Cryptography from Rings

Chris Peikert

University of Michigan

HEAT Summer School 13 Oct 2015

Agenda

1 Polynomial rings, ideal lattices and Ring-LWE

- 2 Basic Ring-LWE encryption
- 3 Fully homomorphic encryption

Selected bibliography:

LPR'10 and '13 V. Lyubashevsky, C. Peikert, O. Regev.

"On Ideal Lattices and Learning with Errors Over Rings," Eurocrypt'10 and JACM'13.

"A Toolkit for Ring-LWE Cryptography," Eurocrypt'13.

BV'11 Z. Brakerski and V. Vaikuntanathan.

"Fully Homomorphic Encryption from Ring-LWE..." CRYPTO'11.

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 NTRU efficient "ring-based" encryption (heuristic security)

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 NTRU efficient "ring-based" encryption (heuristic security)

2002 Micciancio's ring-based one-way function with worst-case hardness from ideal lattices (no encryption)

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 NTRU efficient "ring-based" encryption (heuristic security)

2002 Micciancio's ring-based one-way function with worst-case hardness from ideal lattices (no encryption)

2005 Regev's LWE: encryption with worst-case hardness (inefficient)

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 NTRU efficient "ring-based" encryption (heuristic security)

- 2002 Micciancio's ring-based one-way function with worst-case hardness from ideal lattices (no encryption)
- 2005 Regev's LWE: encryption with worst-case hardness (inefficient)

2008– Countless applications of LWE (still inefficient)

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 NTRU efficient "ring-based" encryption (heuristic security)

2002 Micciancio's ring-based one-way function with worst-case hardness from ideal lattices (no encryption)

2005 Regev's LWE: encryption with worst-case hardness (inefficient)

2008– Countless applications of LWE (still inefficient)

2010 Ring-LWE: very efficient encryption, worst-case hardness

()

The mth cyclotomic ring is R = Z[ζ] where ζ = ζ_m has order m. I.e., ζ^m = 1 and ζ^j ≠ 1 for 1 < j < m.</p>

- The mth cyclotomic ring is R = Z[ζ] where ζ = ζ_m has order m. I.e., ζ^m = 1 and ζ^j ≠ 1 for 1 < j < m.</p>
- Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

- The mth cyclotomic ring is R = Z[ζ] where ζ = ζ_m has order m. I.e., ζ^m = 1 and ζ^j ≠ 1 for 1 < j < m.</p>
- Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

The mth cyclotomic ring is R = Z[ζ] where ζ = ζ_m has order m. I.e., ζ^m = 1 and ζ^j ≠ 1 for 1 < j < m.</p>

• Fact:
$$X^m - 1 = \prod_{d|m} \Phi_d(X)$$
 for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

Therefore, $\mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/\Phi_m(X)$ via $\zeta \leftrightarrow X$.

The mth cyclotomic ring is R = Z[ζ] where ζ = ζ_m has order m. I.e., ζ^m = 1 and ζ^j ≠ 1 for 1 < j < m.</p>

• Fact:
$$X^m - 1 = \prod_{d|m} \Phi_d(X)$$
 for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

Therefore, $\mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/\Phi_m(X)$ via $\zeta \leftrightarrow X$.

 We have deg(R) = deg(Φ_m) = n := φ(m), and R has a Z-basis {ζ⁰, ζ¹,..., ζⁿ⁻¹}: the power basis. This corresponds to Z[X]/Φ_m(X) representation.

The mth cyclotomic ring is R = Z[ζ] where ζ = ζ_m has order m. I.e., ζ^m = 1 and ζ^j ≠ 1 for 1 < j < m.</p>

• Fact:
$$X^m - 1 = \prod_{d|m} \Phi_d(X)$$
 for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

Therefore, $\mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/\Phi_m(X)$ via $\zeta \leftrightarrow X$.

 We have deg(R) = deg(Φ_m) = n := φ(m), and R has a Z-basis {ζ⁰, ζ¹,..., ζⁿ⁻¹}: the power basis. This corresponds to Z[X]/Φ_m(X) representation.

