Limits on the Hardness of Lattice Problems in ℓ_{p} Norms

Chris Peikert

SRI International
Complexity 2007

Lattices and Their Problems

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subset \mathbb{R}^{n}$ be linearly independent.
The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Lattices and Their Problems

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subset \mathbb{R}^{n}$ be linearly independent.
The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Lattices and Their Problems

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subset \mathbb{R}^{n}$ be linearly independent.
The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Close Vector Problem $\left(\right.$ CVP $\left._{\gamma}\right)$

Approximation factor $\gamma=\gamma(n)$, in some norm $\|\cdot\|$.

- Given basis B and point $\mathbf{v} \in \mathbb{R}^{n}$, distinguish $\operatorname{dist}(\mathbf{v}, \mathcal{L}) \leq 1 \quad$ from $\quad \operatorname{dist}(\mathbf{v}, \mathcal{L})>\gamma \quad$ (otherwise, don't care.)

Lattices and Their Problems

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subset \mathbb{R}^{n}$ be linearly independent.
The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Close Vector Problem $\left(\right.$ CVP $\left._{\gamma}\right)$

Approximation factor $\gamma=\gamma(n)$, in some norm $\|\cdot\|$.

- Given basis \mathbf{B} and point $\mathbf{v} \in \mathbb{R}^{n}$, distinguish $\operatorname{dist}(\mathbf{v}, \mathcal{L}) \leq 1 \quad$ from $\quad \operatorname{dist}(\mathbf{v}, \mathcal{L})>\gamma \quad$ (otherwise, don't care.)

Lattices and Their Problems

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subset \mathbb{R}^{n}$ be linearly independent.
The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Short Vector Problem (SVP ${ }_{\gamma}$)

Define minimum distance $\lambda=\min \|\mathbf{v}\|$ over all $0 \neq \mathbf{v} \in \mathcal{L}$.

- Given basis B, distinguish

$$
\lambda \leq 1 \quad \text { from } \quad \lambda>\gamma \quad \text { (otherwise, don't care.) }
$$

Lattices and Their Problems

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subset \mathbb{R}^{n}$ be linearly independent.
The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Short Vector Problem (SVP ${ }_{\gamma}$)

Define minimum distance $\lambda=\min \|\mathbf{v}\|$ over all $0 \neq \mathbf{v} \in \mathcal{L}$.

- Given basis \mathbf{B}, distinguish

$$
\lambda \leq 1 \quad \text { from } \quad \lambda>\gamma \quad \text { (otherwise, don't care.) }
$$

Usually use ℓ_{p} norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.

Algorithms and Hardness

Algorithms for SVP $_{\gamma}$ \& CVP ${ }_{\gamma}$

- $\gamma(n) \sim 2^{n}$ approximation in poly-time
[LLL,Babai,Schnorr]
- Time/approximation tradeoffs: $\gamma(n) \sim n^{c}$ in time $\sim 2^{n / c}$

Algorithms and Hardness

Algorithms for SVP $_{\gamma}$ \& CVP ${ }_{\gamma}$

- $\gamma(n) \sim 2^{n}$ approximation in poly-time
[LLL,Babai,Schnorr]
- Time/approximation tradeoffs: $\gamma(n) \sim n^{c}$ in time $\sim 2^{n / c}$

NP-Hardness

(some randomized reductions...)

- In any ℓ_{p} norm, SVP $_{\gamma}$ hard for any $\gamma(n)=O(1) \quad$ [Ajt,Micc,Khot,ReRo]
- In any ℓ_{p} norm, CVP $_{\gamma}$ hard for any $\gamma(n)=n^{O(1 / \log \log n)} \quad$ [DKRS,Dinur]
- Many other problems (CVPP, SIVP) hard as well ...

‘Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?

‘Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?
Probably not.

‘Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?
Probably not.

- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coAM}$ for $\gamma \sim \sqrt{n / \log n}$
[GoldreichGoldwasser]

'Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?
Probably not.

- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coAM}$ for $\gamma \sim \sqrt{n / \log n}$
- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma \sim \sqrt{n}$
[GoldreichGoldwasser]
[AharonovRegev]

'Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coAM}$ for $\gamma \sim \sqrt{n / \log n}$
- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma \sim \sqrt{n}$
- CVP_{γ} is as hard as many other lattice problems
[GoldreichGoldwasser]
[AharonovRegev]
[GMSS,GMR]

'Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coAM}$ for $\gamma \sim \sqrt{n / \log n}$
- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma \sim \sqrt{n}$
- CVP_{γ} is as hard as many other lattice problems

Neat. What else?

- In ℓ_{2} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim n$
- For lattice problems, ℓ_{2} norm is easiest
- Much, much more...
[Ajtai, . . ,MR,Regev]
[RegevRosen]
[LLM,PR]

'Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coAM}$ for $\gamma \sim \sqrt{n / \log n}$
- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma \sim \sqrt{n}$
- CVP_{γ} is as hard as many other lattice problems

Neat. What else?

- In ℓ_{2} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim n$
- For lattice problems, ℓ_{2} norm is easiest
- Much, much more...
[GoldreichGoldwasser]
[AharonovRegev]
[GMSS,GMR]
[Ajtai, . . ,MR,Regev]
[RegevRosen]
[LLM,PR]

'Positive’ Results (Limits on Hardness)

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coAM}$ for $\gamma \sim \sqrt{n / \log n}$
- In ℓ_{2} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma \sim \sqrt{n}$
- CVP_{γ} is as hard as many other lattice problems
[GoldreichGoldwasser]
[AharonovRegev]
[GMSS,GMR]
Neat. What else?
- In ℓ_{2} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim n \quad$ [Ajtai, ...,MR,Regev]
- For lattice problems, ℓ_{2} norm is easiest
- Much, much more...
[RegevRosen]
[LLM,PR]
(Can generalize to ℓ_{p} norms, but lose up to \sqrt{n} factors.)

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

New Limits on Hardness

$$
\begin{aligned}
& \text { In } \ell_{p} \text { norm, } \mathrm{CVP}_{\gamma} \in \operatorname{coNP} \text { for } \gamma=c_{p} \cdot \sqrt{n} \\
& \text { In } \ell_{p} \text { norm, } \mathrm{SVP}_{\gamma} \leq \text { avg-problems for } \gamma \sim c_{p} \cdot n \\
& \text { Generalize to norms defined by arbitrary convex bodies }
\end{aligned}
$$

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- In ℓ_{p} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma=c_{p} \cdot \sqrt{n}$

Generalize to norms defined by arbitrary convex bodies

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- In ℓ_{p} norm, $\mathrm{CVP}_{\gamma} \in \operatorname{coNP}$ for $\gamma=c_{p} \cdot \sqrt{n}$
- In ℓ_{p} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim c_{p} \cdot n$

Generalize to norms defined by arbitrary convex bodies

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- In ℓ_{p} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma=c_{p} \cdot \sqrt{n}$
- In ℓ_{p} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim c_{p} \cdot n$
- Generalize to norms defined by arbitrary convex bodies

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- In ℓ_{p} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma=c_{p} \cdot \sqrt{n}$
- In ℓ_{p} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim c_{p} \cdot n$
- Generalize to norms defined by arbitrary convex bodies

Techniques

- New analysis of prior algorithms [AharRegev,MiccRegev,Regev,...]
- General analysis of discrete Gaussians over lattices
- Introduce ideas from [Ban95] to complexity

Our Results

- Extend positive results to ℓ_{p} norms, $p \geq 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- In ℓ_{p} norm, CVP $_{\gamma} \in \operatorname{coNP}$ for $\gamma=c_{p} \cdot \sqrt{n}$
- In ℓ_{p} norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim c_{p} \cdot n$
- Generalize to norms defined by arbitrary convex bodies

Techniques

- New analysis of prior algorithms
[AharRegev,MiccRegev,Regev,....]
- General analysis of discrete Gaussians over lattices
- Introduce ideas from [Ban95] to complexity

A Bit Odd

- Can't show anything new for $1 \leq p<2 \ldots$

Interpretation and Open Problems

(1) Partial converse of [RegevRosen] (" ℓ_{2} is easiest").

