 40

LWR In Practice: SABER [DKRV’17], NTRU Prime [BCLV’17]

I Theorems require large ‘rounding width’ q/p.

I But systems use small q/p, e.g., q/p ≈ 3 or 8.

I Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’ !

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2
3

4
5

6
7

Open Questions

1 Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

2 (Quantum) attacks that exploit small rounding?

Regev’02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(

√
log |G|) quantum algorithm.

Could those techniques be useful here?

25 / 40

LWR In Practice: SABER [DKRV’17], NTRU Prime [BCLV’17]

I Theorems require large ‘rounding width’ q/p.

I But systems use small q/p, e.g., q/p ≈ 3 or 8.

I Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’ !

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2
3

4
5

6
7

Open Questions

1 Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

2 (Quantum) attacks that exploit small rounding?

Regev’02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(

√
log |G|) quantum algorithm.

Could those techniques be useful here?

25 / 40

LWR In Practice: SABER [DKRV’17], NTRU Prime [BCLV’17]

I Theorems require large ‘rounding width’ q/p.

I But systems use small q/p, e.g., q/p ≈ 3 or 8.

I Heuristically, seems to resist known attacks.

But little public scrutiny of such ‘small rounding’ !

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

0
1

2
3

4
5

6
7

Open Questions

1 Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

2 (Quantum) attacks that exploit small rounding?

Regev’02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(

√
log |G|) quantum algorithm.

Could those techniques be useful here?

25 / 40

Lattices
Efficiency from Algebraic Structure

26 / 40

SIS/LWE/LWR are Efficient(-ish)

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one random-looking
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =

...
A
...

︸ ︷︷ ︸

n

,

...
b
...

Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

27 / 40

SIS/LWE/LWR are Efficient(-ish)

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one random-looking
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =

...
A
...

︸ ︷︷ ︸

n

,

...
b
...

Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

27 / 40

SIS/LWE/LWR are Efficient(-ish)

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one random-looking
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =

...
A
...

︸ ︷︷ ︸

n

,

...
b
...

Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

27 / 40

SIS/LWE/LWR are Efficient(-ish)

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one random-looking
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =

...
A
...

︸ ︷︷ ︸

n

,

...
b
...

Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

27 / 40

Wishful Thinking. . .
...
a
...

 ?

...
s
...

+

...
e
...

 =

...
b
...

 ∈ Zdq

I Get d pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zd×dq -chunks by Zdq .

28 / 40

Wishful Thinking. . .
...
a
...

 ?

...
s
...

+

...
e
...

 =

...
b
...

 ∈ Zdq

I Get d pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zd×dq -chunks by Zdq .

Question
I How to define the product ‘?’ so that (a,b) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer

I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xd + 1).

Fast and practical with FFT: d log d operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . .]

28 / 40

Wishful Thinking. . .
...
a
...

 ?

...
s
...

+

...
e
...

 =

...
b
...

 ∈ Zdq

I Get d pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zd×dq -chunks by Zdq .

Question
I How to define the product ‘?’ so that (a,b) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer

I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xd + 1).

Fast and practical with FFT: d log d operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . .]

28 / 40

Wishful Thinking. . .
...
a
...

 ?

...
s
...

+

...
e
...

 =

...
b
...

 ∈ Zdq

I Get d pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zd×dq -chunks by Zdq .

Question
I How to define the product ‘?’ so that (a,b) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer

I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xd + 1).

Fast and practical with FFT: d log d operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . .]

28 / 40

Wishful Thinking. . .
...
a
...

 ?

...
s
...

+

...
e
...

 =

...
b
...

 ∈ Zdq

I Get d pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zd×dq -chunks by Zdq .

Question
I How to define the product ‘?’ so that (a,b) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer

I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xd + 1).

Fast and practical with FFT: d log d operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . .]
28 / 40

Wishful Thinking. . .
...
a
...

 ?

...
s
...

+

...
e
...

 =

...
b
...

 ∈ Zdq

I Get d pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zd×dq -chunks by Zdq .

28 / 40

LWE Over Rings/Modules, Over Simplified [LPR’10,BGV’11,LS’12]

I Let R = Z[X]/(Xd + 1) for d a power of two, and Rq = R/qR

F Elements of Rq are degree < d polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret vector of polynomials s ∈ Rkq , given:

a1 ← Rkq , b1 ≈ 〈s,a1〉 ∈ Rq
a2 ← Rkq , b2 ≈ 〈s,a2〉 ∈ Rq

...

