New (and Old) Proof Systems for Lattice Problems

Navid Alamati

Chris Peikert

Noah Stephens-Davidowitz

PKC 2018

A protocol allowing an unbounded Prover P to convince a skeptical, bounded Verifier V that some $x \in L$.

- A protocol allowing an unbounded Prover P to convince a skeptical, bounded Verifier V that some $x \in L$.
- The (honest) verifier learns nothing more than the truth of statement: \exists efficient simulator S such that $\forall x \in L$:

 $\operatorname{View}_V[P(x) \leftrightarrow V(x)] \approx S(x).$

- A protocol allowing an unbounded Prover P to convince a skeptical, bounded Verifier V that some $x \in L$.
- The (honest) verifier learns nothing more than the truth of statement: \exists efficient simulator S such that $\forall x \in L$:

 $\operatorname{View}_{V}[P(x) \leftrightarrow V(x)] \approx S(x).$

► Statistical ZK (SZK): "≈" means statistically indistinguishable.

- A protocol allowing an unbounded Prover P to convince a skeptical, bounded Verifier V that some $x \in L$.
- The (honest) verifier learns nothing more than the truth of statement: \exists efficient simulator S such that $\forall x \in L$:

 $\operatorname{View}_{V}[P(x) \leftrightarrow V(x)] \approx S(x).$

- ► Statistical ZK (SZK): "≈" means statistically indistinguishable.
- Honest-verifier SZK \equiv general SZK [GSV'98].

- A protocol allowing an unbounded Prover P to convince a skeptical, bounded Verifier V that some $x \in L$.
- The (honest) verifier learns nothing more than the truth of statement: \exists efficient simulator S such that $\forall x \in L$:

 $\operatorname{View}_V[P(x) \leftrightarrow V(x)] \approx S(x).$

- ► Statistical ZK (SZK): "≈" means statistically indistinguishable.
- Honest-verifier SZK \equiv general SZK [GSV'98].
- SZK proofs are powerful: secure against unbounded malicious P*, V*.

• Consists of only one message from *P* to *V*.

- Consists of only one message from *P* to *V*.
- Both P and V have access to a uniformly random string.

- Consists of only one message from *P* to *V*.
- Both P and V have access to a uniformly random string.

SZK versus NISZK

* Both SZK and NISZK have complete problems [SV'97, GSV'99]

- Consists of only one message from P to V.
- Both P and V have access to a uniformly random string.

SZK versus NISZK

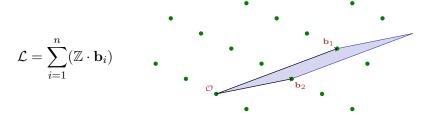
- * Both SZK and NISZK have complete problems [SV'97, GSV'99]
- * SZK is closed under complement [SV'97], but NISZK is not known to be.

- Consists of only one message from P to V.
- Both P and V have access to a uniformly random string.

SZK versus NISZK

- * Both SZK and NISZK have complete problems [SV'97, GSV'99]
- * SZK is closed under complement [SV'97], but NISZK is not known to be.
- * NISZK is closed under complement \iff NISZK = SKZ [GSV'99]

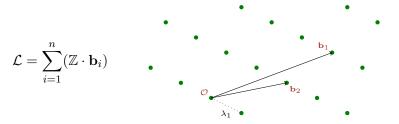
An *n*-dimensional lattice L ⊂ ℝⁿ is a discrete additive subgroup, generated by a (non-unique) basis B = {b₁,..., b_n}:



An *n*-dimensional lattice L ⊂ ℝⁿ is a discrete additive subgroup, generated by a (non-unique) basis B = {b₁,..., b_n}:

Represent coset $\mathbf{x} + \mathcal{L} \in (\mathbb{R}^n/\mathcal{L})$ by unique $\bar{\mathbf{x}} \in (\mathbf{x} + \mathcal{L}) \cap \mathcal{P}(\mathbf{B})$.

