The Geometry of Rings

Chris Peikert Georgia Institute of Technology

ECRYPT II Summer School on Lattices Porto, Portugal 2 Oct 2012

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q$
 \vdots

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q$
 \vdots

▶ Errors $e(X) \in R$ are "short." What could this mean?

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q$
 \vdots

▶ Errors $e(X) \in R$ are "short." What could this mean? Identify

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \stackrel{\text{(?)}}{\longleftrightarrow} \quad (e_0, e_1, \dots e_{n-1}) \in \mathbb{Z}^n.$$

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q$
 \vdots

▶ Errors $e(X) \in R$ are "short." What could this mean? Identify

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \stackrel{(?)}{\longleftrightarrow} \quad (e_0, e_1, \dots e_{n-1}) \in \mathbb{Z}^n.$$

▶ Applications need $(+,\cdot)$ -combinations of errors to remain short.

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i , b_i)\}$ from uniform $\{(a_i , b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q$
 \vdots

lacktriangle Errors $e(X) \in R$ are "short." What could this mean? Identify

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \stackrel{\text{(?)}}{\longleftrightarrow} \quad (e_0, e_1, \dots e_{n-1}) \in \mathbb{Z}^n.$$

lacktriangle Applications need $(+,\cdot)$ -combinations of errors to remain short. Yes!

$$||e + f|| \le ||e|| + ||f||$$
 $||e \cdot f|| \le \sqrt{n} \cdot ||e|| \cdot ||f||$.

"Expansion factor" \sqrt{n} is worst-case. ("On average," $pprox \sqrt{\log n}$.)

 $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.

- $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.
- ▶ $\mathsf{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \bmod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.)

- $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.
- ▶ $\mathsf{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \bmod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) <u>Security</u>: (c_1, c_0) is an RLWE sample (essentially).

- $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S)=c_0+c_1S\in R_q[S]$. (Notice: $c(s)=e \bmod q$.) Security: (c_1,c_0) is an RLWE sample (essentially).

▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R$ s.t. $d = c(s) \bmod q$. Output $d \bmod 2$. Correctness: d = e, as long as e has \mathbb{Z} -coeffs $\in (-q/2, q/2)$.

- $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S)=c_0+c_1S\in R_q[S]$. (Notice: $c(s)=e \bmod q$.) <u>Security</u>: (c_1,c_0) is an RLWE sample (essentially).

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R$ s.t. $d = c(s) \bmod q$. Output $d \bmod 2$. $\underline{\mathsf{Correctness}}$: d = e, as long as e has \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- $\qquad \qquad \mathsf{EvalAdd}(c,c') = (c+c')(S), \ \ \mathsf{EvalMul}(c,c') = (c\cdot c')(S).$

- $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) Security: (c_1, c_0) is an RLWE sample (essentially).

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R$ s.t. $d = c(s) \bmod q$. Output $d \bmod 2$. Correctness: d = e, as long as e has \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

- $ightharpoonup R = \mathbb{Z}[X]/(1+X^{2^k}), R_q = R/qR.$ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) Security: (c_1, c_0) is an RLWE sample (essentially).

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R$ s.t. $d = c(s) \bmod q$. Output $d \bmod 2$. Correctness: d = e, as long as e has \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- EvalAdd(c,c')=(c+c')(S), EvalMul $(c,c')=(c\cdot c')(S)$.

 Decryption works if e+e', $e\cdot e'$ "short enough."

 Many mults \Rightarrow large power of expansion factor \Rightarrow tiny error rate $\alpha\Rightarrow$ big parameters!

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

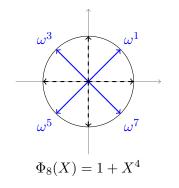
Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

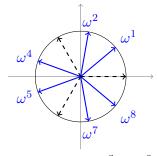
▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_{\infty}^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

Power ω^i run over all $n = \varphi(m)$ primitive mth roots of unity. "Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.





 $\Phi_9(X) = 1 + X^3 + X^6$

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_{\infty}^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

$$m{X}$$
 $\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

$$m{X}$$
 $\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$

XX $\Phi_{105}(X) = [\text{degree 48; 33 monomials with } \{-2, -1, 1\} \text{-coefficients}]$

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

Power ω^i run over all $n=\varphi(m)$ primitive mth roots of unity. "Power" \mathbb{Z} -basis of R is $\{1,X,X^2,\ldots,X^{n-1}\}$.

