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Conclusions

1 Prior insecure Ring-LWE instantiations turn out to use quite narrow
error distributions that are incongruous to the ring geometry.
This explains their vulnerability to attacks.

2 ‘Peculiar’ aspects of the Ring-LWE definition and worst-case hardness
theorems—adopted for generality and tightness—also yield provable
immunity to the attacks (and generalizations).

3 For Ring-LWE security, proper choice of error distribution is essential:
error should be ‘well spread’ relative to the ring and its small-norm
ideals.
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Learning With Errors [Regev’05]

I Parameters: dimension n, integer modulus q = poly(n) (usually)

I Search: find secret s ∈ Zn
q given many ‘noisy inner products’

a1 ← Zn
q , b1 = 〈a1 , s〉+ e1 ∈ Zq

a2 ← Zn
q , b2 = 〈a2 , s〉+ e2 ∈ Zq

...

√
n ≤ error� q

I Decision: distinguish (ai , bi) from uniform (ai , bi)
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LWE is Versatile and Hard (. . . maybe even for quantum!)

worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ much crypto

I Also a classical reduction for search-LWE [P’09,BLPRS’13]
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I Decision: distinguish (ai , bi) from uniform (ai , bi)

LWE is (sort of) Efficient

I Getting one pseudorandom Zq-scalar requires an n-dim inner product.

I Cryptosystems have large keys: Ω(n2 log2 q) bits.

I Inspired by NTRU [HPS’96], for efficiency we go to the ring setting. . .
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Learning With Errors over Rings (Ring-LWE) [LPR’10]

I Ring R, often R = Z[X]/(f(X)) for irred. f of degree n (or R = OK)

I Error distribution χ over R (usually Gaussian in ‘canonical’ geometry)

I Modulus q ≥ 2 defining Rq := R/qR = Zq[X]/(f(X))

Search: find secret ring element s ∈ Rq, given independent samples

a1 ← Rq , b1 = a1 · s+ e1 ∈ Rq

a2 ← Rq , b2 = a2 · s+ e2 ∈ Rq (ei ← χ)

...

Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq

!!! [LPR’10] actually defines R-LWE using ‘dual’ ideal R∨ = t−1R.

‘(Non-)Dual’ forms are equivalent up to χ, via a ‘tweak:’ [AP’13]

b↔ t · b induces s↔ t · s, e↔ t · e.

Tweak may dramatically change width and shape of χ!
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Ring-LWE Instantiations, Hard and Easy

I ‘Dual’ R-LWE with wide enough (near-)spherical error is hard:

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any Galois R)

decision R-LWE

I But some other R-LWE instantiations are insecure:

[EHL’14] Solves decision-“Poly-LWE” for rings w/ certain properties

[ELOS’15] Solves decision for non-dual, spherical error in certain
R = Z[X]/(Xn + aX + b)

[CIV’16] Solves search for [ELOS’15] instantiations, via errorless LWE

[CLS’15,’16] Solves search (via decision) for non-dual, spherical error in
certain Galois fields. (Not solvable via errorless LWE.)
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What to Make of All This?

Glib answer:

The insecure instantiations aren’t covered by the worst-case
hardness theorems, so all bets are off.

But in practice people often don’t use provably hard instantiations;
e.g., narrower and/or non-Gaussian error.

I How “close” are the insecure instantiations to worst-case-hard ones,
or those used in practice?

I Are some kinds of rings inherently less secure for Ring-LWE?

I How can we evaluate the security of Ring-LWE instantiations that
aren’t supported by hardness theorems?
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Contributions and Findings

1 A comprehensive review of prior attacks and insecure instantiations.

F New, unified exposition in terms of short elements in dual ideals, and
formal analysis that explains prior experimental results.

F Insecurity is due to use of incongruous error distributions that are
insufficiently “well spread” relative to the ring and its ideals.

In particular, error coeffs have Gaussian parameter ≈ 1�
√
n.

2 On the positive side:

Theorem

Any instantiation supported by the “worst-case hardness of search”
theorem [LPR’10] (or almost so) is immune to the above class of attacks.

F Theorem holds for any number ring, so the rings themselves are not the
source of weakness in the insecure instantiations.

F Hard error distributions are much wider & differently shaped than the
insecure ones.
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Attack Framework [EHL’14,. . . ]

To attack ‘non-dual’ decision:

1 Fix an ideal q|qR having small norm N(q) = |R/q| (possibly q = R).

2 Given mod-qR samples (ai, bi), reduce modulo q:

(a′i := ai mod q , b′i := bi mod q)

3 For each s′ ∈ R/q, test if di := b′i − a′i · s′ mod q are non-uniform.

Analysis:

I For R-LWE samples and s′ = s mod q, we have di = ei mod q.

I For uniform samples, di is uniform.

I So attack succeeds iff χ mod q is detectably non-uniform.

Prior works [EHL’14,ELOS’15,CLS’15,’16] use theory and computer
search/experiments to find insecure instantiations.
Some attacks are proven; many are only empirical.
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Insecure Instantiations #1 [EHL’15,EHL’16]

I ‘Non-dual’ over R = Z[ζp,
√
d], Gaussian error param r ≈

√
pd.

‘Volume normalized’ param r0 ≈ d1/4 →∞.

I R∨ has p− 1 elements of length 1/
√
pd, so error is narrow and

non-uniform mod R: many coeffs have small param ≈ 1.

I Similarly for error mod q ⊂ R (which is even sparser).