F Each eq. is d related eq.’s on a
secret of dim n = kd over Zq.

F LWE: d = 1, k = n.

Ring-LWE: d = n, k = 1.

Module-LWE: interpolate.

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rkq ×Rq

29 / 40

LWE Over Rings/Modules, Over Simplified [LPR’10,BGV’11,LS’12]

I Let R = Z[X]/(Xd + 1) for d a power of two, and Rq = R/qR

F Elements of Rq are degree < d polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret vector of polynomials s ∈ Rkq , given:

a1 ← Rkq , b1 ≈ 〈s,a1〉 ∈ Rq
a2 ← Rkq , b2 ≈ 〈s,a2〉 ∈ Rq

...

F Each eq. is d related eq.’s on a
secret of dim n = kd over Zq.

F LWE: d = 1, k = n.

Ring-LWE: d = n, k = 1.

Module-LWE: interpolate.

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rkq ×Rq

29 / 40

LWE Over Rings/Modules, Over Simplified [LPR’10,BGV’11,LS’12]

I Let R = Z[X]/(Xd + 1) for d a power of two, and Rq = R/qR

F Elements of Rq are degree < d polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret vector of polynomials s ∈ Rkq , given:

a1 ← Rkq , b1 ≈ 〈s,a1〉 ∈ Rq
a2 ← Rkq , b2 ≈ 〈s,a2〉 ∈ Rq

...

F Each eq. is d related eq.’s on a
secret of dim n = kd over Zq.

F LWE: d = 1, k = n.

Ring-LWE: d = n, k = 1.

Module-LWE: interpolate.

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rkq ×Rq

29 / 40

LWE Over Rings/Modules, Over Simplified [LPR’10,BGV’11,LS’12]

I Let R = Z[X]/(Xd + 1) for d a power of two, and Rq = R/qR

F Elements of Rq are degree < d polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret vector of polynomials s ∈ Rkq , given:

a1 ← Rkq , b1 ≈ 〈s,a1〉 ∈ Rq
a2 ← Rkq , b2 ≈ 〈s,a2〉 ∈ Rq

...

F Each eq. is d related eq.’s on a
secret of dim n = kd over Zq.

F LWE: d = 1, k = n.

Ring-LWE: d = n, k = 1.

Module-LWE: interpolate.

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rkq ×Rq

29 / 40

LWE Over Rings/Modules, Over Simplified [LPR’10,BGV’11,LS’12]

I Let R = Z[X]/(Xd + 1) for d a power of two, and Rq = R/qR

F Elements of Rq are degree < d polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret vector of polynomials s ∈ Rkq , given:

a1 ← Rkq , b1 ≈ 〈s,a1〉 ∈ Rq
a2 ← Rkq , b2 ≈ 〈s,a2〉 ∈ Rq

...

F Each eq. is d related eq.’s on a
secret of dim n = kd over Zq.

F LWE: d = 1, k = n.

Ring-LWE: d = n, k = 1.

Module-LWE: interpolate.

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rkq ×Rq

29 / 40

LWE Over Rings/Modules, Over Simplified [LPR’10,BGV’11,LS’12]

I Let R = Z[X]/(Xd + 1) for d a power of two, and Rq = R/qR

F Elements of Rq are degree < d polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret vector of polynomials s ∈ Rkq , given:

a1 ← Rkq , b1 ≈ 〈s,a1〉 ∈ Rq
a2 ← Rkq , b2 ≈ 〈s,a2〉 ∈ Rq

...

F Each eq. is d related eq.’s on a
secret of dim n = kd over Zq.

F LWE: d = 1, k = n.

Ring-LWE: d = n, k = 1.

Module-LWE: interpolate.

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rkq ×Rq

29 / 40

Hardness of Ring/Module-LWE

Theorems [. . . ,SSTX’09,LPR’10,LS’12,PRS’17,RSW’18,. . .]

worst-case approx-SVP on
rank-k module lattices over R

≤

(quantum,
any R = OK)

search Rk-LWE ≤

(classical,
any R = OK)

decision Rk-LWE

Open Questions

1 Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP ≤ LWE reduction is of limited use: for the relevant factors,

GapSVP for ideals (k = 1) is easy.

