Post-Quantum Cryptography

Chris Peikert
University of Michigan

Tutorial, QIP 2022
6 March

1/40



Public-Key Cryptography

P> Cryptography since the ancients: Alice, Bob need the same secret key
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Public-Key Cryptography

» A paradigm shift [Merkle'74,DH'76,RSA'77]: ‘public-key’ cryptography

> Alice creates (related) public key “077 and secret key @‘* :
* Anyone can do ‘public’ ops using “= : encrypt, check authenticity

* Only Alice can do ‘privileged’ ops using @“a“ decrypt, attest
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P Alice can use the secret key to decrypt the message.

» Eavesdropper who gets the public key and ciphertext learns nothing
about the message.
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Bread and Butter of PKC: Digital Signatures

S A8

‘I, Alice, give all my $ to blackhat’, o*

P Alice uses her secret key to create a signature o for a message.

» Bob can use the public key to verify that the signature is authentic
(for this specific message).

P Attacker can't forge a valid signature ¢* for an unsigned message.
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Hard Problems and PKC

P> Public-key crypto inherently requires hard computational problems.
For one: must be hard to compute the secret key from the public key.

» Issue: we don't know whether hard problems exist! (Maybe P=NP.)

P ‘Solution’: conjecture that they do exist—in general, or specifically.

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” —Silvio Micali

Case study:
@ RSA/DH ‘rely on' the hardness of the factoring/dlog problems:
Breaking RSA is no harder than factoring: RSA < factoring. Obvious.

® RSA/DH are ‘based on’ the hardness of factoring/dlog variants:
Breaking RSA is not (much) easier than the ‘RSA problem.’ Trickier!
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How Hard, and Hard How?

> We need crypto problems to be infeasible for any attacker to solve.
» Traditionally, ‘attacker’ = classical algorithm.

» But for quantum algorithms, ‘feasible’ appears broader:
[Feynman'82,Deutch'85,BV'93,Simon’94]

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shor®

> With a large-scale QC, [Shor'94] totally breaks DH, RSA, and all other
widely used public-key crypto!
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Post-Quantum Cryptography

Question: Did Shor show that secure PKC is impossible against
quantum computers?

Answer: No! Only that all the PKC we've been widely using is
quantumly broken. (What rotten luck. ..)

Post-Quantum Cryptography (a.k.a. ‘Quantum Resistant’, ‘Quantum Safe’, ...)
Design cryptosystems that can

run on (today’'s) classical computers,
while being

secure against quantum attacks.
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@ Harvesting attacks: store today's keys/ciphertexts to break later.

@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

“Who controls history controls the future.”
—George Orwell, 1984

~BTTF (1985)
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What's the Rush?

> Big QCs probably won't exist for many years, if ever—can’t we wait
until they're more imminent? No!

@ Harvesting attacks: store today's keys/ciphertexts to break later.
@® Rewrite history: forge signatures for old keys (e.g., in blockchains).

© Deploying new cryptography at scale takes a long time: 10+ years.

“IAD will initiate a transition to quantum resistant algorithms
in the not too distant future. .. Our ultimate goal is to provide cost

effective security against a potential quantum computer.”
-NSA, 2015

» NIST PQC standardization process (2016-):
3rd round, finalists and alternates chosen, selections imminent
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Tutorial Agenda

@ A highly selective tour of the PQC landscape:

concepts, key techniques, theory and practice

® A lot/some/very little of what | know a lot/some/very little about:
lattices / isogenies / MQ and codes

© Important problems that need more scrutiny from quantum experts!
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Lattice-Based Cryptography
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Lattice-Based Cryptography

> Efficient: linear, embarrassingly parallel operations
P Resists quantum attacks (so far)

» Security from mild worst-case assumptions

» Solutions to ‘holy grail" problems in crypto: FHE and related
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» A periodic ‘grid" in Z™. (Formally: full-rank additive subgroup.)

» Basis B={b,...,b,}:
m
L = > (Z-b)
i=1

(Other representations too .. .)

b,

ba

12/40



What's a Lattice?
> A periodic ‘grid’ in Z"". (Formally: full-rank additive subgroup.)