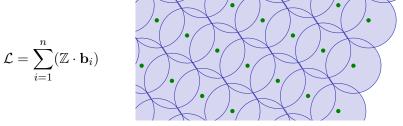
An *n*-dimensional lattice L ⊂ ℝⁿ is a discrete additive subgroup, generated by a (non-unique) basis B = {b₁,..., b_n}:



- Represent coset $\mathbf{x} + \mathcal{L} \in (\mathbb{R}^n/\mathcal{L})$ by unique $\bar{\mathbf{x}} \in (\mathbf{x} + \mathcal{L}) \cap \mathcal{P}(\mathbf{B})$.
- Minimum distance: length of shortest nonzero lattice vector

$$\lambda_1(\mathcal{L}) = \min_{\mathbf{0} \neq \mathbf{v} \in \mathcal{L}} \|\mathbf{v}\|.$$

An *n*-dimensional lattice L ⊂ ℝⁿ is a discrete additive subgroup, generated by a (non-unique) basis B = {b₁,..., b_n}:



- Represent coset $\mathbf{x} + \mathcal{L} \in (\mathbb{R}^n/\mathcal{L})$ by unique $\bar{\mathbf{x}} \in (\mathbf{x} + \mathcal{L}) \cap \mathcal{P}(\mathbf{B})$.
- Minimum distance: length of shortest nonzero lattice vector

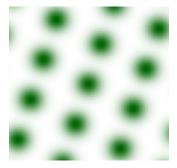
$$\lambda_1(\mathcal{L}) = \min_{\mathbf{0} \neq \mathbf{v} \in \mathcal{L}} \|\mathbf{v}\|.$$

Covering radius: maximum distance from the lattice

$$\mu(\mathcal{L}) = \max_{\mathbf{x} \in \mathbb{R}^n} \mathsf{dist}(\mathbf{x}, \mathcal{L}).$$

• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$

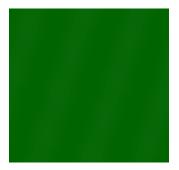
• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$



• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$

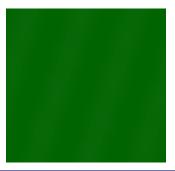


• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$



• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$

(up to error ε : think $2^{-n} \leq \varepsilon \leq 1/2$)

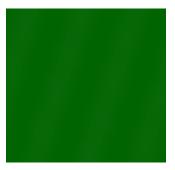


Applications

Worst-case to average-case reductions [MR'04, Regev'05]

• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$

(up to error ε : think $2^{-n} \leq \varepsilon \leq 1/2$)

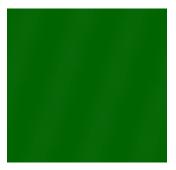


Applications

- Worst-case to average-case reductions [MR'04,Regev'05]
- Constructions of cryptographic primitives [GPV'08,...]

• $\eta_{\varepsilon}(\mathcal{L}) = \text{minimal Gaussian 'blur' that 'smooths out' } \mathcal{L}$

(up to error ε : think $2^{-n} \leq \varepsilon \leq 1/2$)



Applications

- Worst-case to average-case reductions [MR'04,Regev'05]
- Constructions of cryptographic primitives [GPV'08,...]
- Algorithms for SVP and CVP [ADRS'15,ADS'15]

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

 $\eta_{\varepsilon}(\mathcal{L}) \leq 1$ OR $\eta_{\varepsilon}(\mathcal{L}) > \gamma$?

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

$$\eta_{\varepsilon}(\mathcal{L}) \leq 1$$
 OR $\eta_{\varepsilon}(\mathcal{L}) > \gamma$?

Equivalent to 'classical' problems like GapSVP, up to $\approx \sqrt{n}$ factors.

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

$$\eta_{\varepsilon}(\mathcal{L}) \leq 1$$
 OR $\eta_{\varepsilon}(\mathcal{L}) > \gamma$?

