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Lattices and Their Problems
Let B = {b1, . . . ,bn} ⊂ Rn be linearly independent.

The n-dim lattice L having basis B is:

L =
n∑

i=1

(Z · bi)

b1
b2

Usually use `p norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p.
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Let B = {b1, . . . ,bn} ⊂ Rn be linearly independent.

The n-dim lattice L having basis B is:

L =
n∑

i=1

(Z · bi)
b1

b2

v

Close Vector Problem (CVPγ)

Approximation factor γ = γ(n), in some norm ‖·‖.
I Given basis B and point v ∈ Rn, distinguish

dist(v,L) ≤ 1 from dist(v,L) > γ (otherwise, don’t care.)

Usually use `p norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p.
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Let B = {b1, . . . ,bn} ⊂ Rn be linearly independent.

The n-dim lattice L having basis B is:

L =
n∑

i=1

(Z · bi)
b1

b2

λ

Short Vector Problem (SVPγ)

Define minimum distance λ = min ‖v‖ over all 0 6= v ∈ L.

I Given basis B, distinguish
λ ≤ 1 from λ > γ (otherwise, don’t care.)

Usually use `p norm: ‖x‖p = (
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Algorithms and Hardness

Algorithms for SVPγ & CVPγ
I γ(n) ∼ 2n approximation in poly-time [LLL,Babai,Schnorr]

I Time/approximation tradeoffs: γ(n) ∼ nc in time ∼ 2n/c [AKS]

NP-Hardness (some randomized reductions. . . )

I In any `p norm, SVPγ hard for any γ(n) = O(1) [Ajt,Micc,Khot,ReRo]

I In any `p norm, CVPγ hard for any γ(n) = nO(1/ log log n) [DKRS,Dinur]

I Many other problems (CVPP, SIVP) hard as well . . .
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‘Positive’ Results (Limits on Hardness)
Could problems be NP-hard for much larger γ(n)?

Probably not.

I In `2 norm, CVPγ ∈ coAM for γ ∼
√

n/ log n [GoldreichGoldwasser]

I In `2 norm, CVPγ ∈ coNP for γ ∼
√

n [AharonovRegev]

I CVPγ is as hard as many other lattice problems [GMSS,GMR]

Neat. What else?

I In `2 norm, SVPγ ≤ avg-problems for γ ∼ n [Ajtai,. . . ,MR,Regev]

I For lattice problems, `2 norm is easiest [RegevRosen]

I Much, much more. . . [LLM,PR]

(Can generalize to `p norms, but lose up to
√

n factors.)
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Our Results
I Extend positive results to `p norms, p ≥ 2, for same factors γ(n).

New Limits on Hardness
I In `p norm, CVPγ ∈ coNP for γ = cp ·

√
n

I In `p norm, SVPγ ≤ avg-problems for γ ∼ cp · n
I Generalize to norms defined by arbitrary convex bodies

Techniques
I New analysis of prior algorithms [AharRegev,MiccRegev,Regev,. . . ]

I General analysis of discrete Gaussians over lattices

I Introduce ideas from [Ban95] to complexity

A Bit Odd
I Can’t show anything new for 1 ≤ p < 2. . .
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Interpretation and Open Problems

1 Partial converse of [RegevRosen] (“`2 is easiest”).

2 Weakens assumptions for lattice-based cryptography.

3 What’s going on with p < 2?

(Beating n1/p for even a single p has implications for codes.)

4 Are all `p norms (p ≥ 2) equivalent?
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Gauss meets Lattices
Define Gaussian function ρ(x) = exp(−π ‖x‖2

2) over Rn.

Define

f (x) =
∑

v∈L ρ(x− v)∑
v∈L ρ(v)

=
ρ(L − x)
ρ(L)

.

Properties of f

I If dist2(x,L) ≤ 1
10 , then f (x) ≥ 1

2 . (Easy.)

I If dist2(x,L) >
√

n, then f (x) < 2−n. (Really hard. [Ban93])

Enter Aharonov & Regev. . .
I A compact & verifiable representation of f ⇒ CVP10

√
n ∈ coNP.
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Measure Inequalities (for `2)
Lemma [Ban93]
For any lattice L and x ∈ Rn,

ρ((L − x)\
√

n · B2)
ρ(L)

< 2−n.

I Say dist2(x,L) >
√

n.

I Then
ρ(L − x) = ρ((L − x)\

√
n · B2).

I Therefore f (x) = ρ(L−x)
ρ(L) < 2−n.
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Generalizing to `p Norms
Lemma [Ban95]
For any p ∈ [1,∞), there exists a constant cp:

ρ((L − x)\cp · n1/p · Bp)
ρ(L)

<
1
4
.
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ρ(L)

<
1
4
.

Say p ≥ 2. Let d = distp(x,L).

I If d > cp · n1/p, then f (x) < 1/4.

I If d ≤ n1/p−1/2

10 , then
dist2(x,L) ≤ 1

10 , and
f (x) ≥ 1/2.

I Therefore in `p norm,
CVP10cp

√
n ∈ coNP.
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Now say p < 2. Let d = distp(x,L).

I If d > cp · n1/p, then f (x) < 1/4.

I To guarantee dist2(x,L) ≤ 1
10 ,

we need d ≤ 1
10 .

I Only a ∼ n1/p gap.
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Discrete Gaussians
Define probability distribution DL over lattice L:

For x ∈ L, DL(x) ∼ ρ(x) = exp(−π ‖x‖2
2).

I Central role in
worst-to-average reductions
[MicciancioRegev,Regev]

I Reductions output (sums of)
samples from DL

Main Question
Q: How do samples from DL behave in `p norm?

A: Just like those from a continuous Gaussian!

E
x∼DL

[
‖x‖p

]
≈ √p · n1/p
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Proof Highlights

Exponential Tail Inequality
For any r ≥ 0,

Pr
x∼DL

[|xi| > r] ≤ exp(−πr2).

Moments

E
x∼DL

[|xi|p] =
∑
x∈L
|xi|p Pr[x] =

∑
x∈L

p
∫ |xi|

r=0
rp−1 dr Pr[x]

= p
∫ ∞

r=0
rp−1 Pr

x
[|xi| > r] dr ≤ (

√
p)p.

Jensen & Linearity

E
x∼DL

[
‖x‖p

]
≤
(

E
[
‖x‖p

p

])1/p
= (n · E[|xi|p])1/p ≤ √p · n1/p.
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Conclusions

1 Gaussian techniques are even more powerful than we thought.

2 `p norms for p ≥ 2 look surprisingly similar.

3 We should pay more attention to the `1 norm.
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