▶ There are other
$$\mathbb{Z}$$
-bases, e.g., $\{\zeta_p^0, \ldots \zeta_p^{k-1}, \zeta_p^{k+1}, \ldots, \zeta_p^{p-1}\}$.

Key Facts

1 For prime
$$p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$$
.

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- × Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- × Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

Say m has prime-power factorization $m_1 \cdots m_{\ell}$.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- × Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

• Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\zeta_{m_1}, \ldots, \zeta_{m_\ell}].$$

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.

× Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

• Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\zeta_{m_1}, \ldots, \zeta_{m_\ell}].$$

• R has powerful \mathbb{Z} -basis $\{\zeta_{m_1}^{j_1}\cdots \zeta_{m_\ell}^{j_\ell}\} = \bigotimes\{\zeta_{m_i}^{j_i}\}, \ 0 \le j_i < \varphi(m_i).$

Key Facts

- 1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- × Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

• Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\zeta_{m_1}, \ldots, \zeta_{m_\ell}].$$

▶ *R* has powerful \mathbb{Z} -basis $\{\zeta_{m_1}^{j_1} \cdots \zeta_{m_\ell}^{j_\ell}\} = \bigotimes \{\zeta_{m_i}^{j_i}\}, 0 \le j_i < \varphi(m_i).$ In general, powerful basis \ne power basis $\{\zeta_m^j\}, 0 \le j < \varphi(m).$

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.

× Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

• Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\zeta_{m_1}, \ldots, \zeta_{m_\ell}].$$

• *R* has powerful \mathbb{Z} -basis $\{\zeta_{m_1}^{j_1} \cdots \zeta_{m_\ell}^{j_\ell}\} = \bigotimes \{\zeta_{m_i}^{j_i}\}, \ 0 \le j_i < \varphi(m_i).$

In general, powerful basis \neq power basis $\{\zeta_m^j\}$, $0 \leq j < \varphi(m)$.

Bottom line: we can efficiently reduce operations in R to independent operations in prime-power cyclotomics $\mathbb{Z}[\zeta_{m_i}]$.

Canonical Geometry of ${\cal R}$

Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use?

Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

- Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- R = Z[ζ_m] has n = φ(m) ring embeddings into C, given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*.$$

- Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- R = Z[ζ_m] has n = φ(m) ring embeddings into C, given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*$$

• The canonical embedding $\sigma \colon R \to \mathbb{C}^n$ is $\sigma(a) = (\sigma_i(a))_{i \in \mathbb{Z}_m^*}$.

Canonical because it is independent of representation (basis) of R.

- Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- R = Z[ζ_m] has n = φ(m) ring embeddings into C, given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*$$

The canonical embedding σ: R → Cⁿ is σ(a) = (σ_i(a))_{i∈Z^{*}_m}. Canonical because it is independent of representation (basis) of R.
 Define all geometric quantities using σ: e.g., ||a||₂ := ||σ(a)||₂.

- Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- R = Z[ζ_m] has n = φ(m) ring embeddings into C, given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*$$

- The canonical embedding σ: R → Cⁿ is σ(a) = (σ_i(a))_{i∈Z^{*}_m}.
 Canonical because it is independent of representation (basis) of R.
 D. C. H. H. H. H. ()
- Define all geometric quantities using σ : e.g., $||a||_2 := ||\sigma(a)||_2$.

Nice Properties

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$.

- Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- R = Z[ζ_m] has n = φ(m) ring embeddings into C, given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*$$

 The canonical embedding σ: R → Cⁿ is σ(a) = (σ_i(a))_{i∈Z^{*}_m}. Canonical because it is independent of representation (basis) of R.
 Define all geometric quantities using σ: e.g., ||a||₂ := ||σ(a)||₂.

Nice Properties

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$. This yields the "expansion" bound

 $\|a \cdot b\|_2 \le \|a\|_{\infty} \cdot \|b\|_2, \quad \text{where } \|a\|_{\infty} = \max_i |\sigma_i(a)|.$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

In Any 2^k -th Cyclotomic...

✓ For any
$$j$$
, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

In Any 2^k -th Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.
- ✓ Power basis $\{1, X, ..., X^{n-1}\}$ is orthogonal under embedding σ . So power & canonical geometries are equivalent (up to \sqrt{n} scaling).