» Basis B={b,...,b,}:

£ - i(Z . bl) b1
=1

(Other representations too ... )

Hard Lattice Problems
» Find/detect ‘short’ nonzero lattice vectors: (Gap)SVP., SIVP,

> For v = poly(m), appears to require 2™ time and space,
even quantumly. [LLL'82,Schnorr'87,...,AKS'01,. . .]
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Lattices

Foundations, Digital Signatures
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A Hard Problem: Short Integer Solution [ajtai'os]

» Zy = n-dimensional integer vectors modulo ¢
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A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial z1,..., 2, € {0,£1} such that:

zi- lar ] + 22 |a2] + - + 2z lan | =0 €Z]
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A Hard Problem: Short Integer Solution [ajtai'os]
» Zy = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial ‘short’ z € Z™, ||z|| < 8 < ¢ such that:

A | |z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘compressing’ fa: {0,1}™ — Zg

fa(x) = Ax

» Collision x,x" € {0,1}™ where Ax = Ax ...

.. .yields short solution z = x — x’ € {0, +1}™.

14 /40



Cool!l  (But what does this have to do with lattices?)

15/40



Cool! (But what does this have to do with lattices?)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={z€Z™ : Az =0}

15/40



Cool! (But what does this have to do with lattices?)
(0,9)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={ze€Z™ : Az=0}DqZ™

15/40



Cool!l  (But what does this have to do with lattices?)
(0,4q)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={ze€Z™ : Az=0}DqZ™

» ‘Short’ solutions z lie in Q o

15/40



Cool! (But what does this have to do with lattices?)
(0, 49)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA):={ze€Z™ : Az=0}DqZ™

» ‘Short’ solutions z lie in Q o

Worst-Case to Average-Case Reduction [Ajtai'96,. . ]

Finding ‘short’ (||z|| < 8 < ¢) nonzero z € L(A)
(for uniformly random A € Z3*™)

J
solving GapSVPB\/ﬁ and SIVPﬁ\/;Z on any n-dim lattice
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» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

» Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS'02,NR'06,DN'12])
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» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

» Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about the secret key:
(avoids ‘learning’ attacks [GS'02,NR'06,DN'12])
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» Verify(A, i, z): check that Az = H(u) and z is sufficiently short.

P Security: forging a signature for a new message p* requires finding
short z* s.t. Az* = H(p*). This is SIS: hard!
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Signatures In Practice: Falcon [rHk+'17], Dilithium [pkiL+'17]
Refinements to the two components of the [GPV'08] framework:
@ Generating a ‘hard’ lattice/trapdoor pair:
[GGH'97,A’99,HHPSW'01,AP’09,SS'11,MP'12,PP'19, ...]
Question: is it hard to decode w/in threshold distance on lattices
produced by the above (non-blue) methods?
® Gaussian lattice sampling: [P'10,MP'12,DP'16,...]

NIST PQC finalist Falcon uses these to get smallest vk + sig size, also
with very fast verification.

Finalist Dilithium uses ‘Fiat-Shamir with aborts’ [Lyubashevsky'09,'12]:
very simple signing algorithm! (No Gaussian sampling needed.)

@ Is SIS (quantumly) hard for solution norm < ¢ in ¢, norm?

® Tighter security reduction in QROM, or exploit looseness?
See [BDF+'12,KLS'18,DFMS'19,L.7'19].
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Another Hard Problem: Learning With Errors [Regev'0s]

P> Parameters: dimension n, modulus g, error distribution

> Search: find secret s € Z; given many ‘noisy inner products’

xll“ "ll.

v/ < error < g, ‘rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

(n/a)-approx worst case
lattice problems r ¥

(quantum [R'05]) [BFKL'93,R'05,...]

< search-LWE < decision-LWE < crypto

» Also fully classical reductions, for worse params [Peikert'09,BLPRS'13]
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L(A) ={z' =s'A mod ¢} . .

Given A and b = sA, find s.

Bounded-Distance Decoding (BDD,,)

» Given a target that's ‘a-far’ from a
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Given A and b =~ sA, find s.

Bounded-Distance Decoding (BDD,,)

» Given a target that's ‘a-far’ from a
lattice point, find that point.