Interpretation and Open Problems

(1) Partial converse of [RegevRosen] (" ℓ_{2} is easiest").
(2) Weakens assumptions for lattice-based cryptography.

Interpretation and Open Problems

(1) Partial converse of [RegevRosen] (" ℓ_{2} is easiest").
(2) Weakens assumptions for lattice-based cryptography.
(3) What's going on with $p<2$?
(Beating $n^{1 / p}$ for even a single p has implications for codes.)

Interpretation and Open Problems

(1) Partial converse of [RegevRosen] (" ℓ_{2} is easiest").
(2) Weakens assumptions for lattice-based cryptography.
(3) What's going on with $p<2$?
(Beating $n^{1 / p}$ for even a single p has implications for codes.)
(4) Are all ℓ_{p} norms ($p \geq 2$) equivalent?

Gauss meets Lattices

Define Gaussian function $\rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$ over \mathbb{R}^{n}.

Gauss meets Lattices

Define Gaussian function $\rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$ over \mathbb{R}^{n}.

$$
\begin{aligned}
& \substack{\text { o.s. } \\
\text { o.s. } \\
\text { o.4 } \\
0.2 \\
0.2} \text { Define } \\
& f(\mathbf{x}) \\
&=\frac{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{x}-\mathbf{v})}{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{v})} \\
& \frac{\rho(\mathcal{L}-\mathbf{x})}{\rho(\mathcal{L})} .
\end{aligned}
$$

Gauss meets Lattices

Define Gaussian function $\rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$ over \mathbb{R}^{n}.

Properties of f

- If $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, then $f(\mathbf{x}) \geq \frac{1}{2}$.
- If $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L})>\sqrt{n}$, then $f(\mathbf{x})<2^{-n}$.
(Really hard. [Ban93])

Gauss meets Lattices

Define Gaussian function $\rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$ over \mathbb{R}^{n}.

$$
\begin{aligned}
& \substack{\text { o.s. } \\
0.0 \\
0.6 \\
0.4 \\
0.2} \text { Define } \\
& \qquad f(\mathbf{x}) \\
&=\frac{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{x}-\mathbf{v})}{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{v})} \\
&=\frac{\rho(\mathcal{L}-\mathbf{x})}{\rho(\mathcal{L})} .
\end{aligned}
$$

Properties of f

- If $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, then $f(\mathbf{x}) \geq \frac{1}{2}$.
- If $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L})>\sqrt{n}$, then $f(\mathbf{x})<2^{-n}$.
(Really hard. [Ban93])

Enter Aharonov \& Regev...

- A compact \& verifiable representation of $f \Rightarrow \mathrm{CVP}_{10 \sqrt{n}} \in \operatorname{coNP}$.

Measure Inequalities (for ℓ_{2})

Lemma [Ban93]

For any lattice \mathcal{L} and $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right)}{\rho(\mathcal{L})}<2^{-n} .
$$

Measure Inequalities (for ℓ_{2})

Lemma [Ban93]

For any lattice \mathcal{L} and $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right)}{\rho(\mathcal{L})}<2^{-n} .
$$

Measure Inequalities (for ℓ_{2})

Lemma [Ban93]

For any lattice \mathcal{L} and $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right)}{\rho(\mathcal{L})}<2^{-n} .
$$

- Say $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L})>\sqrt{n}$.
- Then

Measure Inequalities (for ℓ_{2})

Lemma [Ban93]

For any lattice \mathcal{L} and $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right)}{\rho(\mathcal{L})}<2^{-n} .
$$

- Say $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L})>\sqrt{n}$.
- Then

$$
\rho(\mathcal{L}-\mathbf{x})=\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right) .
$$

Measure Inequalities (for ℓ_{2})

Lemma [Ban93]

For any lattice \mathcal{L} and $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right)}{\rho(\mathcal{L})}<2^{-n} .
$$