Non-prime power m?

$$m{X}$$
 $\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$

XX $\Phi_{105}(X) = [\text{degree 48; 33 monomials with } \{-2, -1, 1\}\text{-coefficients}]$

Annoyances

 X Irregular $\Phi_m(X) \Rightarrow$ slower, more complex operations

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_{\infty}^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

$$m{X}$$
 $\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$

XX $\Phi_{105}(X) = [\text{degree 48; 33 monomials with } \{-2, -1, 1\} \text{-coefficients}]$

Annoyances

- X Irregular $\Phi_m(X) \Rightarrow$ slower, more complex operations
- **X** Large expansion factor $\gg \sqrt{n}$ even super-poly(n)!

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$R = \mathbb{Z}[X]/\Phi_m(X)$$
 for m th cyclotomic polynomial $\Phi_m(X)$.

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

Power" \mathbb{Z} -basis of R is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

$$m{X}$$
 $\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$

XX $\Phi_{105}(X) = [\text{degree 48; 33 monomials with } \{-2, -1, 1\} \text{-coefficients}]$

Annoyances

- X Irregular $\Phi_m(X) \Rightarrow$ slower, more complex operations
- **X** Large expansion factor $\gg \sqrt{n}$ even super-poly(n)!
- X Provable hardness also degrades with expansion factor: pay twice!

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✔ Provable, tight hardness same for all cyclotomics
 - ✓ Fast, modular ring operations

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✔ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE

- Cyclotomic rings and their canonical geometry
 - ✔ No expansion factor anywhere
 - ✔ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE
- **3** The decoding basis of R^{\vee} and its properties

- Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✔ Provable, tight hardness same for all cyclotomics
 - ✓ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE
- **3** The decoding basis of R^{\vee} and its properties
- 4 Benefits in applications: tight parameters, algorithmic efficiency

- Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✔ Provable, tight hardness same for all cyclotomics
 - ✓ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE
- **3** The decoding basis of R^{\vee} and its properties
- 4 Benefits in applications: tight parameters, algorithmic efficiency

Based on:

```
LPR'10 V. Lyubashevsky, C. Peikert, O. Regev."On Ideal Lattices and Learning with Errors Over Rings."LPR'12 V. Lyubashevsky, C. Peikert, O. Regev.
```

"A Toolkit for Ring-LWE Cryptography."

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\mathsf{X}}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\times}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

Let m have prime-power factorization $m = m_1 \cdots m_\ell$.

Key Facts

- **1** For prime p: $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\mathsf{X}}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$

via
$$X_i \mapsto X^{m/m_i}$$
. (Indeed, X^{m/m_i} has order m_i .)

Key Facts

- **1** For prime p: $\Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\times}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$
$$= \bigotimes_i \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\times}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$
$$= \bigotimes_i \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

▶ R has tensor \mathbb{Z} -basis $\{X_1^{j_1}\cdots X_\ell^{j_\ell}\}$, where each $0\leq j_i<\varphi(m_i)$.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\times}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$
$$= \bigotimes_i \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

▶ R has tensor \mathbb{Z} -basis $\{X_1^{j_1} \cdots X_\ell^{j_\ell}\}$, where each $0 \leq j_i < \varphi(m_i)$. Notice!: tensor basis \neq power basis $\{X^j\}$ for $0 \leq j < \varphi(m)$.

Cyclotomic Rings

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- $m{\mathsf{X}}$ Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_{\ell}]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_{\ell}}(X_{\ell}))$$
$$= \bigotimes_i \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

Bottom line: can reduce operations in R to independent operations in prime-power cyclotomic rings $\mathbb{Z}[X_i]/\Phi_{m_i}(X_i)$.

 $ightharpoonup R=\mathbb{Z}[X]/\Phi_m(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C} , each given by evaluation at a root of Φ_m :

$$X \mapsto \omega^i$$
 for each $i \in \mathbb{Z}_m^*$.

 $ightharpoonup R=\mathbb{Z}[X]/\Phi_m(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C} , each given by evaluation at a root of Φ_m :

$$X \mapsto \omega^i$$
 for each $i \in \mathbb{Z}_m^*$.

