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Agenda

1 Polynomial rings, ideal lattices and Ring-LWE

2 Basic Ring-LWE encryption

3 Fully homomorphic encryption
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and JACM’13.

“A Toolkit for Ring-LWE Cryptography,” Eurocrypt’13.

BV’11 Z. Brakerski and V. Vaikuntanathan.

“Fully Homomorphic Encryption from Ring-LWE. . . ” CRYPTO’11.
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Rings in Lattice Cryptography (A Selective History)

1996-97 Ajtai(-Dwork) worst-case/average-case reduction,
one-way function & public-key encryption (very inefficient)

1996 NTRU efficient “ring-based” encryption (heuristic security)

2002 Micciancio’s ring-based one-way function with worst-case
hardness from ideal lattices (no encryption)

2005 Regev’s LWE: encryption with worst-case hardness
(inefficient)

2008– Countless applications of LWE (still inefficient)

2010 Ring-LWE: very efficient encryption, worst-case hardness ()
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Cyclotomic Rings

I The mth cyclotomic ring is R = Z[ζ] where ζ = ζm has order m.

I.e., ζm = 1 and ζj 6= 1 for 1 < j < m.

I Fact: Xm − 1 =
∏

d|m Φd(X) for irreducible

Φm(X) =
∏
i∈Z∗m

(X − ωi) ∈ Z[X], ω = exp(2π
√
−1/m) ∈ C.

Therefore, Z[ζ] ∼= Z[X]/Φm(X) via ζ ↔ X.
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This corresponds to Z[X]/Φm(X) representation.
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Cyclotomic Rings

Key Facts

1 For prime p: Φp(X) = 1 +X +X2 + · · ·+Xp−1.

2 For m = pe: Φm(X) = Φp(X
m/p) = 1 +Xm/p + · · ·+Xm−m/p.

7 Otherwise, Φm(X) is less “regular” and more “dense.”

So it can be cumbersome to work with Z[X]/Φm(X).

Reduction to the Prime-Power Case

I Say m has prime-power factorization m1 · · ·m`.

By ζmi ↔ ζ
m/mi
m ,

R = Z[ζm] ∼= Z[ζm1 , . . . , ζm`
].

I R has powerful Z-basis {ζj1m1 · · · ζ
j`
m`} =

⊗
{ζjimi
}, 0 ≤ ji < ϕ(mi).

In general, powerful basis 6= power basis {ζjm}, 0 ≤ j < ϕ(m).

I Bottom line: we can efficiently reduce operations in R to independent
operations in prime-power cyclotomics Z[ζmi ].
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Canonical Geometry of R

I Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use?

None!

I R = Z[ζm] has n = ϕ(m) ring embeddings into C, given by
mapping ζm to each primitive mth root of unity:

σi(ζm) = ωi
m ∈ C, i ∈ Z∗m.

I The canonical embedding σ : R→ Cn is σ(a) = (σi(a))i∈Z∗m .

Canonical because it is independent of representation (basis) of R.

I Define all geometric quantities using σ: e.g., ‖a‖2 := ‖σ(a)‖2.

Nice Properties

4 Under σ, both + and · are coordinate-wise: σ(a · b) = σ(a)� σ(b).

This yields the “expansion” bound

‖a · b‖2 ≤ ‖a‖∞ · ‖b‖2 , where ‖a‖∞ = max
i
|σi(a)|.
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Example 1

I 4th cyclotomic R = Z[X]/(1 +X2): embeddings X 7→ ±
√
−1

σ(1) = (1, 1)σ(X) = (±
√
−1)

In Any 2k-th Cyclotomic. . .

4 For any j, ‖Xj‖2 =
√
n and ‖Xj‖∞ = 1.

4 Power basis {1, X, . . . ,Xn−1} is orthogonal under embedding σ.

So power & canonical geometries are equivalent (up to
√
n scaling).
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Example 2

I 3rd cyclotomic R = Z[X]/(1 +X +X2): embed X 7→ −1
2 ±

√
−3
2

σ(1) = (1, 1)

σ(X) = (− 1
2
±
√
−3
2

)

In Any Cyclotomic. . .