Equivalent to 'classical' problems like GapSVP, up to $\approx \sqrt{n}$ factors. We're interested in non-trivial factors, where equivalence doesn't help.

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

$$\eta_{\varepsilon}(\mathcal{L}) \leq 1$$
 OR $\eta_{\varepsilon}(\mathcal{L}) > \gamma$?

► Equivalent to 'classical' problems like GapSVP, up to ≈ √n factors. We're interested in non-trivial factors, where equivalence doesn't help.

GapSPP is Central

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

$$\eta_{\varepsilon}(\mathcal{L}) \leq 1$$
 OR $\eta_{\varepsilon}(\mathcal{L}) > \gamma$?

► Equivalent to 'classical' problems like GapSVP, up to ≈ √n factors. We're interested in non-trivial factors, where equivalence doesn't help.

GapSPP is Central

Replacing 'classic' problems w/GapSPP in proof systems [GG'98] and worst-case to average-case reductions [MR'04,R'05] subsumes the original results, and yields seemingly stronger ones.

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

$$\eta_{\varepsilon}(\mathcal{L}) \leq 1 \qquad \mathsf{OR} \qquad \eta_{\varepsilon}(\mathcal{L}) > \gamma \quad ?$$

► Equivalent to 'classical' problems like GapSVP, up to ≈ √n factors. We're interested in non-trivial factors, where equivalence doesn't help.

GapSPP is Central

- Replacing 'classic' problems w/GapSPP in proof systems [GG'98] and worst-case to average-case reductions [MR'04,R'05] subsumes the original results, and yields seemingly stronger ones.
- GapSPP ∈ SZK ⊆ AM ∩ coAM [CDLP'13], but classic problems ∈ NISZK, coNP [AR'04,PV'08].

Definition: γ -GapSPP $_{\varepsilon}$

• Given a lattice \mathcal{L} , is

$$\eta_{\varepsilon}(\mathcal{L}) \leq 1$$
 OR $\eta_{\varepsilon}(\mathcal{L}) > \gamma$?

► Equivalent to 'classical' problems like GapSVP, up to ≈ √n factors. We're interested in non-trivial factors, where equivalence doesn't help.

GapSPP is Central

- Replacing 'classic' problems w/GapSPP in proof systems [GG'98] and worst-case to average-case reductions [MR'04,R'05] subsumes the original results, and yields seemingly stronger ones.
- GapSPP ∈ SZK ⊆ AM ∩ coAM [CDLP'13], but classic problems ∈ NISZK, coNP [AR'04,PV'08].

Motivating Question

Are there noninteractive proof systems for GapSPP?

Noninteractive (NISZK/coNP) proof systems for GapSPP, improving prior 'trivial' factors by $\approx \sqrt{n}$.

Noninteractive (NISZK/coNP) proof systems for GapSPP, improving prior 'trivial' factors by ≈ √n.

$$\begin{array}{|c|c|c|c|} & \mathsf{Prior} \ \gamma & \mathsf{Our} \ \gamma & \mathsf{Efficient}\text{-}\mathsf{Prover} \ \gamma \\ \hline \gamma \text{-}\mathsf{Gap}\mathsf{SPP}_{\varepsilon} \in \mathsf{NISZK} & \sqrt{n\log(1/\varepsilon)} & \log(n)\sqrt{\log(1/\varepsilon)} & \sqrt{n\log^3(n)\log(1/\varepsilon)} \end{array}$$

Noninteractive (NISZK/coNP) proof systems for GapSPP, improving prior 'trivial' factors by ≈ √n.

	Prior γ	$Our\gamma$	Efficient-Prover γ
$\gamma\text{-}GapSPP_\varepsilon\inNISZK$	$\sqrt{n\log(1/\varepsilon)}$	$\log(n)\sqrt{\log(1/\varepsilon)}$	$\sqrt{n\log^3(n)\log(1/\varepsilon)}$
$\gamma\text{-}GapSPP_\varepsilon\incoNP$	$\sqrt{n/\log(1/\varepsilon)}$	$\log(n)$	

- Noninteractive (NISZK/coNP) proof systems for GapSPP, improving prior 'trivial' factors by ≈ √n.
- Bonus: improved SZK proof system for GapCRP (covering radius).