▶ The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a) = \left(a(\omega^i)\right)_{i \in \mathbb{Z}_m^*}$.

 $ightharpoonup R=\mathbb{Z}[X]/\Phi_m(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C} , each given by evaluation at a root of Φ_m :

$$X \mapsto \omega^i$$
 for each $i \in \mathbb{Z}_m^*$.

- ▶ The *canonical embedding* σ of R into \mathbb{C}^n is $\sigma(a) = \left(a(\omega^i)\right)_{i \in \mathbb{Z}_m^*}$.
- ▶ Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_2 := \|\sigma(a)\|_2$.

 $ightharpoonup R=\mathbb{Z}[X]/\Phi_m(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C} , each given by evaluation at a root of Φ_m :

$$X \mapsto \omega^i$$
 for each $i \in \mathbb{Z}_m^*$.

- lacksquare The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a)=\left(\left.a(\omega^i)\right.\right)_{i\in\mathbb{Z}_m^*}$.
- ▶ Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_2 := \|\sigma(a)\|_2$.

Nice Properties

✓ Under σ , both + and · are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$.

 $ightharpoonup R=\mathbb{Z}[X]/\Phi_m(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C} , each given by evaluation at a root of Φ_m :

$$X \mapsto \omega^i$$
 for each $i \in \mathbb{Z}_m^*$.

- lacksquare The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a)=\left(\left.a(\omega^i)\right.\right)_{i\in\mathbb{Z}_m^*}$.
- ▶ Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_2 := \|\sigma(a)\|_2$.

Nice Properties

✓ Under σ , both + and · are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$. This yields the "expansion" bound

$$\|a\cdot b\|_2 \, \leq \, \|a\|_\infty \cdot \|b\|_2 \,, \quad \text{ where } \|a\|_\infty = \max_i \left|a(\omega^i)\right|.$$

 $ightharpoonup R=\mathbb{Z}[X]/\Phi_m(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C} , each given by evaluation at a root of Φ_m :

$$X \mapsto \omega^i$$
 for each $i \in \mathbb{Z}_m^*$.

- ▶ The *canonical embedding* σ of R into \mathbb{C}^n is $\sigma(a) = \left(a(\omega^i)\right)_{i \in \mathbb{Z}_m^*}$.
- ▶ Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_2 := \|\sigma(a)\|_2$.

Nice Properties

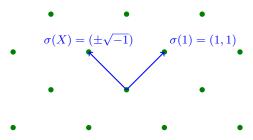
ightharpoonup Under σ , both+ and \cdot are coordinate-wise: $\sigma(a\cdot b)=\sigma(a)\odot\sigma(b)$. This yields the "expansion" bound

$$\|a\cdot b\|_2 \, \leq \, \|a\|_\infty \cdot \|b\|_2 \,, \quad \text{ where } \|a\|_\infty = \max_i \left|a(\omega^i)\right|.$$

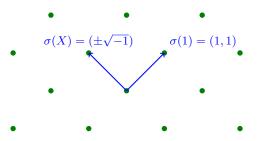
✓ Expansion is element-specific. No more ring "expansion factor."

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$



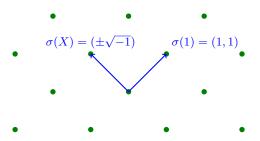
▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$



In Any 2^k -th Cyclotomic...

 \checkmark For any j, $\|X^j\|_2 = \sqrt{n}$ and $\|X^j\|_{\infty} = 1$.

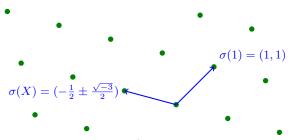
▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$



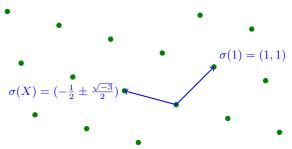
In Any 2^k -th Cyclotomic...

- \checkmark For any j, $\|X^j\|_2 = \sqrt{n}$ and $\|X^j\|_{\infty} = 1$.
- ightharpoonup Power basis $\{1,X,\ldots,X^{n-1}\}$ is orthogonal under embedding $\sigma.$ So coefficient/canonical embeddings equivalent (up to \sqrt{n} scaling).

