Noninteractive Zero Knowledge for NP from Learning With Errors

Chris Peikert Sina Shiehian

TCS+
1 May 2019

Zero Knowledge [GoldwasserMicaliRackoff' 85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.

Zero Knowledge [GoldwasserMicaliRackoff'85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]}
$$

$$
\underline{V\left(G_{0}, G_{1}\right)}
$$

Zero Knowledge [GoldwasserMicaliRackoff' 85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{aligned}
& \frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} \\
& H=\rho\left(G_{0}\right) \quad
\end{aligned}
$$

$$
\underline{V\left(G_{0}, G_{1}\right)}
$$

Zero Knowledge [GoldwasserMicaliRackoff' 85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{array}{rlr}
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} & & \underline{V\left(G_{0}, G_{1}\right)} \\
H=\rho\left(G_{0}\right) & \begin{array}{c}
b \leftarrow\{0,1\}
\end{array} & \\
& \begin{array}{l}
\text { ("Prove } H \equiv G_{b} \text { ") }
\end{array}
\end{array}
$$

Zero Knowledge [GoldwasserMicaliRackoff' 85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{array}{rcc}
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} & & \underline{V\left(G_{0}, G_{1}\right)} \\
H=\rho\left(G_{0}\right) & \begin{array}{c}
b \leftarrow\{0,1\} \\
\longleftrightarrow
\end{array} & \\
& \xrightarrow{\sigma=\rho \circ \pi^{b}} \text { ("Prove } H \equiv G_{b} \text { ") } \\
& \text { check } H \stackrel{?}{=} \sigma\left(G_{b}\right)
\end{array}
$$

Zero Knowledge [GoldwasserMicaliRackoff' 85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{array}{rll}
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} & & \underline{V\left(G_{0}, G_{1}\right)} \\
H=\rho\left(G_{0}\right) & \begin{array}{l}
b \leftarrow\{0,1\} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { ("Prove } H \equiv G_{b} \text { ") } \\
\end{array} & \\
\end{array}
$$

(1) Complete: if $G_{0} \equiv G_{1}$, then P convinces V.

Zero Knowledge [GoldwasserMicaliRackoff'85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{array}{rll}
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} & & \underline{V\left(G_{0}, G_{1}\right)} \\
H=\rho\left(G_{0}\right) & \begin{array}{c}
b \leftarrow\{0,1\} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { ("Prove } H \equiv G_{b} \text { ") }
\end{array} &
\end{array}
$$

(1) Complete: if $G_{0} \equiv G_{1}$, then P convinces V.
(2) Sound: if $G_{0} \not \equiv G_{1}$, cheating P^{*} convinces V with prob $\leq 1 / 2$.

Zero Knowledge [GoldwasserMicaliRackoff'85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{array}{rll}
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} & & \underline{V\left(G_{0}, G_{1}\right)} \\
H=\rho\left(G_{0}\right) & \begin{array}{c}
b \leftarrow\{0,1\} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { ("Prove } H \equiv G_{b} \text { ") }
\end{array} &
\end{array}
$$

(1) Complete: if $G_{0} \equiv G_{1}$, then P convinces V.
(2) Sound: if $G_{0} \not \equiv G_{1}$, cheating P^{*} convinces V with prob $\leq 1 / 2$.

Soundness error can be reduced exponentially by (parallel) repetition.

Zero Knowledge [GoldwasserMicaliRackoff'85]

- Zero-knowledge (interactive) proof for language L : allows a prover P to convince a verifier V that some $x \in L$, while revealing nothing else.
- Example: 'cut-and-choose' protocol for Graph Isomorphism

$$
\begin{array}{rcc}
\frac{P\left(G_{0}, G_{1}, \pi\right)}{\left[G_{0}=\pi\left(G_{1}\right)\right]} & & \underline{V\left(G_{0}, G_{1}\right)} \\
H=\rho\left(G_{0}\right) & \begin{array}{c}
H \leftarrow\{0,1\} \\
\longleftarrow
\end{array} & \text { ("Prove } H \equiv G_{b} \text { ") } \\
& \xrightarrow{\sigma=\rho \circ \pi^{b}} \text { check } H \stackrel{?}{=} \sigma\left(G_{b}\right)
\end{array}
$$

(1) Complete: if $G_{0} \equiv G_{1}$, then P convinces V.
(2) Sound: if $G_{0} \not \equiv G_{1}$, cheating P^{*} convinces V with prob $\leq 1 / 2$.

Soundness error can be reduced exponentially by (parallel) repetition.
(3) Zero Knowledge: can simulate (honest) V 's view when $G_{0} \equiv G_{1}$.

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.
- Applications: identification, secure multiparty computation, ...