2 How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for k > 1:

[CGS’15,CDPR’16,CDW’17,PHS’19,. . .]

3 Are there reverse reductions? (Seems not, without increasing k. . .)

30 / 40

Hardness of Ring/Module-LWE

Theorems [. . . ,SSTX’09,LPR’10,LS’12,PRS’17,RSW’18,. . .]

worst-case approx-SVP on
rank-k module lattices over R

≤

(quantum,
any R = OK)

search Rk-LWE ≤

(classical,
any R = OK)

decision Rk-LWE

Open Questions

1 Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP ≤ LWE reduction is of limited use: for the relevant factors,

GapSVP for ideals (k = 1) is easy.

2 How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for k > 1:

[CGS’15,CDPR’16,CDW’17,PHS’19,. . .]

3 Are there reverse reductions? (Seems not, without increasing k. . .)

30 / 40

Hardness of Ring/Module-LWE

Theorems [. . . ,SSTX’09,LPR’10,LS’12,PRS’17,RSW’18,. . .]

worst-case approx-SVP on
rank-k module lattices over R

≤

(quantum,
any R = OK)

search Rk-LWE ≤

(classical,
any R = OK)

decision Rk-LWE

Open Questions

1 Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP ≤ LWE reduction is of limited use: for the relevant factors,

GapSVP for ideals (k = 1) is easy.

2 How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for k > 1:

[CGS’15,CDPR’16,CDW’17,PHS’19,. . .]

3 Are there reverse reductions? (Seems not, without increasing k. . .)

30 / 40

Hardness of Ring/Module-LWE

Theorems [. . . ,SSTX’09,LPR’10,LS’12,PRS’17,RSW’18,. . .]

worst-case approx-SVP on
rank-k module lattices over R

≤

(quantum,
any R = OK)

search Rk-LWE ≤

(classical,
any R = OK)

decision Rk-LWE

Open Questions

1 Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP ≤ LWE reduction is of limited use: for the relevant factors,

GapSVP for ideals (k = 1) is easy.

2 How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for k > 1:

[CGS’15,CDPR’16,CDW’17,PHS’19,. . .]

3 Are there reverse reductions? (Seems not, without increasing k. . .)

30 / 40

Hardness of Ring/Module-LWE

Theorems [. . . ,SSTX’09,LPR’10,LS’12,PRS’17,RSW’18,. . .]

worst-case approx-SVP on
rank-k module lattices over R

≤

(quantum,
any R = OK)

search Rk-LWE ≤

(classical,
any R = OK)

decision Rk-LWE

Open Questions

1 Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP ≤ LWE reduction is of limited use: for the relevant factors,

GapSVP for ideals (k = 1) is easy.

2 How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for k > 1:

[CGS’15,CDPR’16,CDW’17,PHS’19,. . .]

3 Are there reverse reductions? (Seems not, without increasing k. . .)

30 / 40

Hardness of Ring/Module-LWE

Theorems [. . . ,SSTX’09,LPR’10,LS’12,PRS’17,RSW’18,. . .]

worst-case approx-SVP on
rank-k module lattices over R

≤

(quantum,
any R = OK)

search Rk-LWE ≤

(classical,
any R = OK)

decision Rk-LWE

Open Questions

1 Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP ≤ LWE reduction is of limited use: for the relevant factors,

GapSVP for ideals (k = 1) is easy.

2 How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for k > 1:

[CGS’15,CDPR’16,CDW’17,PHS’19,. . .]

3 Are there reverse reductions? (Seems not, without increasing k. . .)
30 / 40

Ring/Module-LWE In Practice: Kyber, SABER, NTRU(’)

I NTRU(’) use fixed rank k = 1 over rings of increasing degree d.

Kyber, SABER use increasing rank k over a ring of fixed degree d.

Cryptanalysis suggests that n = kd mainly controls hardness,
even though increasing k yields ‘less structure’. Any distinction?

I Theorems require moderate error sizes �
√
n in each coefficient.

Systems use small error sizes ∈ [1, 7].

Seems hard according to cryptanalysis. Theory? (Quantum) attacks?

31 / 40

Ring/Module-LWE In Practice: Kyber, SABER, NTRU(’)

I NTRU(’) use fixed rank k = 1 over rings of increasing degree d.