	Prior γ	$Our\gamma$	Efficient-Prover γ
$\gamma\text{-}GapSPP_\varepsilon\inNISZK$	$\sqrt{n\log(1/\varepsilon)}$	$\log(n)\sqrt{\log(1/\varepsilon)}$	$\sqrt{n\log^3(n)\log(1/\varepsilon)}$
$\gamma\text{-}GapSPP_\varepsilon\incoNP$	$\sqrt{n/\log(1/\varepsilon)}$	$\log(n)$	
$\gamma\text{-}GapCRP \ \in SZK$	$\omega(n\sqrt{\log n})$	$O(\sqrt{n})$	$\omega(n\sqrt{\log n})$

- Noninteractive (NISZK/coNP) proof systems for GapSPP, improving prior 'trivial' factors by ≈ √n.
- Bonus: improved SZK proof system for GapCRP (covering radius).

	Prior γ	$Our\gamma$	Efficient-Prover γ
$\gamma\text{-}GapSPP_{\varepsilon}\inNISZK$	$\sqrt{n\log(1/\varepsilon)}$	$\log(n)\sqrt{\log(1/\varepsilon)}$	$\sqrt{n\log^3(n)\log(1/\varepsilon)}$
$\gamma\text{-}GapSPP_\varepsilon\incoNP$	$\sqrt{n/\log(1/\varepsilon)}$	$\log(n)$	
$\gamma\text{-}GapCRP \ \in SZK$	$\omega(n\sqrt{\log n})$	$O(\sqrt{n})$	$\omega(n\sqrt{\log n})$

Two NISZK Proofs for GapSPP

1 A 'direct' proof (with efficient prover) for negligible ε .

- Noninteractive (NISZK/coNP) proof systems for GapSPP, improving prior 'trivial' factors by ≈ √n.
- Bonus: improved SZK proof system for GapCRP (covering radius).

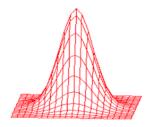
	Prior γ	$Our\gamma$	Efficient-Prover γ
$\gamma\text{-}GapSPP_\varepsilon\inNISZK$	$\sqrt{n\log(1/\varepsilon)}$	$\log(n)\sqrt{\log(1/\varepsilon)}$	$\sqrt{n\log^3(n)\log(1/\varepsilon)}$
$\gamma\text{-}GapSPP_{\varepsilon}\incoNP$	$\sqrt{n/\log(1/\varepsilon)}$	$\log(n)$	
$\gamma\text{-}GapCRP \ \in SZK$	$\omega(n\sqrt{\log n})$	$O(\sqrt{n})$	$\omega(n\sqrt{\log n})$

Two NISZK Proofs for GapSPP

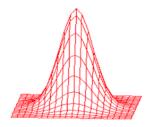
1 A 'direct' proof (with efficient prover) for negligible ε .

2 A reduction to ENTROPYAPPROXIMATION \in NISZK for any $\varepsilon < 1/2$.

$\mathsf{Direct}\ \mathsf{Proof}\ \mathsf{of}\ \mathsf{GapSPP} \in \mathsf{NISZK}$

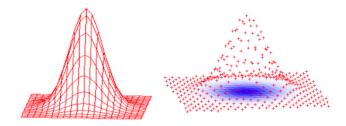


Sample $\mathbf{x} \in \mathbb{R}^n$ from continuous Gaussian of width $\geq \eta(\mathcal{L})$.



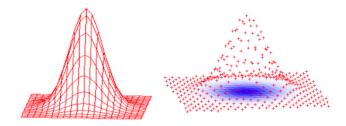
Sample $\mathbf{x} \in \mathbb{R}^n$ from continuous Gaussian of width $\geq \eta(\mathcal{L})$.