Theorem [Regev'05]

solving BDD,, on lattice £

(quantum)

Gaussian sampling ‘(1/c)-short’ points from dual lattice £*

> Key Open Problem: ‘dequantize’ this theorem!
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Cryptography we can build from LWE:

v

Key Exchange and Public Key Encryption
Oblivious Transfer
Actively Secure Encryption (w/o random oracles)

Low-Depth Pseudorandom Functions

Identity-Based Encryption (w/o RO)
Hierarchical ID-Based Encryption (w/o RO)

Noninteractive Zero Knowledge for NP

Fully Homomorphic Encryption

Attribute-Based Encryption for arbitrary access policies

and much, much more. ..
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NIST PQC alternate FrodoKEM: 640 < n < 1344 and q € {2'°,216}.

» Uses Gaussian error of std dev 1.4 < 0 < 2.8 < /n.
» These params seem hard, according to cryptanalysis. Any theory?

P> Regev's full quantum reduction doesn’t apply for such error, but a
component (classical) reduction ‘BDD with DGS < LWE’ does.

BDD with DGS (implicit in [AR'04,R'05,LLM’06,DRS'14])

» Solve BDD to distance d, given N Gaussian samples of width (say)
> 2+/log N /d over the dual lattice.

» Known algorithms can exploit narrower samples, but not these (?).

@ Is BDD w/DGS actually hard? What effect does N have?
@® Tightness of the BDD w/DGS < LWE reduction in N, 0.

23/40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

8765
9 3
10 2

11 1
12 0

24 /40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

7 6 5
8 4
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
13 23
14 22
15 21
16 17 18 19 20

24 /40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
14 22
15 21
16 17 18 19 20

24/40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

24/40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

7 6 5
8 4
> KEY IDEA: generate error deterministically, by o 32

rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122

16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs

(a,; , (s, azﬂp) €EZLg XLy .

24 /40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]
7 6 5
> KEY IDEA: generate error deterministically, by 0l XY e ?
rounding Z, to a ‘sparser’ subset. u g 1
Let p < ¢ and define |z], := [z - p/q]| mod p. 112

. . 14
(LWE decryption uses this to remove error!) 15

21

16 0

17 18 192

» LWR problem: find s (or distinguish from random), given pairs

(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

24 /40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs

(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR'12,...]

» For g >p-E-2* LWR is no easier than LWE with error size E,
for security parameter = \.

24 /40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs
(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR'12,...]

> Forg>p-E - 22X LWR is no easier than LWE with error size E,
for security parameter &~ A.  (Error width ¢/p > 2*, rate a = E/q < 27.)

24 /40



Learning With Rounding (LWR) [BanerjeePeikertRosen'12]

g 765,
> KEY IDEA: generate error deterministically, by o 32
rounding Z, to a ‘sparser’ subset. 11 1
12 0
Let p < ¢ and define |z], := [z - p/q]| mod p. 13 23
(LWE decryption uses this to remove error!) 1415 2122
16 17 18 19 20

» LWR problem: find s (or distinguish from random), given pairs
(ai, [(s,ai)]p) € Zg X Zy .

LWE conceals low bits with random error; LWR just discards them.

Theorem [BPR'12,...]

> Forg>p-E - 22X LWR is no easier than LWE with error size E,
for security parameter &~ A.  (Error width ¢/p > 2, rate a = E/q < 27.)

Proof idea: w.h.p., (a;, |[(s,a;) +e]p) = (a;, |[(s,a)]p).
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LWR In Practice: SABER pkrv'177, NTRU Prime [BcLvi17]

» Theorems require large ‘rounding width' ¢/p. 0 S\Z\_.i.i/‘l 3
2
» But systems use small ¢/p, e.g., ¢/p ~ 3 or 8. f;_é 43 2 1O 3 t)
P Heuristically, seems to resist known attacks. 1?4 %, 06 T 2223
But little public scrutiny of such ‘small rounding’! 1516/1; 1|8 Vo

Open Questions

@ Any theoretical support for small rounding?

Tighter connection to LWE? ‘Native’ worst-case hardness?

@® (Quantum) attacks that exploit small rounding?

Regev’'02 uses rounding to quantumly reduce BDD to a ‘noisy’ cyclic
hidden-shift problem, which has a exp(y/log |G|) quantum algorithm.
Could those techniques be useful here?
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Lattices

Efficiency from Algebraic Structure
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» Getting one random-looking
scalar b; € Zq requires an n-dim
mod-q inner product

(' Ay ) s|+e = b€ » Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

» Cryptosystems have rather large keys:

pk = A , b Q(n)

n

» Inherently > n? time to encrypt & decrypt an n-bit message.
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Wishful Thinking. . .