- Say $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L})>\sqrt{n}$.
- Then
$\rho(\mathcal{L}-\mathbf{x})=\rho\left((\mathcal{L}-\mathbf{x}) \backslash \sqrt{n} \cdot \mathcal{B}_{2}\right)$.
- Therefore $f(\mathbf{x})=\frac{\rho(\mathcal{L}-\mathbf{x})}{\rho(\mathcal{L})}<2^{-n}$.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4}
$$

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Say $p \geq 2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

- Therefore in ℓ_{p} norm, $\mathrm{CVP}_{10 c_{p} \sqrt{n}} \in \mathrm{coNP}$.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

$$
\begin{aligned}
& \text { Say } p \geq 2 \text {. Let } d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L}) . \\
& \quad \text { If } d>c_{p} \cdot n^{1 / p} \text {, then } f(\mathbf{x})<1 / 4 \text {. }
\end{aligned}
$$

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Say $p \geq 2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

- If $d>c_{p} \cdot n^{1 / p}$, then $f(\mathbf{x})<1 / 4$.
- If $d \leq \frac{n^{1 / p-1 / 2}}{10}$, then $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, and $f(\mathbf{x}) \geq 1 / 2$.
- Therefore in ℓ_{p} norm, $\mathrm{CVP}_{10 c_{p} \sqrt{n}} \in \mathrm{coNP}$.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Say $p \geq 2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

- If $d>c_{p} \cdot n^{1 / p}$, then $f(\mathbf{x})<1 / 4$.
- If $d \leq \frac{n^{1 / p-1 / 2}}{10}$, then $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, and $f(\mathbf{x}) \geq 1 / 2$.
- Therefore in ℓ_{p} norm, $\mathrm{CVP}_{10 c_{p} \sqrt{n}} \in \operatorname{coNP}$.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Now say $p<2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Now say $p<2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

- If $d>c_{p} \cdot n^{1 / p}$, then $f(\mathbf{x})<1 / 4$.

we need $d \leq \frac{1}{10}$.
Only a $\sim n^{1 / p}$ gap.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Now say $p<2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

- If $d>c_{p} \cdot n^{1 / p}$, then $f(\mathbf{x})<1 / 4$.
- To guarantee $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, we need $d \leq \frac{1}{10}$.

Generalizing to ℓ_{p} Norms

Lemma [Ban95]

For any $p \in[1, \infty)$, there exists a constant c_{p} :

$$
\frac{\rho\left((\mathcal{L}-\mathbf{x}) \backslash c_{p} \cdot n^{1 / p} \cdot \mathcal{B}_{p}\right)}{\rho(\mathcal{L})}<\frac{1}{4} .
$$

Now say $p<2$. Let $d=\operatorname{dist}_{p}(\mathbf{x}, \mathcal{L})$.

- If $d>c_{p} \cdot n^{1 / p}$, then $f(\mathbf{x})<1 / 4$.
- To guarantee $\operatorname{dist}_{2}(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, we need $d \leq \frac{1}{10}$.
- Only a $\sim n^{1 / p}$ gap.

Discrete Gaussians

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :
For $\mathbf{x} \in \mathcal{L}, \quad D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$.

Discrete Gaussians

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :
For $\mathbf{x} \in \mathcal{L}, \quad D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$.

Discrete Gaussians

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :
For $\mathbf{x} \in \mathcal{L}, \quad D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)$.

- Central role in worst-to-average reductions [MicciancioRegev,Regev]
- Reductions output (sums of) samples from $D_{\mathcal{L}}$

Discrete Gaussians

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

$$
\text { For } \mathbf{x} \in \mathcal{L}, \quad D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)
$$

- Central role in worst-to-average reductions [MicciancioRegev,Regev]
- Reductions output (sums of) samples from $D_{\mathcal{L}}$

Main Question

Q: How do samples from $D_{\mathcal{L}}$ behave in ℓ_{p} norm?