• Coset $\mathbf{c} = \mathbf{x} + \mathcal{L}$ is uniform^{*} over $\mathbb{R}^n / \mathcal{L}$ [MR'04].



- Sample $\mathbf{x} \in \mathbb{R}^n$ from continuous Gaussian of width $\geq \eta(\mathcal{L})$.
- Coset $\mathbf{c} = \mathbf{x} + \mathcal{L}$ is uniform^{*} over $\mathbb{R}^n / \mathcal{L}$ [MR'04].

• Given coset c, conditional distribution of x is discrete Gaussian $D_{c+\mathcal{L}}$.



- Sample $\mathbf{x} \in \mathbb{R}^n$ from continuous Gaussian of width $\geq \eta(\mathcal{L})$.
- Coset $\mathbf{c} = \mathbf{x} + \mathcal{L}$ is uniform^{*} over $\mathbb{R}^n / \mathcal{L}$ [MR'04].
- Given coset c, conditional distribution of x is discrete Gaussian $D_{c+\mathcal{L}}$.
- ▶ $D_{c+\mathcal{L}}$ has Gaussian-like properties, e.g., sharp concentration bounds.

• Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.

▶ Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for i = 1, ..., m.

• Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.

- **•** Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.

- **•** Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

- **•** Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- ► Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

Completeness \checkmark

• Suppose $\eta(\mathcal{L}) \leq 1$: implied by $\lambda_1(\mathcal{L}^*) > \sqrt{n}$.

• Then $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$, by matrix concentration bounds on $D_{\mathbf{c}_i + \mathcal{L}}$.

- **•** Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

Zero Knowledge \checkmark

- Suppose $\eta(\mathcal{L}) \leq 1$.
- ► Then cosets c_i = e_i + L are uniform^{*} in ℝⁿ/L, and e_i ~ D_{ci+L} conditioned on c_i.

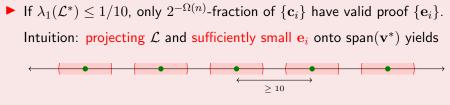
- ▶ Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for i = 1, ..., m.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- ► Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

Soundness

► If $\lambda_1(\mathcal{L}^*) \leq 1/10$, only $2^{-\Omega(n)}$ -fraction of $\{\mathbf{c}_i\}$ have valid proof $\{\mathbf{e}_i\}$.

- ▶ Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for i = 1, ..., m.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- ► Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

Soundness



Unlikely that all the random \mathbf{c}_i project to 'good' region.

- **•** Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- ► Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

Conclusion

Completeness, simulation (for $\eta \leq 1 \iff \lambda_1^* > \sqrt{n}$) & soundness (for $\lambda_1^* \leq 1/10$) \downarrow this is a NISZK for $O(\sqrt{n})$ -coGapSVP.

- **•** Random String: uniform cosets $\mathbf{c}_i \leftarrow \mathbb{R}^n / \mathcal{L}$ for $i = 1, \dots, m$.
- Prover: sample $\mathbf{e}_i \sim D_{\mathbf{c}_i + \mathcal{L}}$ for each *i*.
- ▶ Verifier: accept iff each $\mathbf{e}_i \in \mathbf{c}_i + \mathcal{L}$ and $\sigma_1(\sum \mathbf{e}_i \mathbf{e}_i^T) \leq 3m$.
- ► Simulator: first sample e_i from continuous Gaussian as proof, then output cosets c_i = e_i + L as random string.

Conclusion

Completeness, simulation (for $\eta \leq 1 \iff \lambda_1^* > \sqrt{n}$) & soundness (for $\lambda_1^* \leq 1/10$) \Downarrow this is a NISZK for $O(\sqrt{n})$ -coGapSVP.

Can the same proof system work for GapSPP?

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

• Intuition: a lattice is not smooth \Leftrightarrow it has a 'sparse' lattice projection.