Z[
√
d]

(1, 1)

(
√
d,−
√
d)

Z[
√
d]∨

d0

d1

9 / 12



Insecure Instantiations #1 [EHL’15,EHL’16]

I ‘Non-dual’ over R = Z[ζp,
√
d], Gaussian error param r ≈

√
pd.

‘Volume normalized’ param r0 ≈ d1/4 →∞.

I R∨ has p− 1 elements of length 1/
√
pd, so error is narrow and

non-uniform mod R: many coeffs have small param ≈ 1.

I Similarly for error mod q ⊂ R (which is even sparser).

Z[
√
d]

(1, 1)

(
√
d,−
√
d)

Z[
√
d]∨

d0

d1

9 / 12



Insecure Instantiations #1 [EHL’15,EHL’16]

I ‘Non-dual’ over R = Z[ζp,
√
d], Gaussian error param r ≈

√
pd.

‘Volume normalized’ param r0 ≈ d1/4 →∞.

I R∨ has p− 1 elements of length 1/
√
pd, so error is narrow and

non-uniform mod R: many coeffs have small param ≈ 1.

I Similarly for error mod q ⊂ R (which is even sparser).

Z[
√
d]

(1, 1)

(
√
d,−
√
d)

Z[
√
d]∨

d0

d1

9 / 12



Insecure Instantiations #1 [EHL’15,EHL’16]

I ‘Non-dual’ over R = Z[ζp,
√
d], Gaussian error param r ≈

√
pd.

‘Volume normalized’ param r0 ≈ d1/4 →∞.

I R∨ has p− 1 elements of length 1/
√
pd, so error is narrow and

non-uniform mod R: many coeffs have small param ≈ 1.

I Similarly for error mod q ⊂ R (which is even sparser).

Z[
√
d]

(1, 1)

(
√
d,−
√
d)

Z[
√
d]∨

d0

d1

9 / 12



Insecure Instantiations #2

I Take R = Z[ζq] for prime modulus q; r ≈ √q. ‘Normalized’ r0 ≈ 1.

I Then q|qR where q = (1− ζq)R, and N(q) = q.

I q−1 ∈ q∨ = q−1R, has length ≈ 1/
√
q, so error is non-uniform mod q.

I This formally substantiates empirical observations from [CLS’15].

σ(q)

1
ζ3
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Invulnerability of Worst-Case-Hard Instantiations

I Recall that [LPR’10] defines ‘dual’ form: χ, s, bi are modulo qR∨.

‘Worst-case hardness of search’ theorem applies to any R = OK ,
spherical error Dr where r � 2.

I Analogue of attack on ‘non-dual’ decision is:

1 for each of the N(q) candidate s′ ∈ R∨/qR∨,

2 test for non-uniformity of bi− ai · s′ mod qR∨: should be Dr mod qR∨

11 / 12



Invulnerability of Worst-Case-Hard Instantiations

I Recall that [LPR’10] defines ‘dual’ form: χ, s, bi are modulo qR∨.

‘Worst-case hardness of search’ theorem applies to any R = OK ,
spherical error Dr where r � 2.

I Analogue of attack on ‘non-dual’ decision is:

1 for each of the N(q) candidate s′ ∈ R∨/qR∨,

2 test for non-uniformity of bi− ai · s′ mod qR∨: should be Dr mod qR∨

11 / 12



Invulnerability of Worst-Case-Hard Instantiations

I Recall that [LPR’10] defines ‘dual’ form: χ, s, bi are modulo qR∨.

‘Worst-case hardness of search’ theorem applies to any R = OK ,
spherical error Dr where r � 2.

I Analogue of attack on ‘non-dual’ decision is:

1 for each of the N(q) candidate s′ ∈ R∨/qR∨,

2 test for non-uniformity of bi− ai · s′ mod qR∨: should be Dr mod qR∨

R = Z[
√

11]

R∨

11 / 12



Invulnerability of Worst-Case-Hard Instantiations

I Recall that [LPR’10] defines ‘dual’ form: χ, s, bi are modulo qR∨.

‘Worst-case hardness of search’ theorem applies to any R = OK ,
spherical error Dr where r � 2.

I Analogue of attack on ‘non-dual’ decision is:

1 for each of the N(q) candidate s′ ∈ R∨/qR∨,

2 test for non-uniformity of bi− ai · s′ mod qR∨: should be Dr mod qR∨

R = Z[
√

11]

R∨

qR∨

11 / 12



Invulnerability of Worst-Case-Hard Instantiations

I Recall that [LPR’10] defines ‘dual’ form: χ, s, bi are modulo qR∨.

‘Worst-case hardness of search’ theorem applies to any R = OK ,
spherical error Dr where r � 2.

I Analogue of attack on ‘non-dual’ decision is:

1 for each of the N(q) candidate s′ ∈ R∨/qR∨,

2 test for non-uniformity of bi− ai · s′ mod qR∨: should be Dr mod qR∨

Theorem

For N(q) ≤ 2n, reduced error Dr mod qR∨ is only 4−n-far from uniform.

Proof Idea

I Dual ideal of qR∨ is q−1, which has λ1(q
−1) ≥

√
n/2.

I So ‘smoothing parameter’ of qR∨ is ≤ 2, so Dr mod qR∨ is uniform.
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Conclusions and Parting Thoughts

I Choice of error distribution for Ring-LWE is subtler than for LWE:
must account for geometry of ring and its ideals.

I Some attacks need qR to have small-norm divisors, but it seems
prudent not to rely on (lack of) factorization for security.
Can ‘ideal switching’ make factorization irrelevant?

I Worst-case hardness theorems yield (nearly) minimal conditions for
invulnerability to a new class of attacks.

Thanks!
http://eprint.iacr.org/2016/351
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