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.
- Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

$$
P(G, \text { cycle } C)
$$

$$
\underline{V(G)}
$$

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.
- Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

$$
\begin{aligned}
& \underline{P(G, \text { cycle } C)} \\
& H=\rho(G) \quad \xrightarrow{\left\{c_{i, j} \leftarrow \operatorname{Com}\left(h_{i, j}\right)\right\}, \operatorname{Com}(\rho)}
\end{aligned}
$$

$$
\underline{V(G)}
$$

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.
- Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

$$
\begin{aligned}
& \frac{P(G, \text { cycle } C)}{} \\
& H=\rho(G) \quad \frac{\left\{c_{i, j} \leftarrow \operatorname{Com}\left(h_{i, j}\right)\right\}, \operatorname{Com}(\rho)}{b \leftarrow\{0,1\}}
\end{aligned}
$$

$$
\underline{V(G)}
$$

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.
- Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

$$
P(G, \text { cycle } C)
$$

$$
\underline{V(G)}
$$

$$
H=\rho(G) \quad \stackrel{\left\{c_{i, j} \leftarrow \operatorname{Com}\left(h_{i, j}\right)\right\}, \operatorname{Com}(\rho)}{b \leftarrow\{0,1\}}
$$

$$
b=0: \text { open all } h_{i, j}, \rho
$$

$$
\text { check } H=\rho(G)
$$

Zero Knowledge for NP

Theorem [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument.
- Applications: identification, secure multiparty computation, ...

Cut-and-choose protocol for Hamiltonian Cycle [FeigeLapidotShamir'90]:

$$
P(G, \text { cycle } C)
$$

$$
V(G)
$$

$$
\begin{aligned}
H=\rho(G) \quad & \xrightarrow{\left\{c_{i, j} \leftarrow \operatorname{Com}\left(h_{i, j}\right)\right\}, \operatorname{Com}(\rho)} \\
& \stackrel{b \leftarrow\{0,1\}}{\longleftrightarrow \frac{b=0: \text { open all } h_{i, j}, \rho}{\longrightarrow}} \text { check } H=\rho(G) \\
& \xrightarrow{\frac{b=1: \text { open } h_{i, j}}{\text { for }(i, j) \in \rho(C)} \quad \text { check cycle }}
\end{aligned}
$$

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if...?

$$
\begin{aligned}
\frac{P(x, w)}{} & \underline{V(x)} \\
\longrightarrow & \mathrm{acc} / \mathrm{rej}
\end{aligned}
$$

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if... ?

$$
\begin{aligned}
\frac{P(x, w)}{} & \underline{V(x)} \\
\longrightarrow & \mathrm{acc} / \mathrm{rej}
\end{aligned}
$$

- In 'plain' model, NIZK = BPP (trivial).

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if...?

- With common random/reference string, NP \subseteq NIZK assuming:

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if... ?

- With common random/reference string, NP \subseteq NIZK assuming:
\star quadratic residuosity/trapdoor permutations
[BDMP'88,FLS'90]
\star hard pairing-friendly groups
* indistinguishability obfuscation
[GrothOstrovskySahai'06]
[SahaiWaters'14]

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if... ?

- With common random/reference string, NP \subseteq NIZK assuming:
\star quadratic residuosity/trapdoor permutations
[BDMP'88,FLS'90]
\star hard pairing-friendly groups
[GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]
Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if. . . ?

- With common random/reference string, NP \subseteq NIZK assuming:
\star quadratic residuosity/trapdoor permutations
[BDMP'88,FLS'90]
\star hard pairing-friendly groups
[GrothOstrovskySahai'06]
\star indistinguishability obfuscation [SahaiWaters'14]
Apps: signatures, CCA-secure encryption, cryptocurrencies, ...
- Open [PV'08]: a 'post-quantum' foundation like lattices/LWE [Regev'05]

Noninteractive Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Interaction is not always possible. What if... ?

- With common random/reference string, NP \subseteq NIZK assuming:
\star quadratic residuosity/trapdoor permutations
* hard pairing-friendly groups
* indistinguishability obfuscation
[BDMP'88,FLS'90]
[GrothOstrovskySahai'06] [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

- Open [PV'08]: a 'post-quantum' foundation like lattices/LWE [Regev'05]

Our Main Theorem

- NP \subseteq NIZK assuming LWE/worst-case lattice problems are hard.

Fiat-Shamir Heuristic [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

Fiat-Shamir Heuristic [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

Fiat-Shamir Heuristic [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

Fiat-Shamir Heuristic [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

- Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that $H(\alpha)=\beta$.

Fiat-Shamir Heuristic [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

- Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that $H(\alpha)=\beta$.

Key Challenge: Soundness

(1) Are there α, γ with $\beta=H(\alpha)$ that fool V ?

Fiat-Shamir Heuristic [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

- Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that $H(\alpha)=\beta$.

