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Conclusions

@ Prior insecure Ring-LWE instantiations turn out to use quite narrow
error distributions that are incongruous to the ring geometry.
This explains their vulnerability to attacks.

® ‘Peculiar’ aspects of the Ring-LWE definition and worst-case hardness
theorems—adopted for generality and tightness—also yield provable
immunity to the attacks (and generalizations).

© For Ring-LWE security, proper choice of error distribution is essential:
error should be ‘well spread’ relative to the ring and its small-norm
ideals.
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LWE is Versatile and Hard (... maybe even for quantum!)

worst case - < o - h N
lattice problems _7 search-LWE _T decision-LWE < much crypto

(quantum [R’05])  [BFKL'93,R'05,...]

» Also a classical reduction for search-LWE [P'09,BLPRS'13]
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Learning With Errors [Regev0s]
» Parameters: dimension n, integer modulus ¢ = poly(n) (usually)

» Search: find secret s € Zj given many ‘noisy inner products’

a1%ZZ , b1:<a1,s>+61€Zq
ageZ’; , ba=(ay, s)+er€Z |" “|
ol [,

vn < error < ¢

» Decision: distinguish (a; , b;) from uniform (a; , b;)

LWE is (sort of) Efficient
» Getting one pseudorandom Z,-scalar requires an n-dim inner product.

» Cryptosystems have large keys: Q(n?log? q) bits.
» Inspired by NTRU [HPS'96], for efficiency we go to the ring setting. . .
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Learning With Errors over Rings (Ring-LWE) [LPr10]

> Ring R, often R = Z[X]/(f(X)) for irred. f of degree n (or i = Ox)
» Error distribution x over R (usually Gaussian in ‘canonical’ geometry)

» Modulus ¢ > 2 defining R, := R/qR = Zq[X]/(f(X))
Search: find secret ring element s € R/, given independent samples

ar +— Ry 1)1:a1-5+61€R;/

as <+ Ry bQZCLQ'S-f-GQER;/ (e; < x)

Decision: distinguish (a; , b;) from uniform (a; , b;) € Ry X R;/
Il [LPR'10] actually defines R-LWE using ‘dual’ ideal RV = t~'R.
‘(Non-)Dual’ forms are equivalent up to x, via a ‘tweak:' [AP'13]

b<t-b induces s+ t-s,es>t-e.

Tweak may dramatically change width and shape of y!
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Ring-LWE Instantiations, Hard and Easy
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on ideal lattices in R 5 5
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Ring-LWE Instantiations, Hard and Easy

» ‘Dual’ R-LWE with wide enough (near-)spherical error is hard:

e EREe e SR < search R-LWE < decision R-LWE

on ideal lattices in R 5 5
(quantum, (classical,
any R = Ok) any Galois R)

» But some other R-LWE instantiations are insecure:
[EHL'14] Solves decision-"Poly-LWE" for rings w/ certain properties

[ELOS'15] Solves decision for non-dual, spherical error in certain
R=7Z[X]/(X" + aX +b)
[CIV'16] Solves search for [ELOS'15] instantiations, via errorless LWE

[CLS'15,'16] Solves search (via decision) for non-dual, spherical error in
certain Galois fields. (Not solvable via errorless LWE.)
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What to Make of All This?

Glib answer:
The insecure instantiations aren’t covered by the worst-case
hardness theorems, so all bets are off.

But in practice people often don’t use provably hard instantiations;
e.g., narrower and/or non-Gaussian error.

» How “close” are the insecure instantiations to worst-case-hard ones,
or those used in practice?

P Are some kinds of rings inherently less secure for Ring-LWE?

P> How can we evaluate the security of Ring-LWE instantiations that
aren't supported by hardness theorems?
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Contributions and Findings

@ A comprehensive review of prior attacks and insecure instantiations.

* New, unified exposition in terms of short elements in dual ideals, and
formal analysis that explains prior experimental results.

* |nsecurity is due to use of incongruous error distributions that are
insufficiently “well spread” relative to the ring and its ideals.

In particular, error coeffs have Gaussian parameter =~ 1 < /n.

® On the positive side:

Any instantiation supported by the “worst-case hardness of search”
theorem [LPR'10] (or almost so) is immune to the above class of attacks.

* Theorem holds for any number ring, so the rings themselves are not the
source of weakness in the insecure instantiations.

* Hard error distributions are much wider & differently shaped than the
insecure ones.
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To attack ‘non-dual’ decision:
© Fix an ideal q|gR having small norm N(q) = |R/q| (possibly ¢ = R).

® Given mod-gR samples (a;, b;), reduce modulo g:
(a; := a; mod q , b} := b; mod q)
© For each s’ € R/q, test if d; := b, — al - s’ mod q are non-uniform.

Analysis:

» For R-LWE samples and s’ = s mod q, we have d; = ¢; mod q.

» For uniform samples, d; is uniform.

P> So attack succeeds iff x mod q is detectably non-uniform.
Prior works [EHL'14,EL0OS'15,CLS'15,'16] use theory and computer

search /experiments to find insecure instantiations.
Some attacks are proven; many are only empirical.
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Insecure Instantiations #1 [EHL'15EHL'16]

> ‘Non-dual’ over R = Z[(,, V/d], Gaussian error param r ~ /pd.

‘Volume normalized’ param rq ~ d'/* — cc.

» RY has p — 1 elements of length 1/1/pd, so error is narrow and
non-uniform mod R: many coeffs have small param = 1.

» Similarly for error mod q C R (which is even sparser).

ZIVd:
_ Z[Vd)

(1,1) 4 -.(_i.o...°

A1
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Insecure Instantiations #2

» Take R = Z|[(4] for prime modulus ¢; r = ,/q. ‘Normalized' ro =~ 1.
» Then gq|¢R where g = (1 — {;)R, and N(q) = g¢.
> ¢! €g¥ =g 'R, has length ~ 1/,/g, so error is non-uniform mod q.

» This formally substantiates empirical observations from [CLS'15].
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» Analogue of attack on ‘non-dual’ decision is:

@ for each of the N(q) candidate s’ € RV /qRY,
@ test for non-uniformity of b; — a; - s’ mod qR": should be D, mod qR"

For N(q) < 2", reduced error D, mod qR" is only 4~"-far from uniform.

Proof Idea

» Dual ideal of R is g1, which has A\;(q7!) > /n/2.

> So ‘smoothing parameter’ of qRY is < 2, so D, mod qR" is uniform.
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