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

- Intuition: a lattice is not smooth \Leftrightarrow it has a 'sparse' lattice projection.
- More precisely: if η(L) > C log n then there is a rank-k projection π such that det(π(L)) ≥ 6^k, for some k.

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

• Intuition: a lattice is not smooth \Leftrightarrow it has a 'sparse' lattice projection.

More precisely: if η(L) > C log n then there is a rank-k projection π such that det(π(L)) ≥ 6^k, for some k.

Soundness

$$3m \ge s_1\left(\sum \mathbf{e}_i \mathbf{e}_i^T\right) \ge s_1\left(\sum \pi(\mathbf{e}_i)\pi(\mathbf{e}_i)^T\right) \ge \frac{1}{k}\sum \|\pi(\mathbf{e}_i)\|^2.$$

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

• Intuition: a lattice is not smooth \Leftrightarrow it has a 'sparse' lattice projection.

More precisely: if η(L) > C log n then there is a rank-k projection π such that det(π(L)) ≥ 6^k, for some k.

Soundness

$$3m \ge s_1\left(\sum \mathbf{e}_i \mathbf{e}_i^T\right) \ge s_1\left(\sum \pi(\mathbf{e}_i)\pi(\mathbf{e}_i)^T\right) \ge \frac{1}{k}\sum \|\pi(\mathbf{e}_i)\|^2.$$

• So vol(legal $\{\pi(\mathbf{e}_i)\}) \leq 5^{km}$.

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

• Intuition: a lattice is not smooth \Leftrightarrow it has a 'sparse' lattice projection.

More precisely: if η(L) > C log n then there is a rank-k projection π such that det(π(L)) ≥ 6^k, for some k.

Soundness

$$3m \ge s_1\left(\sum \mathbf{e}_i \mathbf{e}_i^T\right) \ge s_1\left(\sum \pi(\mathbf{e}_i)\pi(\mathbf{e}_i)^T\right) \ge \frac{1}{k}\sum \|\pi(\mathbf{e}_i)\|^2.$$

So vol(legal
$$\{\pi(\mathbf{e}_i)\}) \leq 5^{km}$$

▶ But vol(possible $\{\pi(\mathbf{c}_i)\} \ge 6^{km} \gg 5^{km} \ge \text{vol}(\text{legal } \{\pi(\mathbf{e}_i)\})$, so most $\{\mathbf{c}_i\}$ have no valid proof $\{\mathbf{e}_i\}$.

Reverse Minkowski Theorem [RegevStephens-Davidowitz'17]

• Intuition: a lattice is not smooth \Leftrightarrow it has a 'sparse' lattice projection.

More precisely: if η(L) > C log n then there is a rank-k projection π such that det(π(L)) ≥ 6^k, for some k.

Soundness

$$3m \ge s_1\left(\sum \mathbf{e}_i \mathbf{e}_i^T\right) \ge s_1\left(\sum \pi(\mathbf{e}_i)\pi(\mathbf{e}_i)^T\right) \ge \frac{1}{k}\sum \|\pi(\mathbf{e}_i)\|^2.$$

So vol(legal
$$\{\pi(\mathbf{e}_i)\}) \leq 5^{km}$$
.

▶ But vol(possible $\{\pi(\mathbf{c}_i)\}$) $\geq 6^{km} \gg 5^{km} \geq \text{vol}(\text{legal } \{\pi(\mathbf{e}_i)\})$, so most $\{\mathbf{c}_i\}$ have no valid proof $\{\mathbf{e}_i\}$.

• Conclusion: $\approx \log n$ gap in $\eta(\mathcal{L})$ between completeness, soundness.

The previous proof system required ε = negl for SZK. What about 'large' ε?

- The previous proof system required ε = negl for SZK. What about 'large' ε?
- $\eta(\mathcal{L}) \leq 1 \Rightarrow$ continuous Gaussian mod \mathcal{L} is ε -uniform.