Key Challenge: Soundness

(1) Are there α, γ with $\beta=H(\alpha)$ that fool V ?
(2) Can a cheating P^{*} find such values, given H ? (Proof vs. argument.)

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19]

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW'19]

- Often, a correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19$]$

- Often, a correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Theorem [HL'18,CCH+'19]

- NP \subseteq NIZK assuming a Cl hash family for all bounded circuits:

$$
R_{C}=\{(\alpha, C(\alpha))\},|C| \leq S=\text { poly }
$$

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19$]$

- Often, a correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Theorem [HL'18,CCH+'19]

- NP \subseteq NIZK assuming a Cl hash family for all bounded circuits:

$$
R_{C}=\{(\alpha, C(\alpha))\},|C| \leq S=\text { poly }
$$

- Proof idea: for HamCycle ${ }^{m}$ protocol [FLS'90], each potential α has
≤ 1 'bad challenge' $\beta \in\{0,1\}^{m}$ allowing V to be fooled.

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19$]$

- Often, a correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Theorem [HL'18,CCH+'19]

- NP \subseteq NIZK assuming a Cl hash family for all bounded circuits:

$$
R_{C}=\{(\alpha, C(\alpha))\},|C| \leq S=\text { poly }
$$

- Proof idea: for HamCycle ${ }^{m}$ protocol [FLS'90], each potential α has
≤ 1 'bad challenge' $\beta \in\{0,1\}^{m}$ allowing V to be fooled.
Bad β is efficiently computable, using trapdoor for commitments in α.

Obtaining Correlation Intractability

[CCRR'18] Cl for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.

Obtaining Correlation Intractability

[CCRR'18] Cl for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.
[HL'18] CI for all sparse relations from (strong) obfuscation \& more.

Obtaining Correlation Intractability

[CCRR'18] Cl for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.
[HL'18] CI for all sparse relations from (strong) obfuscation \& more.
[CCH+'19] CI for all bounded circuits from circularly secure FHE.

Obtaining Correlation Intractability

[CCRR'18] Cl for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.
[HL'18] CI for all sparse relations from (strong) obfuscation \& more.
[CCH+'19] CI for all bounded circuits from circularly secure FHE. Seems tantalizingly close to LWE! But not known from LWE or worst-case lattice problems.

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.
[HL'18] CI for all sparse relations from (strong) obfuscation \& more.
[CCH+'19] Cl for all bounded circuits from circularly secure FHE.
Seems tantalizingly close to LWE! But not known from LWE or worst-case lattice problems.

Our Main Construction

- A CI hash family for all bounded circuits C, from plain LWE
(for small poly approximation factors)

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.
[HL'18] CI for all sparse relations from (strong) obfuscation \& more.
[CCH+'19] Cl for all bounded circuits from circularly secure FHE.
Seems tantalizingly close to LWE! But not known from LWE or worst-case lattice problems.

Our Main Construction

- A CI hash family for all bounded circuits C, from plain LWE
(for small poly approximation factors)
- As in [CCH+'19], our construction has two 'intractability modes':
(1) Computational: given $H \leftarrow \mathcal{H}$, hard to find α s.t. $H(\alpha)=C(\alpha)$. Yields statistically ZK argument in random-string model.

Obtaining Correlation Intractability

[CCRR'18] CI for all sparse relations from 'exotic' assumptions, e.g., 'optimal' hardness of ad-hoc LWE variants.
[HL'18] CI for all sparse relations from (strong) obfuscation \& more.
[CCH+'19] Cl for all bounded circuits from circularly secure FHE.
Seems tantalizingly close to LWE! But not known from LWE or worst-case lattice problems.

Our Main Construction

- A CI hash family for all bounded circuits C, from plain LWE
(for small poly approximation factors)
- As in [CCH+'19], our construction has two 'intractability modes':
(1) Computational: given $H \leftarrow \mathcal{H}$, hard to find α s.t. $H(\alpha)=C(\alpha)$.

Yields statistically ZK argument in random-string model.
(2) Statistical: over $H \leftarrow \mathcal{H}_{C} \stackrel{c}{\approx} \mathcal{H}$, such α do not exist w/h.p. Yields computationally ZK proof in reference-string model.

Overview of Our Construction

(1) A CI hash family for all NC^{1} (log-depth) circuits from LWE/SIS (for small poly approx factors)

Overview of Our Construction

(1) A CI hash family for all NC^{1} (log-depth) circuits from LWE/SIS (for small poly approx factors)
(2) A CI 'bootstrapping' theorem, from (leveled) FHE decryption circuits in NC^{1}, to arbitrary bounded circuits, à la [Gentry'09,GGH+'13].
(Such FHE can be based on LWE w/ small poly factors [BV'14].)