Kyber, SABER use increasing rank k over a ring of fixed degree d.

Cryptanalysis suggests that n = kd mainly controls hardness,
even though increasing k yields ‘less structure’. Any distinction?

I Theorems require moderate error sizes �
√
n in each coefficient.

Systems use small error sizes ∈ [1, 7].

Seems hard according to cryptanalysis. Theory? (Quantum) attacks?

31 / 40

Ring/Module-LWE In Practice: Kyber, SABER, NTRU(’)

I NTRU(’) use fixed rank k = 1 over rings of increasing degree d.

Kyber, SABER use increasing rank k over a ring of fixed degree d.

Cryptanalysis suggests that n = kd mainly controls hardness,
even though increasing k yields ‘less structure’. Any distinction?

I Theorems require moderate error sizes �
√
n in each coefficient.

Systems use small error sizes ∈ [1, 7].

Seems hard according to cryptanalysis. Theory? (Quantum) attacks?

31 / 40

Lattices: Closing Thoughts

1 Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

2 There are (moderate to huge) gaps between theorems and practical
parameters. Narrow them, exploit them—or both!

3 Many important questions need attention from quantum experts.
The future of our digital security may depend on it!

32 / 40

Lattices: Closing Thoughts

1 Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

2 There are (moderate to huge) gaps between theorems and practical
parameters. Narrow them, exploit them—or both!

3 Many important questions need attention from quantum experts.
The future of our digital security may depend on it!

32 / 40

Lattices: Closing Thoughts

1 Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

2 There are (moderate to huge) gaps between theorems and practical
parameters. Narrow them, exploit them—or both!

3 Many important questions need attention from quantum experts.
The future of our digital security may depend on it!

32 / 40

Bonus: Isogenies

33 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Elliptic Curves and Isogenies

I An elliptic curve E over a field F is the set of solutions (x, y) ∈ F2 to

y2 = x3 + ax+ b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

I With suitable ‘point addition,’ E is a group with identity O.

I Since 1980s, cryptography has used dlog problem on ECs over finite F.

But this is quantumly broken by Shor’s algorithm.

So are ECs hopeless for crypto? Maybe not!

I An isogeny is a map from one elliptic curve E/F to another E′/F
satisfying certain algebraic conditions. (Not necessarily an isomorphism.)

I There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.

34 / 40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

1 Use isogenies for commutative group action to get DH-style key
agreement [Couveignes’97,RostovtsevStolbunov’04].

Real instantiation: CSIDH [CLMPR’18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS’18/’20,P’20].

2 Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut’11].

Real instantiation: NIST alternate SIKE [JAC+’17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35 / 40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

1 Use isogenies for commutative group action to get DH-style key
agreement [Couveignes’97,RostovtsevStolbunov’04].

Real instantiation: CSIDH [CLMPR’18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS’18/’20,P’20].

2 Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut’11].

Real instantiation: NIST alternate SIKE [JAC+’17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35 / 40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

1 Use isogenies for commutative group action to get DH-style key
agreement [Couveignes’97,RostovtsevStolbunov’04].

Real instantiation: CSIDH [CLMPR’18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS’18/’20,P’20].

2 Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut’11].

Real instantiation: NIST alternate SIKE [JAC+’17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35 / 40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

1 Use isogenies for commutative group action to get DH-style key
agreement [Couveignes’97,RostovtsevStolbunov’04].

Real instantiation: CSIDH [CLMPR’18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS’18/’20,P’20].

2 Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut’11].

Real instantiation: NIST alternate SIKE [JAC+’17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35 / 40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

1 Use isogenies for commutative group action to get DH-style key
agreement [Couveignes’97,RostovtsevStolbunov’04].

Real instantiation: CSIDH [CLMPR’18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS’18/’20,P’20].

2 Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut’11].

Real instantiation: NIST alternate SIKE [JAC+’17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35 / 40

Cryptography from Isogenies

Two main kinds of constructions using isogenies:

1 Use isogenies for commutative group action to get DH-style key
agreement [Couveignes’97,RostovtsevStolbunov’04].

Real instantiation: CSIDH [CLMPR’18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS’18/’20,P’20].

2 Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut’11].

Real instantiation: NIST alternate SIKE [JAC+’17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?

35 / 40

CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

I Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes’97,RostovtsevStolbunov’04]: abelian group G, set Z, action

? : G× Z → Z .