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$



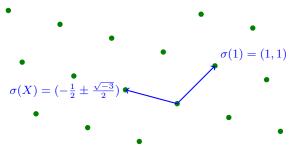
▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$



In Any Cyclotomic...

 $\qquad \qquad \textbf{For any } j, \ \|X^j\|_2 = \sqrt{n} \ \text{and} \ \|X^j\|_\infty = 1.$

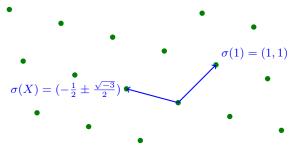
▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$



In Any Cyclotomic...

- \checkmark For any j, $\|X^j\|_2 = \sqrt{n}$ and $\|X^j\|_\infty = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m=2^k$).

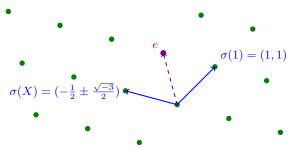
▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$



In Any Cyclotomic...

- \checkmark For any j, $\|X^j\|_2 = \sqrt{n}$ and $\|X^j\|_\infty = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).
- So in power basis, short elements can have long coeff vectors.

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$



In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_{\infty} = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).
- So in power basis, short elements can have long coeff vectors.

E.g.,
$$||e|| = ||1|| = ||X|| = \sqrt{n}$$
 but $e = 1 + X$.

▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$.

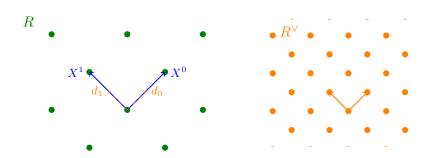
▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum_{i} a(\omega^{i}) \cdot b(\omega^{i}) = \langle \sigma(a) , \overline{\sigma(b)} \rangle.$$

▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum_{i} a(\omega^{i}) \cdot b(\omega^{i}) = \langle \sigma(a), \overline{\sigma(b)} \rangle.$$

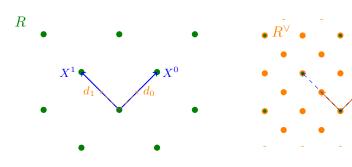
▶ Define R's "dual" $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}.$



▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum\nolimits_i a(\omega^i) \cdot b(\omega^i) = \langle \sigma(a) \,, \, \overline{\sigma(b)} \rangle.$$

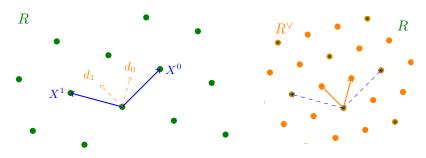
▶ Define R's "dual" $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}.$ Has "decoding" \mathbb{Z} -basis $\{d_{j'}\}$, where $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}.$



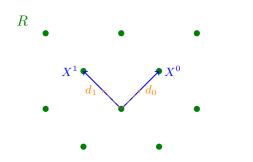
▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

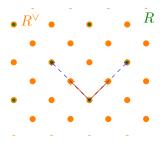
$$\operatorname{Tr}(a \cdot b) = \sum\nolimits_i a(\omega^i) \cdot b(\omega^i) = \langle \sigma(a) \,, \, \overline{\sigma(b)} \rangle.$$

▶ Define R's "dual" $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}.$ Has "decoding" \mathbb{Z} -basis $\{d_{j'}\}$, where $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}.$



▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

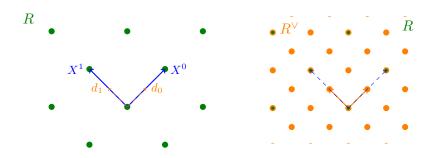




▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Useful Facts

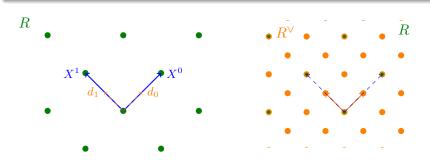
1 R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}$, $r \in R$.



▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Useful Facts

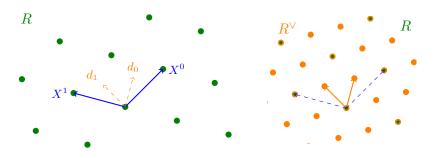
- **1** R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}$, $r \in R$.
- 2 For $m=2^k$ (dim n=m/2): $\{X^j\}$ orthogonal and $\|X^j\|=\sqrt{n}$. So $d_j=\frac{1}{n}X^j$ and $R^\vee=\frac{1}{n}R$. I.e., R and R^\vee equivalent up to scale.



▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Useful Facts

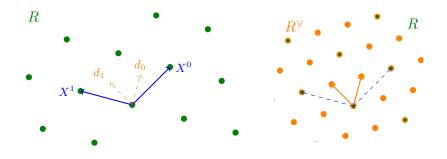
- **1** R^{\vee} is an ideal: $-a, a+b, a\cdot r \in R^{\vee}$ for all $a,b\in R^{\vee}$, $r\in R$.
- 2 For $m=2^k$ (dim n=m/2): $\{X^j\}$ orthogonal and $\|X^j\|=\sqrt{n}$. So $d_j=\frac{1}{n}X^j$ and $R^\vee=\frac{1}{n}R$. I.e., R and R^\vee equivalent up to scale.
- **3** In general, $mR^{\vee} \subseteq R \subseteq R^{\vee}$, with $mR^{\vee} \approx R$.



▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Super-Useful Fact

✓ If $e \in R^{\vee}$ is short, its \mathbb{Z} -coeffs in decoding basis $\{d_j\}$ are small:

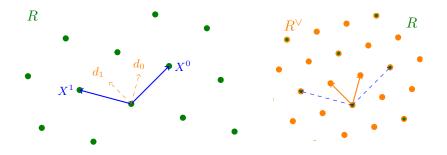


▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}.$ Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Super-Useful Fact

✓ If $e \in R^{\vee}$ is short, its \mathbb{Z} -coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_j d_j \quad (e_j \in \mathbb{Z}) \quad \Longrightarrow \quad e_j = \text{Tr}(X^j \cdot e) \le ||e|| \cdot \sqrt{n}.$$



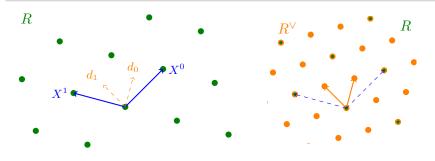
▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \ \forall \ a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Super-Useful Fact

✓ If $e \in R^{\vee}$ is short, its \mathbb{Z} -coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_j d_j \quad (e_j \in \mathbb{Z}) \quad \Longrightarrow \quad e_j = \operatorname{Tr}(X^j \cdot e) \le ||e|| \cdot \sqrt{n}.$$

(Better: Gaussian e w/std. dev. $s \Rightarrow$ Gaussian e_j w/std. dev. $s\sqrt{n}$.)



$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/\Phi_m(X)\right] \text{ for any } m, \quad R_q=R/qR, \; R_q^\vee=R^\vee/qR^\vee.$$

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/\Phi_m(X)\right] \text{for any } m, \quad R_q=R/qR, \; R_q^\vee=R^\vee/qR^\vee.$$

▶ Problem: for $s \leftarrow R_q^{\lor}$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q^{\vee}$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q^{\vee}$
:

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/\Phi_m(X)\right] \text{ for any } m, \quad R_q=R/qR, \; R_q^\vee=R^\vee/qR^\vee.$$

▶ Problem: for $s \leftarrow R_q^{\lor}$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q^{\vee}$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q^{\vee}$
:

Frrors $e \in R^{\vee}$ Gaussian (w/std. dev. αq) in canonical embedding. So $|e(\omega^i)| \approx \alpha q$ are independent* – but coeffs $|e_j| \approx \alpha q \sqrt{n}$ are not!

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/\Phi_m(X)\right] \text{ for any } m, \quad R_q=R/qR, \; R_q^\vee=R^\vee/qR^\vee.$$

▶ Problem: for $s \leftarrow R_q^{\lor}$, distinguish $\{(a_i , b_i)\}$ from uniform $\{(a_i , b_i)\}$.

$$a_1 \leftarrow R_q$$
 , $b_1 = a_1 \cdot s + e_1 \in R_q^{\vee}$
 $a_2 \leftarrow R_q$, $b_2 = a_2 \cdot s + e_2 \in R_q^{\vee}$
 \vdots

Frrors $e \in R^{\vee}$ Gaussian (w/std. dev. αq) in canonical embedding. So $|e(\omega^i)| \approx \alpha q$ are independent* – but coeffs $|e_i| \approx \alpha q \sqrt{n}$ are not!