P> Get d pseudorandom scalars
from just one (cheap)

alx|sl+lel = |b|ezd product operation?
q

> Replace Z2*?-chunks by Z{.

» How to define the product ‘*' so that (a, b) is pseudorandom?

» Carefull With small error, coordinate-wise multiplication is insecure!

Answer

> ‘x' = multiplication in a polynomial ring: e.g., Z,[X]/(X¢ + 1).
Fast and practical with FFT: dlogd operations mod q.

» Same ring structures used in NTRU cryptosystem [HPS'98],
compact one-way / CR hash functions [Mic'02,PR'06,LM'06,. .. ]
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> Let|R=Z[X]/(X%+1)|for d a power of two, and | R, = R/qR

* Elements of R, are degree < d polynomials with mod-gq coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret vector of polynomials s € R¥, given:

. * Each eq. is d related eq.'s on a
ai < Ry , bhi=(s,a) €Ry secret of dim n = kd over Z,.

a2<—R§ , b2%<s,a2>€Rq f IWE d—1k—n

Ring-LWE: d =n,k = 1.
Module-LWE: interpolate.

» Decision: distinguish (a; , b;) from uniform (a; , b;) € ng X Ry
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For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for & > 1:

[CGS’'15,CDPR'16,CDW'17,PHS'19,. . .]

4
307740



Hardness of Ring/Module-LWE

Theorems [...,5STX'09,LPR'10,LS'12,PRS'17,RSW'18,. . ]

= -SVP
WOrstease approxeoVimon - arch RF-LWE < decision RF-LWE
rank-k module lattices over R 5 5

(quantum, (classical,
any R = Ok) any R = Ok)

Open Questions
@ Can we ‘de-quantize’ the worst-case/average-case reduction?

The classical GapSVP < LWE reduction is of limited use: for the relevant factors,
GapSVP for ideals (k = 1) is easy.
® How hard (or not) is approx-SVP on ideal/module lattices?

For poly-approx, no significant improvements vs. general lattices, even for ideals
For subexp-approx, we have better quantum algs for ideals, but not for & > 1:

[CGS’'15,CDPR'16,CDW'17,PHS'19,. . .]

© Are there reverse reductions? (Seems not, without increasing k. . .)

4
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» NTRU(') use fixed rank k = 1 over rings of increasing degree d.
Kyber, SABER use increasing rank k over a ring of fixed degree d.

Cryptanalysis suggests that n = kd mainly controls hardness,
even though increasing k yields ‘less structure’. Any distinction?

» Theorems require moderate error sizes >> y/n in each coefficient.
Systems use small error sizes € [1,7].
Seems hard according to cryptanalysis. Theory? (Quantum) attacks?
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Lattices: Closing Thoughts

@ Lattices are a source of many seemingly quantum-hard problems, and
offer an amazing platform for cryptography.

@® There are (moderate to huge) gaps between theorems and practical
parameters. Narrow them, exploit them—or both!

©® Many important questions need attention from quantum experts.
The future of our digital security may depend on it!
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> An elliptic curve E over a field F is the set of solutions (x,%) € F? to
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for suitable fixed a,b € F, plus a ‘point at infinity’ O.
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Elliptic Curves and Isogenies
> An elliptic curve E over a field F is the set of solutions (x,%y) € F? to
v =2 +ar+b
for suitable fixed a,b € IF, plus a ‘point at infinity’ O.
» With suitable ‘point addition,” E' is a group with identity O.

P Since 1980s, cryptography has used dlog problem on ECs over finite FF.
But this is quantumly broken by Shor's algorithm.
So are ECs hopeless for crypto? Maybe not!

» An isogeny is a map from one elliptic curve E/F to another E’/F
satisfying certain algebraic conditions.  (Not necessarily an isomorphism.)

P There are proposals to use conjectured-hard problems related to
finding isogenies between isogenous curves.
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Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].
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Cryptography from Isogenies

Two main kinds of constructions using isogenies:

@ Use isogenies for commutative group action to get DH-style key
agreement [Couveignes'97,RostovtsevStolbunov’'04].

Real instantiation: CSIDH [CLMPR'18]. Very small (?), not so fast.