DiffieHellman-style noninteractive key exchange with public param z ∈ Z:

Alice: secret a ∈ G, public pA = a ? z ∈ Z
Bob: secret b ∈ G, public pB = b ? z ∈ Z

Shared key: a ? pB = b ? pA = (a+ b) ? z, by commutativity

I Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

I Signatures [Stolbunov’12,DeFeoGalbraith’19,BeullensKleinjungVercauteren’19]:
pk + sig = 1468 bytes at same claimed security level

36 / 40

CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

I Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes’97,RostovtsevStolbunov’04]: abelian group G, set Z, action

? : G× Z → Z .

DiffieHellman-style noninteractive key exchange with public param z ∈ Z:

Alice: secret a ∈ G, public pA = a ? z ∈ Z
Bob: secret b ∈ G, public pB = b ? z ∈ Z

Shared key: a ? pB = b ? pA = (a+ b) ? z, by commutativity

I Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

I Signatures [Stolbunov’12,DeFeoGalbraith’19,BeullensKleinjungVercauteren’19]:
pk + sig = 1468 bytes at same claimed security level

36 / 40

CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

I Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes’97,RostovtsevStolbunov’04]: abelian group G, set Z, action

? : G× Z → Z .

DiffieHellman-style noninteractive key exchange with public param z ∈ Z:

Alice: secret a ∈ G, public pA = a ? z ∈ Z
Bob: secret b ∈ G, public pB = b ? z ∈ Z

Shared key: a ? pB = b ? pA = (a+ b) ? z, by commutativity

I Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

I Signatures [Stolbunov’12,DeFeoGalbraith’19,BeullensKleinjungVercauteren’19]:
pk + sig = 1468 bytes at same claimed security level

36 / 40

CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

I Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes’97,RostovtsevStolbunov’04]: abelian group G, set Z, action

? : G× Z → Z .

DiffieHellman-style noninteractive key exchange with public param z ∈ Z:

Alice: secret a ∈ G, public pA = a ? z ∈ Z
Bob: secret b ∈ G, public pB = b ? z ∈ Z

Shared key: a ? pB = b ? pA = (a+ b) ? z, by commutativity

I Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

I Signatures [Stolbunov’12,DeFeoGalbraith’19,BeullensKleinjungVercauteren’19]:
pk + sig = 1468 bytes at same claimed security level

36 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.

E.g., log(queries) · log(QRACM) & n.

37 / 40

Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent).

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10].

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . .]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more tradeoffs.
E.g., log(queries) · log(QRACM) & n.

37 / 40

Prior Security Estimates for CSIDH-512

I Oracle costs ≤ 243.3 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

Good reason to expect similar cost for uniform superposition [BKV’19]

I Sieve costs:

Work Algorithm Oracle queries Sieve memory

CSIDH paper [CLMPR’18] [Regev’04] 262 poly(n)

[BonnetainSchrottenloher’18] [Kuperberg’03] 232.5 231 qubits

None prior! [Kuperberg’11] ?? ??

38 / 40

Prior Security Estimates for CSIDH-512

I Oracle costs ≤ 243.3 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

Good reason to expect similar cost for uniform superposition [BKV’19]

I Sieve costs:

Work Algorithm Oracle queries Sieve memory

CSIDH paper [CLMPR’18] [Regev’04] 262 poly(n)

[BonnetainSchrottenloher’18] [Kuperberg’03] 232.5 231 qubits

None prior! [Kuperberg’11] ?? ??

38 / 40

Prior Security Estimates for CSIDH-512

I Oracle costs ≤ 243.3 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

Good reason to expect similar cost for uniform superposition [BKV’19]

I Sieve costs:

Work Algorithm Oracle queries Sieve memory

CSIDH paper [CLMPR’18] [Regev’04] 262 poly(n)

[BonnetainSchrottenloher’18] [Kuperberg’03] 232.5 231 qubits

None prior! [Kuperberg’11] ?? ??

38 / 40

Prior Security Estimates for CSIDH-512

I Oracle costs ≤ 243.3 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

Good reason to expect similar cost for uniform superposition [BKV’19]

I Sieve costs:

Work Algorithm Oracle queries Sieve memory

CSIDH paper [CLMPR’18] [Regev’04] 262 poly(n)

[BonnetainSchrottenloher’18] [Kuperberg’03] 232.5 231 qubits

None prior! [Kuperberg’11] ?? ??