4 For any j, ‖Xj‖2 =
√
n and ‖Xj‖∞ = 1.

I Power basis {1, X, . . . ,Xn−1} is not orthogonal (unless m = 2k).

I In power basis, short elements can have long coeff vectors.

E.g., e = 1 +X + · · ·+Xp−2 but ‖e‖ = ‖1‖ = ‖X‖ =
√
p− 1.
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Ideal Lattices

I An ideal I ⊆ R is closed under + and −, and under · with R.

Every ideal I embeds as an ideal lattice σ(I).

I E.g., R = Z[X]/(X2 + 1). Embeddings send X 7→ ±
√
−1.

I = 〈X − 2,−3X + 1〉 is an ideal in R.

σ(1) = (1, 1)σ(X) = (i,−i)

σ(X − 2)

σ(−3X + 1)

(Approximate) Ideal Shortest Vector Problem

I Given a Z-basis of an ideal I ⊆ R, find a nearly shortest nonzero
a ∈ I.
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Ring-LWE [LyubashevskyPeikertRegev’10]

I Let R be a cyclotomic ring and Rq = R/qR = Zq[ζm].

For prime q = 1 (mod m), Õ(n)-time ring ops in Rq via CRT basis.

(For product q = q1 · · · qt of distinct primes, Rq
∼= Rq1 × · · · ×Rqt .)

I Search: find secret ring element s ∈ Rq, given:

a1 ← Rq , b1 = a1 · s+ e1 ∈ Rq

a2 ← Rq , b2 = a2 · s+ e2 ∈ Rq

a3 ← Rq , b3 = a3 · s+ e3 ∈ Rq

...
√
n ≤ error coeffs� q

Note: (ai, bi) are uniformly random subject to: bi − ai · s ≈ 0 .

Errors are subtle! Coeffs of ei are small in “decoding” Z-basis of R,
and not necessarily independent!

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq.
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Hardness of Ring-LWE [LyubashevskyPeikertRegev’10]

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices

≤

(quantum,
any R = OK)

search Ring-LWE ≤

(classical,
any cyclotomic R)

decision Ring-LWE

F If you can distinguish (ai , bi) from (ai , bi), then you can find s.

F If you can find s, then you can find approximately shortest vectors in
any ideal lattice in R, using a quantum algorithm.

I Then:

decision Ring-LWE ≤ tons of crypto!

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .
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Ring-LWE Symmetric Cryptosystem [LyubashevskyPeikertRegev’10]

I Secret key: s← Rq.

I Encrypt µ ∈ R2: choose error e ∈ R s.t. e = µ mod 2R. Output

(c0, c1) = (a · s+ e , −a).

I Decrypt: ‘lift’ c0 + c1 · s ∈ Rq to e ∈ R, output µ = e mod 2R.

Security
I Ciphertexts are RLWE samples, so can’t distinguish them from

uniform (c0, c1), so message is hidden.

Alternative Interpretation

I Encryption of µ ∈ R2 is a linear polynomial c(S) = c0 + c1S ∈ Rq[S]:

1 c(s) = e ≈ 0 mod qR, and

2 e = m mod 2R.
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Fully Homomorphic Encryption [BrakerskiVaikuntanathan’11]

I Need a system where: if c, c′ encrypt m,m′, then

c� c′ encrypts m+m′,

c� c′ encrypts m ·m′.
Symmetric Cryptosystem

I Encryption of m ∈ R2 is a linear polynomial c(S) = c0 + c1S ∈ Rq[S]:

1 c(s) = e ≈ 0 mod qR, and

2 e = m mod 2R.

Full Homomorphism

I Define �,� to be simply +, · in Rq[S]:

(c+ c′)(s) = c(s) + c′(s) = (e+ e′) ≈ 0 mod qR

(e+ e′) = (m+m′) mod 2R.

I Error size and polynomial degree (in S) grow with �,�.
Use “linearization/key switching” and “modulus reduction” to shrink.
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