Theorem

For any m, ring-LWE with error std. dev. $\alpha q \geq 6^*$ is (quantumly) as hard as $\tilde{O}(n/\alpha)$ -SVP on any ideal lattice in R.

▶ Symmetric key $s \leftarrow R_q$.

- ▶ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^{\vee} \quad \text{and} \quad c_0 = -c_1 \cdot s + e \in R_q^{\vee}$$

and output
$$c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$$
. (Note: $c(s) = e \bmod qR^{\vee}$.)

- Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^{\vee} \quad \text{and} \quad c_0 = -c_1 \cdot s + e \in R_q^{\vee}$$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \bmod qR^{\vee}$.)

▶ $\operatorname{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \mod qR^{\vee}$.

Correctness: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.

- ▶ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^{\vee}$$
 and $c_0 = -c_1 \cdot s + e \in R_q^{\vee}$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod qR^{\vee}$.)

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \bmod qR^{\vee}$. <u>Correctness</u>: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- ▶ EvalMul $(c, c') = (c \cdot c')(S) \in (R^{\vee})_q^k[S]$ where $k = \deg(c) + \deg(c')$.

- ▶ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^{\vee}$$
 and $c_0 = -c_1 \cdot s + e \in R_q^{\vee}$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \bmod qR^{\vee}$.)

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \bmod qR^{\vee}$. Correctness: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- ▶ EvalMul $(c, c') = (c \cdot c')(S) \in (R^{\vee})_q^k[S]$ where $k = \deg(c) + \deg(c')$.
 - * Noise $e = e_1 \cdots e_k \in (R^{\vee})^k$, so $m^{k-1}e \in R^{\vee}$.

- ▶ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^{\vee} \quad \text{and} \quad c_0 = -c_1 \cdot s + e \in R_q^{\vee}$$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \bmod qR^{\vee}$.)

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \bmod qR^{\vee}$. Correctness: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- ▶ EvalMul $(c,c')=(c\cdot c')(S)\in (R^\vee)_q^k[S]$ where $k=\deg(c)+\deg(c')$.
 - ★ Noise $e = e_1 \cdots e_k \in (R^{\vee})^k$, so $m^{k-1}e \in R^{\vee}$.
 - * Since $\|e_i\|_{\infty} \approx \alpha q = 6$, $m^{k-1}e$ has Gaussian std. dev. $\approx 6^k m^{k-1}$.

- ▶ Symmetric key $s \leftarrow R_q$.
- ▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^{\vee}$$
 and $c_0 = -c_1 \cdot s + e \in R_q^{\vee}$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \bmod qR^{\vee}$.)

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \bmod qR^{\vee}$. Correctness: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- ▶ EvalMul $(c,c')=(c\cdot c')(S)\in (R^\vee)_q^k[S]$ where $k=\deg(c)+\deg(c')$.
 - * Noise $e = e_1 \cdots e_k \in (R^{\vee})^k$, so $m^{k-1}e \in R^{\vee}$.
 - ★ Since $||e_i||_{\infty} \approx \alpha q = 6$, $m^{k-1}e$ has Gaussian std. dev. $\approx 6^k m^{k-1}$.
 - * So need $q \approx 6^k m^{k-1} \sqrt{n} < (6m)^k$ to decrypt deg-k ciphertexts. Versus $q \approx \gamma^{k-1} n^k$ via expansion factor $\gamma \gg \sqrt{n}$. $\Rightarrow \approx \gamma^{k-1}$ factor improvement in error rate.

1 Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.

- 1 Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
- 2 Using R^{\vee} with the decoding basis yields smaller coefficients \Rightarrow larger noise rates \Rightarrow smaller params/higher security.

- 1 Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
- ② Using R^V with the decoding basis yields smaller coefficients ⇒ larger noise rates ⇒ smaller params/higher security.
- 3 Using the tensor basis of

$$R \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$

yields fast, modular algorithms for all cyclotomics.

- 1 Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
- ② Using R^V with the decoding basis yields smaller coefficients ⇒ larger noise rates ⇒ smaller params/higher security.
- 3 Using the tensor basis of

$$R \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$

yields fast, modular algorithms for all cyclotomics.

Thanks!