Overview of Our Construction

(1) A CI hash family for all NC^{1} (log-depth) circuits from LWE/SIS (for small poly approx factors)
(2) A CI 'bootstrapping' theorem, from (leveled) FHE decryption circuits in NC^{1}, to arbitrary bounded circuits, à la [Gentry'09, GGH+'13].
(Such FHE can be based on LWE w/ small poly factors [BV'14].)

- For NIZK we do not actually need bootstrapping, because the 'bad challenge' functions can be implemented in NC^{1} [CCH+'19, Lombardi].

SIS and LWE [Ajtai'96,..., Regev'05,...]

- Fix integer modulus $q=\operatorname{poly}(n)$ and dimensions $n, m \geq 2 n\lceil\log q\rceil$.

SIS and LWE [Ajtai'96,..., Regev'05,...]

- Fix integer modulus $q=\operatorname{poly}(n)$ and dimensions $n, m \geq 2 n\lceil\log q\rceil$. SIS: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find 'short' nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ s.t.

$$
\left(\begin{array}{l}
\mathbf{A}
\end{array}\right)(\mathbf{z})=(\mathbf{0}) \in \mathbb{Z}_{q}^{n}
$$

SIS and LWE [Ajtai'96,..., Regev'05,...]

- Fix integer modulus $q=\operatorname{poly}(n)$ and dimensions $n, m \geq 2 n\lceil\log q\rceil$. SIS: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find 'short' nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ s.t.

$$
\left(\begin{array}{ll}
\mathbf{A}
\end{array}\right)(\mathrm{z})=(0) \in \mathbb{Z}_{q}^{n} .
$$

LWE: distinguish uniform A from

$$
\binom{\mathbf{A}^{\prime}}{\mathbf{s}^{t} \mathbf{A}^{\prime}+\mathrm{e}^{t}}
$$

for uniform $\mathbf{A}^{\prime} \in \mathbb{Z}_{q}^{(n-1) \times m}$ and 'short' (Gaussian) $\mathbf{s}, \mathbf{e} \in \mathbb{Z}^{m}$.

SIS and LWE [Ajtai'96,..., Regev'05,...]

- Fix integer modulus $q=\operatorname{poly}(n)$ and dimensions $n, m \geq 2 n\lceil\log q\rceil$. SIS: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find 'short' nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ s.t.

$$
\left(\begin{array}{ll}
\mathbf{A}
\end{array}\right)(\mathrm{z})=(\mathbf{0}) \in \mathbb{Z}_{q}^{n} .
$$

LWE: distinguish uniform A from

$$
\binom{\mathbf{A}^{\prime}}{\mathbf{s}^{t} \mathbf{A}^{\prime}+\mathbf{e}^{t}}
$$

for uniform $\mathbf{A}^{\prime} \in \mathbb{Z}_{q}^{(n-1) \times m}$ and 'short' (Gaussian) $\mathbf{s}, \mathbf{e} \in \mathbb{Z}^{m}$.

Theorems

- Worst-case lattice problems reduce to average-case SIS/LWE.

SIS and LWE [Ajtai'96,..., Regev'05,...]

- Fix integer modulus $q=\operatorname{poly}(n)$ and dimensions $n, m \geq 2 n\lceil\log q\rceil$. SIS: given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, find 'short' nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ s.t.

$$
\left(\begin{array}{l}
\mathbf{A}
\end{array}\right)(\mathbf{z})=(\mathbf{0}) \in \mathbb{Z}_{q}^{n}
$$

LWE: distinguish uniform A from

$$
\binom{\mathbf{A}^{\prime}}{\mathbf{s}^{t} \mathbf{A}^{\prime}+\mathbf{e}^{t}}
$$

for uniform $\mathbf{A}^{\prime} \in \mathbb{Z}_{q}^{(n-1) \times m}$ and 'short' (Gaussian) $\mathbf{s}, \mathbf{e} \in \mathbb{Z}^{m}$.

- Linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ and nonlinear $G^{-}: \mathbb{Z}_{q}^{n} \rightarrow\{0,1\}^{m}$ s.t.

$$
G\left(G^{-}(\mathbf{u})\right)=\mathbf{u} \text { for all } \mathbf{u} \in \mathbb{Z}_{q}^{n}
$$

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15] Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.
(2) Homomorphically evaluate linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ to get 'inert commitment' $c_{\alpha}=\overline{G(D(\alpha))} \in \mathbb{Z}_{q}^{n}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.
(2) Homomorphically evaluate linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ to get 'inert commitment' $c_{\alpha}=\overline{G(D(\alpha))} \in \mathbb{Z}_{q}^{n}$.
(3) Output $G^{-}\left(c_{\alpha}\right) \in\{0,1\}^{m}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

$$
\text { ([CCH+'19] uses FHE ciphertexts, also includes 'circular' } \widehat{s k} \text {.) }
$$

Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.
(2) Homomorphically evaluate linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ to get 'inert commitment' $c_{\alpha}=\overline{G(D(\alpha))} \in \mathbb{Z}_{q}^{n}$.
(3) Output $G^{-}\left(c_{\alpha}\right) \in\{0,1\}^{m}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

$$
\text { ([CCH+'19] uses FHE ciphertexts, also includes 'circular' } \widehat{s k} \text {.) }
$$

Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.
($[\mathrm{CCH}+$ '19] does the same, but with ciphertexts.)
(2) Homomorphically evaluate linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ to get 'inert commitment' $c_{\alpha}=\overline{G(D(\alpha))} \in \mathbb{Z}_{q}^{n}$.
(3) Output $G^{-}\left(c_{\alpha}\right) \in\{0,1\}^{m}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.
($[C C H+$ '19] uses FHE ciphertexts, also includes 'circular' $\widehat{s k}$.)
Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.
([CCH+'19] does the same, but with ciphertexts.)
(2) Homomorphically evaluate linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ to get 'inert commitment' $c_{\alpha}=\overline{G(D(\alpha))} \in \mathbb{Z}_{q}^{n}$.
([CCH+'19] evaluates $\operatorname{Dec}_{s k}$ to get an FHE ciphertext.)
(3) Output $G^{-}\left(c_{\alpha}\right) \in\{0,1\}^{m}$.

Our Construction

- Goal: CI for size- S circuits $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}, m \geq 2 n\lceil\log q\rceil$
- Uses LWE/SIS-based FH encryption/commitment [GSW'13,GVW'15]

Hash Key: commitment \widehat{D} to 'dummy' circuit $D:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$.

$$
\text { ([CCH+'19] uses FHE ciphertexts, also includes 'circular' } \widehat{s k} \text {.) }
$$

Evaluation: on input $\alpha \in\{0,1\}^{\ell}$,
(1) Homomorphically compute commitment $\widehat{D(\alpha)}$.
($[\mathrm{CCH}+$ '19] does the same, but with ciphertexts.)
(2) Homomorphically evaluate linear $G:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ to get 'inert commitment' $c_{\alpha}=\overline{G(D(\alpha))} \in \mathbb{Z}_{q}^{n}$.
($\left[\mathrm{CCH}+\right.$ '19] evaluates $\mathrm{Dec}_{s k}$ to get an FHE ciphertext.)
(3) Output $G^{-}\left(c_{\alpha}\right) \in\{0,1\}^{m}$.

Key Point: $c_{\alpha} \in \mathbb{Z}_{q}^{n}$ hides a \mathbb{Z}_{q}^{n}-value: lets us compare the two directly, not just reason about hidden values (as in [CCH+'19]).

Security Proof from SIS

Hash Key: commitment \widehat{D}.
Evaluation: $H(\alpha):=G^{-}(\overline{G(D(\alpha))})$

- Let $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ have size S.

Security Proof from SIS

Hash Key: commitment \widehat{D}.
Evaluation: $H(\alpha):=G^{-}(\overline{G(D(\alpha))})=C(\alpha)$.

- Let $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ have size S.
- Suppose that \mathcal{A}, given hash key \widehat{D}, finds α s.t. $H(\alpha)=C(\alpha)$.

Security Proof from SIS

Hash Key: commitment \widehat{C}.
Evaluation: $H(\alpha):=G^{-}(\overline{G(C(\alpha))})=C(\alpha)$.

- Let $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ have size S.
- Suppose that \mathcal{A}, given hash key \widehat{D}, finds α s.t. $H(\alpha)=C(\alpha)$.
- By commitment security, same holds for hash key $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.

Security Proof from SIS

Hash Key: commitment \widehat{C}.
Evaluation: $H(\alpha):=G^{-}(\overline{G(C(\alpha))})=C(\alpha)$.

- Let $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ have size S.
- Suppose that \mathcal{A}, given hash key \widehat{D}, finds α s.t. $H(\alpha)=C(\alpha)$.
- By commitment security, same holds for hash key $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$. Apply G to both sides:

$$
c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha)) \in \mathbb{Z}_{q}^{n}
$$

Security Proof from SIS

Hash Key: commitment \widehat{C}.
Evaluation: $H(\alpha):=G^{-}(\overline{G(C(\alpha))})=C(\alpha)$.

- Let $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ have size S.
- Suppose that \mathcal{A}, given hash key \widehat{D}, finds α s.t. $H(\alpha)=C(\alpha)$.
- By commitment security, same holds for hash key $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$. Apply G to both sides:

$$
c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha)) \in \mathbb{Z}_{q}^{n}
$$

That is, the inert commitment c_{α} itself equals its 'contents.'