Discrete Gaussians

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

$$
\text { For } \mathbf{x} \in \mathcal{L}, \quad D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|_{2}^{2}\right)
$$

- Central role in worst-to-average reductions [MicciancioRegev,Regev]
- Reductions output (sums of) samples from $D_{\mathcal{L}}$

Main Question

Q: How do samples from $D_{\mathcal{L}}$ behave in ℓ_{p} norm?
A: Just like those from a continuous Gaussian!

$$
\underset{\mathbf{x} \sim D_{\mathcal{L}}}{\mathrm{E}}\left[\|\mathbf{x}\|_{p}\right] \approx \sqrt{p} \cdot n^{1 / p}
$$

Proof Highlights

Exponential Tail Inequality

For any $r \geq 0$,

$$
\operatorname{Pr}_{\mathbf{x} \sim D_{\mathcal{L}}}\left[\left|x_{i}\right|>r\right] \leq \exp \left(-\pi r^{2}\right)
$$

Proof Highlights

Exponential Tail Inequality

For any $r \geq 0$,

$$
\operatorname{Pr}_{\mathbf{x} \sim D_{\mathcal{L}}}\left[\left|x_{i}\right|>r\right] \leq \exp \left(-\pi r^{2}\right)
$$

Moments

$$
\begin{aligned}
& \underset{\mathbf{x} \sim D_{\mathcal{L}}}{\mathrm{E}}\left[\left|x_{i}\right|^{p}\right]=\sum_{\mathbf{x} \in \mathcal{L}}\left|x_{i}\right|^{p} \operatorname{Pr}[\mathbf{x}]=\sum_{\mathbf{x} \in \mathcal{L}} p \int_{r=0}^{\left|x_{i}\right|} r^{p-1} d r \operatorname{Pr}[\mathbf{x}] \\
&=p \int_{r=0}^{\infty} r^{p-1} \underset{\mathbf{x}}{\operatorname{Pr}}\left[\left|x_{i}\right|>r\right] d r \leq(\sqrt{p})^{p}
\end{aligned}
$$

Proof Highlights

Exponential Tail Inequality

For any $r \geq 0$,

$$
\operatorname{Pr}_{\mathbf{x} \sim D_{\mathcal{L}}}\left[\left|x_{i}\right|>r\right] \leq \exp \left(-\pi r^{2}\right)
$$

Moments

$$
\begin{array}{rl}
\underset{\mathbf{x} \sim D_{\mathcal{L}}}{\mathrm{E}}\left[\left|x_{i}\right|^{p}\right]=\sum_{\mathbf{x} \in \mathcal{L}}\left|x_{i}\right|^{p} \operatorname{Pr}[\mathbf{x}]=\sum_{\mathbf{x} \in \mathcal{L}} & p \int_{r=0}^{\left|x_{i}\right|} r^{p-1} d r \operatorname{Pr}[\mathbf{x}] \\
& =p \int_{r=0}^{\infty} r^{p-1} \underset{\mathbf{x}}{\operatorname{Pr}}\left[\left|x_{i}\right|>r\right] d r \leq(\sqrt{p})^{p}
\end{array}
$$

Jensen \& Linearity

$$
\underset{\mathbf{x} \sim D_{\mathcal{L}}}{\mathrm{E}}\left[\|\mathbf{x}\|_{p}\right] \leq\left(\mathrm{E}\left[\|\mathbf{x}\|_{p}^{p}\right]\right)^{1 / p}=\left(n \cdot \mathrm{E}\left[\left|x_{i}\right|^{p}\right]\right)^{1 / p} \leq \sqrt{p} \cdot n^{1 / p}
$$

Conclusions

(1) Gaussian techniques are even more powerful than we thought.

Conclusions

(1) Gaussian techniques are even more powerful than we thought.
(2) ℓ_{p} norms for $p \geq 2$ look surprisingly similar.

Conclusions

(1) Gaussian techniques are even more powerful than we thought.
(2) ℓ_{p} norms for $p \geq 2$ look surprisingly similar.
(3) We should pay more attention to the ℓ_{1} norm.