Much less quantum security than initially conjectured [BS'18/'20,P'20].

® Use isogeny graph on ‘supersingular’ curves: SIDH [DeFeoJaoPlut'11].
Real instantiation: NIST alternate SIKE [JAC+'17]. Small, not so fast.

No (quantum) cryptanalytic improvements since original proposal.
Opportunity?
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CSI DH (‘sea—side') [CastryckLangeMartindalePannyRenes'18]

P Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes'97,RostovtsevStolbunov’04]: abelian group G, set Z, action

*x:GXZ— 7.
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CSI DH (‘sea—side') [CastryckLangeMartindalePannyRenes'18]

P Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes'97,RostovtsevStolbunov’04]: abelian group G, set Z, action

*x:GXZ— 7.

DiffieHellman-style noninteractive key exchange with public param z € Z:
Alice: secret a € G, publicpy =axz€ Z
Bob: secret b € G, public pp =bxz € Z
Shared key: a*pp =bxpa = (a+ b) x z, by commutativity

> Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

P Signatures [Stolbunov'12,DeFeoGalbraith'19,BeullensKleinjungVercauteren'19]:
pk + sig = 1468 bytes at same claimed security level
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Attacking the CSIDH, Quantumly

» Secret-key recovery: given z,a % z € Z, find a € G (or equivalent).
Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10].

Quantum HShP Algorithm Ingredients [Kuperberg03,...]

@ Oracle outputs random ‘labeled’ quantum states, by evaluating x on a
uniform superposition over G.

® Sieve combines labeled states to generate ‘more favorable’ ones.

© Measurement of ‘very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

| \

[Kuperberg'03] 29(v™) oracle queries and qubits (n =log|G])
[Regev'04] 20(vn1ogn) oracle queries, only poly(n) qubits

[Kuperberg'11] 20(v1) oracle queries and bits of quantum-accessible RAM.
‘Collimation sieve' subsumes prior two, offers more tradeoffs.
E.g., log(queries) - log(QRACM) 2 n.

.
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» Oracle costs < 2433 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP'19]

Good reason to expect similar cost for uniform superposition [BKV'19]

» Sijeve costs:

Work Algorithm  Oracle queries Sieve memory
CSIDH paper [CLMPR'18] [Regev'04] 262 poly(n)
onnetainSchrottenloher'18 uperberg'03 ) ubits
B inSch loher' Kuperberg’ 2325 231 qubit
None prior! [Kuperberg'11] 7 77

38/40



C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’” and analyze its concrete
complexity on proposed CSIDH parameters.

39/40



C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22°7-1,

39/40



C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete

complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22571,

Work Algorithm  Oracle queries  Sieve memory
[CLMPR'18]  [Regev'04] 262 poly(n)
[BS'18] [Kuperberg'03] 2325 231 qubits
2187 232 bits QRACM
This work  [Kuperberg'11] 215.7 240 bits QRACM
2141 28 bits QRACM

39/40



C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22571,

Work Algorithm  Oracle queries  Sieve memory
[CLMPR'18]  [Regev'04] 262 poly(n)
[BS'18] [Kuperberg'03] 2325 231 qubits
2187 232 bits QRACM
This work  [Kuperberg'11] 215.7 240 bits QRACM
2141 28 bits QRACM

» Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of *.

39/40



C-Sieving on the CSIDH (p20]

» Improve Kuperberg's c-sieve in ‘practice,’ and analyze its concrete
complexity on proposed CSIDH parameters.

» Run simulations up to the actual CSIDH-512 order |G| ~ 22571,

Work Algorithm  Oracle queries  Sieve memory
[CLMPR'18]  [Regev'04] 262 poly(n)
[BS'18] [Kuperberg'03] 2325 231 qubits
2187 232 bits QRACM
This work  [Kuperberg'11] 215.7 240 bits QRACM
2141 28 bits QRACM

» Conclusion: proposed CSIDH parameters have relatively little
quantum security beyond the cost of quantum evaluation of *.

*Independently, [BonnetainSchrottenloher'20] gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.
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Isogenies: Closing Thoughts

@ Isogenies are a relatively new platform for cryptography, yielding small
and reasonably performant systems.

® However, they have received relatively little cryptanalysis so far, with
mixed results.

©® Fundamental questions need attention from quantum experts!

Thanks!
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