Security Proof from SIS

Hash Key: commitment \widehat{C}.
Evaluation: $H(\alpha):=G^{-}(\overline{G(C(\alpha))})=C(\alpha)$.

- Let $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ have size S.
- Suppose that \mathcal{A}, given hash key \widehat{D}, finds α s.t. $H(\alpha)=C(\alpha)$.
- By commitment security, same holds for hash key $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.

Apply G to both sides:

$$
c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha)) \in \mathbb{Z}_{q}^{n}
$$

That is, the inert commitment c_{α} itself equals its 'contents.'

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.
Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.
- Commitments are w.r.t. an SIS matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, w/ 'short' coins:

$$
\widehat{C}=\mathbf{A} \cdot \mathbf{R}_{C}+\operatorname{encode}(C) \quad(\bmod q)
$$

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.
- Commitments are w.r.t. an SIS matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}, \mathrm{w} /$ 'short' coins:

$$
\widehat{C}=\mathbf{A} \cdot \mathbf{R}_{C}+\operatorname{encode}(C) \quad(\bmod q) .
$$

- From \mathbf{R}_{C} we can compute coins \mathbf{R} for $\widehat{C(\alpha)}$ [GVW'15]:

$$
\widehat{C(\alpha)}=\mathbf{A} \cdot \mathbf{R}+\operatorname{encode}(C(\alpha)) \quad(\bmod q) .
$$

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.
- Commitments are w.r.t. an SIS matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, w/ 'short' coins:

$$
\widehat{C}=\mathbf{A} \cdot \mathbf{R}_{C}+\operatorname{encode}(C) \quad(\bmod q)
$$

- From \mathbf{R}_{C} we can compute coins \mathbf{R} for $\widehat{C(\alpha)}$ [GVW'15]:

$$
\widehat{C(\alpha)}=\mathbf{A} \cdot \mathbf{R}+\operatorname{encode}(C(\alpha)) \quad(\bmod q)
$$

- From \mathbf{R} we can compute coins \mathbf{r}_{α} for inert commitment c_{α} [this work]:

$$
\overline{G(C(\alpha))}=\mathbf{A} \cdot \mathbf{r}_{\alpha}+G(C(\alpha)) \quad \in \mathbb{Z}_{q}^{n}
$$

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.
- Commitments are w.r.t. an SIS matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, w/ 'short' coins:

$$
\widehat{C}=\mathbf{A} \cdot \mathbf{R}_{C}+\operatorname{encode}(C) \quad(\bmod q)
$$

- From \mathbf{R}_{C} we can compute coins \mathbf{R} for $\widehat{C(\alpha)}$ [GVW'15]:

$$
\widehat{C(\alpha)}=\mathbf{A} \cdot \mathbf{R}+\operatorname{encode}(C(\alpha)) \quad(\bmod q)
$$

- From \mathbf{R} we can compute coins \mathbf{r}_{α} for inert commitment c_{α} [this work]:

$$
\overline{G(C(\alpha))}=\mathbf{A} \cdot \mathbf{r}_{\alpha}+G(C(\alpha))=G(C(\alpha)) \in \mathbb{Z}_{q}^{n} .
$$

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.
- Commitments are w.r.t. an SIS matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, w/ 'short' coins:

$$
\widehat{C}=\mathbf{A} \cdot \mathbf{R}_{C}+\operatorname{encode}(C) \quad(\bmod q)
$$

- From \mathbf{R}_{C} we can compute coins \mathbf{R} for $\widehat{C(\alpha)}$ [GVW'15]:

$$
\widehat{C(\alpha)}=\mathbf{A} \cdot \mathbf{R}+\operatorname{encode}(C(\alpha)) \quad(\bmod q)
$$

- From \mathbf{R} we can compute coins \mathbf{r}_{α} for inert commitment c_{α} [this work]:

$$
\overline{G(C(\alpha))}=\mathbf{A} \cdot \mathbf{r}_{\alpha}+G(C(\alpha))=G(C(\alpha)) \in \mathbb{Z}_{q}^{n}
$$

- Thus $\mathbf{A} \cdot \mathbf{r}_{\alpha}=\mathbf{0}$, solving SIS!

Security Proof from SIS

Hash Key: commitment $\widehat{C}=\operatorname{Com}\left(C ; \mathbf{R}_{C}\right)$.
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}=G(C(\alpha))$.