38 / 40

Prior Security Estimates for CSIDH-512

I Oracle costs ≤ 243.3 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

Good reason to expect similar cost for uniform superposition [BKV’19]

I Sieve costs:

Work Algorithm Oracle queries Sieve memory

CSIDH paper [CLMPR’18] [Regev’04] 262 poly(n)

[BonnetainSchrottenloher’18] [Kuperberg’03] 232.5 231 qubits

None prior! [Kuperberg’11] ?? ??

38 / 40

C-Sieving on the CSIDH [P’20]

I Improve Kuperberg’s c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

I Run simulations up to the actual CSIDH-512 order |G| ≈ 2257.1.

Work Algorithm Oracle queries Sieve memory

[CLMPR’18] [Regev’04] 262 poly(n)

[BS’18] [Kuperberg’03] 232.5 231 qubits

218.7 232 bits QRACM

This work [Kuperberg’11] 215.7 240 bits QRACM

214.1 248 bits QRACM

I Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of ?.

∗Independently, [BonnetainSchrottenloher’20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.

39 / 40

C-Sieving on the CSIDH [P’20]

I Improve Kuperberg’s c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

I Run simulations up to the actual CSIDH-512 order |G| ≈ 2257.1.

Work Algorithm Oracle queries Sieve memory

[CLMPR’18] [Regev’04] 262 poly(n)

[BS’18] [Kuperberg’03] 232.5 231 qubits

218.7 232 bits QRACM

This work [Kuperberg’11] 215.7 240 bits QRACM

214.1 248 bits QRACM

I Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of ?.

∗Independently, [BonnetainSchrottenloher’20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.

39 / 40

C-Sieving on the CSIDH [P’20]

I Improve Kuperberg’s c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

I Run simulations up to the actual CSIDH-512 order |G| ≈ 2257.1.

Work Algorithm Oracle queries Sieve memory

[CLMPR’18] [Regev’04] 262 poly(n)

[BS’18] [Kuperberg’03] 232.5 231 qubits

218.7 232 bits QRACM

This work [Kuperberg’11] 215.7 240 bits QRACM

214.1 248 bits QRACM

I Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of ?.

∗Independently, [BonnetainSchrottenloher’20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.

39 / 40

C-Sieving on the CSIDH [P’20]

I Improve Kuperberg’s c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

I Run simulations up to the actual CSIDH-512 order |G| ≈ 2257.1.

Work Algorithm Oracle queries Sieve memory

[CLMPR’18] [Regev’04] 262 poly(n)

[BS’18] [Kuperberg’03] 232.5 231 qubits

218.7 232 bits QRACM

This work [Kuperberg’11] 215.7 240 bits QRACM

214.1 248 bits QRACM

I Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of ?.

∗Independently, [BonnetainSchrottenloher’20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.

39 / 40

C-Sieving on the CSIDH [P’20]

I Improve Kuperberg’s c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

I Run simulations up to the actual CSIDH-512 order |G| ≈ 2257.1.

Work Algorithm Oracle queries Sieve memory

[CLMPR’18] [Regev’04] 262 poly(n)

[BS’18] [Kuperberg’03] 232.5 231 qubits

218.7 232 bits QRACM

This work [Kuperberg’11] 215.7 240 bits QRACM

214.1 248 bits QRACM

I Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of ?.

∗Independently, [BonnetainSchrottenloher’20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.

39 / 40

Isogenies: Closing Thoughts

1 Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

2 However, they have received relatively little cryptanalysis so far, with
mixed results.

3 Fundamental questions need attention from quantum experts!

Thanks!

40 / 40

Isogenies: Closing Thoughts

1 Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

2 However, they have received relatively little cryptanalysis so far, with
mixed results.

3 Fundamental questions need attention from quantum experts!

Thanks!

40 / 40

Isogenies: Closing Thoughts

1 Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

2 However, they have received relatively little cryptanalysis so far, with
mixed results.

3 Fundamental questions need attention from quantum experts!

Thanks!

40 / 40

Isogenies: Closing Thoughts

1 Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

2 However, they have received relatively little cryptanalysis so far, with
mixed results.

3 Fundamental questions need attention from quantum experts!

Thanks!

40 / 40