- The previous proof system required ε = negl for SZK. What about 'large' ε?
- η(L) ≤ 1 ⇒ continuous Gaussian mod L is ε-uniform.
 This distribution has high entropy.

- The previous proof system required ε = negl for SZK. What about 'large' ε?
- η(L) ≤ 1 ⇒ continuous Gaussian mod L is ε-uniform.
 This distribution has high entropy.
- ▶ $\eta(\mathcal{L}) \gg 1 \Rightarrow$ continuous Gaussian mod \mathcal{L} is concentrated on a low-volume subset of \mathbb{R}^n/\mathcal{L} .

- The previous proof system required ε = negl for SZK. What about 'large' ε?
- η(L) ≤ 1 ⇒ continuous Gaussian mod L is ε-uniform.
 This distribution has high entropy.
- η(L) ≫ 1 ⇒ continuous Gaussian mod L is concentrated on a low-volume subset of ℝⁿ/L.

This distribution has low entropy.

- The previous proof system required ε = negl for SZK. What about 'large' ε?
- η(L) ≤ 1 ⇒ continuous Gaussian mod L is ε-uniform.
 This distribution has high entropy.
- ▶ $\eta(\mathcal{L}) \gg 1 \Rightarrow$ continuous Gaussian mod \mathcal{L} is concentrated on a low-volume subset of \mathbb{R}^n/\mathcal{L} .

This distribution has low entropy.

▶ Yields a Karp reduction γ -GapSPP $_{\varepsilon} \leq \text{ENTROPYAPPROXIMATION}$, with $\gamma = O(\log(n)\sqrt{\log(1/\varepsilon)})$ for any $\varepsilon \in (0, 1/2)$.

(1 NP proof system for GapSPP with $o(\sqrt{n})$ approximation factors?

- **1** NP proof system for GapSPP with $o(\sqrt{n})$ approximation factors?
- **2** (NI)SZK proof system for GapCRP with $o(\sqrt{n})$ factors?

- **1** NP proof system for GapSPP with $o(\sqrt{n})$ approximation factors?
- **2** (NI)SZK proof system for GapCRP with $o(\sqrt{n})$ factors?
- [CDLP'13] gave SZK proof systems for GapSPP with constant factors.
 Can we get rid of the log n factor in NISZK for GapSPP?

- **1** NP proof system for GapSPP with $o(\sqrt{n})$ approximation factors?
- **2** (NI)SZK proof system for GapCRP with $o(\sqrt{n})$ factors?
- **3** [CDLP'13] gave SZK proof systems for GapSPP with constant factors. Can we get rid of the $\log n$ factor in NISZK for GapSPP?
- ONIZK for NP from lattice/LWE assumptions?
 [PV'08] gives an approach, but with a major barrier: NI proof for SVP/BDD/LWE.

- **1** NP proof system for GapSPP with $o(\sqrt{n})$ approximation factors?
- **2** (NI)SZK proof system for GapCRP with $o(\sqrt{n})$ factors?
- **3** [CDLP'13] gave SZK proof systems for GapSPP with constant factors. Can we get rid of the $\log n$ factor in NISZK for GapSPP?
- ONIZK for NP from lattice/LWE assumptions?
 [PV'08] gives an approach, but with a major barrier: NI proof for SVP/BDD/LWE.
- **(NI)SZK-completeness** of GapSPP for some factors?

- **1** NP proof system for GapSPP with $o(\sqrt{n})$ approximation factors?
- **2** (NI)SZK proof system for GapCRP with $o(\sqrt{n})$ factors?
- **3** [CDLP'13] gave SZK proof systems for GapSPP with constant factors. Can we get rid of the $\log n$ factor in NISZK for GapSPP?
- ONIZK for NP from lattice/LWE assumptions?
 [PV'08] gives an approach, but with a major barrier: NI proof for SVP/BDD/LWE.
- (NI)SZK-completeness of GapSPP for some factors?

Thanks!