Theorem

- From coins \mathbf{R}_{C} for \widehat{C} we can compute coins \mathbf{r}_{α} for c_{α}, solving SIS.
- Commitments are w.r.t. an SIS matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, w/ 'short' coins:

$$
\widehat{C}=\mathbf{A} \cdot \mathbf{R}_{C}+\operatorname{encode}(C) \quad(\bmod q)
$$

- From \mathbf{R}_{C} we can compute coins \mathbf{R} for $\widehat{C(\alpha)}$ [GVW'15]:

$$
\widehat{C(\alpha)}=\mathbf{A} \cdot \mathbf{R}+\operatorname{encode}(C(\alpha)) \quad(\bmod q)
$$

- From \mathbf{R} we can compute coins \mathbf{r}_{α} for inert commitment c_{α} [this work]:

$$
\overline{G(C(\alpha))}=\mathbf{A} \cdot \mathbf{r}_{\alpha}+G(C(\alpha))=G(C(\alpha)) \in \mathbb{Z}_{q}^{n}
$$

- Thus A $\cdot \mathbf{r}_{\alpha}=\mathbf{0}$, solving SIS!
(Also need $\mathbf{r}_{\alpha} \neq \mathbf{0}$, an easy tweak.)

Linear Homomorphism to an Inert Commitment

Given: commitment \widehat{x} [and 'short' coins \mathbf{R}] for $x \in\{0,1\}^{m}$:

$$
\widehat{x}=\mathbf{A} \cdot \mathbf{R}+\left(\begin{array}{lll}
x_{1} \mathbf{G} & \cdots & \left.x_{m} \mathbf{G}\right)
\end{array}(\bmod q)\right.
$$

Linear Homomorphism to an Inert Commitment

Given: commitment \widehat{x} [and 'short' coins \mathbf{R}] for $x \in\{0,1\}^{m}$:

$$
\widehat{x}=\mathbf{A} \cdot \mathbf{R}+\left(\begin{array}{lll}
x_{1} \mathbf{G} & \cdots & \left.x_{m} \mathbf{G}\right)
\end{array}(\bmod q)\right.
$$

Goal: compute inert $\overline{L(x)}$ [and coins \mathbf{r}] for linear $L:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$.

Linear Homomorphism to an Inert Commitment

Given: commitment \widehat{x} [and 'short' coins \mathbf{R}] for $x \in\{0,1\}^{m}$:

$$
\widehat{x}=\mathbf{A} \cdot \mathbf{R}+\left(\begin{array}{lll}
x_{1} \mathbf{G} & \cdots & \left.x_{m} \mathbf{G}\right)
\end{array}(\bmod q)\right.
$$

Goal: compute inert $\overline{L(x)}$ [and coins \mathbf{r}] for linear $L:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$.

- Write $L(x)=\sum_{i} x_{i} \cdot \mathbf{c}_{i}$ for some $\mathbf{c}_{i} \in \mathbb{Z}_{q}^{n}$. Define short

$$
\mathbf{v}_{L}:=\left(\begin{array}{c}
\mathbf{G}^{-1}\left(\mathbf{c}_{1}\right) \\
\vdots \\
\mathbf{G}^{-1}\left(\mathbf{c}_{m}\right)
\end{array}\right)
$$

Linear Homomorphism to an Inert Commitment

Given: commitment \widehat{x} [and 'short' coins \mathbf{R}] for $x \in\{0,1\}^{m}$:

$$
\widehat{x}=\mathbf{A} \cdot \mathbf{R}+\left(\begin{array}{lll}
x_{1} \mathbf{G} & \cdots & \left.x_{m} \mathbf{G}\right)
\end{array}(\bmod q)\right.
$$

Goal: compute inert $\overline{L(x)}$ [and coins \mathbf{r}] for linear $L:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$.

- Write $L(x)=\sum_{i} x_{i} \cdot \mathbf{c}_{i}$ for some $\mathbf{c}_{i} \in \mathbb{Z}_{q}^{n}$. Define short

$$
\mathbf{v}_{L}:=\left(\begin{array}{c}
\mathbf{G}^{-1}\left(\mathbf{c}_{1}\right) \\
\vdots \\
\mathbf{G}^{-1}\left(\mathbf{c}_{m}\right)
\end{array}\right)
$$

- Then

$$
\begin{aligned}
\widehat{x} \cdot \mathbf{v}_{L} & =\mathbf{A} \cdot \underbrace{\mathbf{R} \cdot \mathbf{v}_{L}}_{\mathbf{r}}+\sum_{i} x_{i} \cdot \mathbf{G} \cdot \mathbf{G}^{-1}\left(\mathbf{c}_{i}\right) \\
& =\mathbf{A} \cdot \mathbf{r}+L(x)=\overline{L(x)}
\end{aligned}
$$

LWE-Based Construction

- SIS construction is computationally Cl with uniform key $(\mathbf{A}, \widehat{D})$.

LWE-Based Construction

- SIS construction is computationally CI with uniform key $(\mathbf{A}, \widehat{D})$. Yields computationally sound, statistically ZK protocol.

LWE-Based Construction

- SIS construction is computationally CI with uniform key $(\mathbf{A}, \widehat{D})$. Yields computationally sound, statistically ZK protocol.
- An LWE-based statistically Cl construction with non-uniform key:

LWE-Based Construction

- SIS construction is computationally CI with uniform key $(\mathbf{A}, \widehat{D})$. Yields computationally sound, statistically ZK protocol.
- An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment \widehat{C} w.r.t. LWE matrix $\mathbf{A}=\binom{\mathbf{A}^{\prime}}{\mathrm{s}^{t} \mathbf{A}^{\prime}+\mathrm{e}^{t}} \in \mathbb{Z}_{q}^{n \times m}$

LWE-Based Construction

- SIS construction is computationally CI with uniform key $(\mathbf{A}, \widehat{D})$. Yields computationally sound, statistically ZK protocol.
- An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment \widehat{C} w.r.t. LWE matrix $\mathbf{A}=\binom{\mathbf{A}^{\prime}}{\mathrm{s}^{t} \mathbf{A}^{\prime}+\mathrm{e}^{t}} \in \mathbb{Z}_{q}^{n \times m}$
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}-\binom{0}{q / 2} \in \mathbb{Z}_{q}^{n}$

LWE-Based Construction

- SIS construction is computationally Cl with uniform key $(\mathbf{A}, \widehat{D})$. Yields computationally sound, statistically ZK protocol.
- An LWE-based statistically Cl construction with non-uniform key:

Hash Key: commitment \widehat{C} w.r.t. LWE matrix $\mathbf{A}=\binom{\mathbf{A}^{\prime}}{\mathrm{s}^{t} \mathbf{A}^{\prime}+\mathbf{e}^{t}} \in \mathbb{Z}_{q}^{n \times m}$
Evaluation: computes $c_{\alpha}=\overline{G(C(\alpha))}-\binom{0}{q / 2} \in \mathbb{Z}_{q}^{n}$

- Now $H(\alpha)=C(\alpha)$ yields $\mathbf{A} \mathbf{r}_{\alpha}=\binom{0}{q / 2}$. So $\mathbf{A}^{\prime} \mathbf{r}_{\alpha}=\mathbf{0}$ and

$$
\frac{q}{2}=\left(\mathbf{s}^{t} \mathbf{A}^{\prime}+\mathbf{e}^{t}\right) \cdot \mathbf{r}_{\alpha}=\mathbf{e}^{t} \cdot \mathbf{r}_{\alpha} \quad(\bmod q)
$$

but $\mathbf{e}, \mathbf{r}_{\alpha}$ are too small for this: contradiction!

Open Problems

(1) CI beyond NC^{1} from SIS (not LWE) w/poly factors? Currently we need bootstrapping, which brings in LWE.

Open Problems

(1) CI beyond NC^{1} from SIS (not LWE) w/poly factors? Currently we need bootstrapping, which brings in LWE.
(2) Noninteractive Witness Indistinguishable (NIWI) proofs, plain model?

Open Problems

(1) CI beyond NC^{1} from SIS (not LWE) w/poly factors? Currently we need bootstrapping, which brings in LWE.
(2) Noninteractive Witness Indistinguishable (NIWI) proofs, plain model? [GOS'06] gets NIWI from statistical soundness in random-string model. But we just have computational soundness there.

Open Problems

(1) CI beyond NC^{1} from SIS (not LWE) w/poly factors? Currently we need bootstrapping, which brings in LWE.
(2) Noninteractive Witness Indistinguishable (NIWI) proofs, plain model? [GOS'06] gets NIWI from statistical soundness in random-string model. But we just have computational soundness there.
(3) Compactness? Our hash key grows with the circuit size for CI , unlike those based on 'exotic' assumptions (e.g., obfuscation).

Open Problems

(1) CI beyond NC^{1} from SIS (not LWE) w/poly factors? Currently we need bootstrapping, which brings in LWE.
(2) Noninteractive Witness Indistinguishable (NIWI) proofs, plain model? [GOS'06] gets NIWI from statistical soundness in random-string model. But we just have computational soundness there.
(3) Compactness? Our hash key grows with the circuit size for Cl , unlike those based on 'exotic' assumptions (e.g., obfuscation).
(4) Succinct ZK arguments from LWE? Via Fiat-Shamir?

Open Problems

(1) CI beyond NC^{1} from SIS (not LWE) w/poly factors? Currently we need bootstrapping, which brings in LWE.
(2) Noninteractive Witness Indistinguishable (NIWI) proofs, plain model? [GOS'06] gets NIWI from statistical soundness in random-string model. But we just have computational soundness there.
(3) Compactness? Our hash key grows with the circuit size for Cl , unlike those based on 'exotic' assumptions (e.g., obfuscation).
4. Succinct ZK arguments from LWE? Via Fiat-Shamir?

Thanks!