• 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

• 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

✓ For any *j*,
$$||X^j||_2 = \sqrt{n}$$
 and $||X^j||_\infty = 1$.

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

✓ For any
$$j$$
, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.

• Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).

In power basis, short elements can have long coeff vectors.

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

✓ For any *j*,
$$||X^j||_2 = \sqrt{n}$$
 and $||X^j||_\infty = 1$.

• Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).

In power basis, short elements can have long coeff vectors.
E.g., e = 1 + X + ··· + X^{p−2} but ||e|| = ||1|| = ||X|| = √p − 1.

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

► An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R. Every ideal \mathcal{I} embeds as an ideal lattice $\sigma(\mathcal{I})$.

- An ideal *I* ⊆ *R* is closed under + and −, and under · with *R*. Every ideal *I* embeds as an ideal lattice σ(*I*).
- ► E.g., $R = \mathbb{Z}[X]/(X^2 + 1)$. Embeddings send $X \mapsto \pm \sqrt{-1}$. $\mathcal{I} = \langle X - 2, -3X + 1 \rangle$ is an ideal in R.

- An ideal *I* ⊆ *R* is closed under + and −, and under · with *R*. Every ideal *I* embeds as an ideal lattice σ(*I*).
- ► E.g., $R = \mathbb{Z}[X]/(X^2 + 1)$. Embeddings send $X \mapsto \pm \sqrt{-1}$. $\mathcal{I} = \langle X - 2, -3X + 1 \rangle$ is an ideal in R.

(Approximate) Ideal Shortest Vector Problem

Given a ℤ-basis of an ideal I ⊆ R, find a nearly shortest nonzero a ∈ I.

• Let R be a cyclotomic ring and $R_q = R/qR = \mathbb{Z}_q[\zeta_m]$.

Let R be a cyclotomic ring and R_q = R/qR = Z_q[ζ_m].
 For prime q = 1 (mod m), Õ(n)-time ring ops in R_q via CRT basis.

Let R be a cyclotomic ring and R_q = R/qR = Z_q[ζ_m].
 For prime q = 1 (mod m), Õ(n)-time ring ops in R_q via CRT basis.
 (For product q = q₁ ··· q_t of distinct primes, R_q ≅ R_{q1} × ··· × R_{qt}.)

- Let R be a cyclotomic ring and R_q = R/qR = Z_q[ζ_m].
 For prime q = 1 (mod m), Õ(n)-time ring ops in R_q via CRT basis.
 (For product q = q₁ ··· q_t of distinct primes, R_q ≅ R_{q1} × ··· × R_{qt}.)
- **Search**: <u>find</u> secret ring element $s \in R_q$, given:

- Let R be a cyclotomic ring and R_q = R/qR = Z_q[ζ_m].
 For prime q = 1 (mod m), Õ(n)-time ring ops in R_q via CRT basis.
 (For product q = q₁ ··· q_t of distinct primes, R_q ≅ R_{q1} × ··· × R_{qt}.)
- **Search**: <u>find</u> secret ring element $s \in R_q$, given:

Note: (a_i, b_i) are uniformly random subject to: $|b_i - a_i \cdot s \approx 0|$.

- Let R be a cyclotomic ring and R_q = R/qR = Z_q[ζ_m].
 For prime q = 1 (mod m), Õ(n)-time ring ops in R_q via CRT basis.
 (For product q = q₁ ··· q_t of distinct primes, R_q ≅ R_{q1} × ··· × R_{qt}.)
- **Search**: <u>find</u> secret ring element $s \in R_q$, given:

$$\begin{array}{cccc} a_{1} \leftarrow R_{q} & , & b_{1} = a_{1} \cdot s + e_{1} \in R_{q} \\ a_{2} \leftarrow R_{q} & , & b_{2} = a_{2} \cdot s + e_{2} \in R_{q} \\ a_{3} \leftarrow R_{q} & , & b_{3} = a_{3} \cdot s + e_{3} \in R_{q} \\ & \vdots & & \sqrt{n} \leq \operatorname{error \ coeffs} \ll q \end{array}$$

Note: (a_i, b_i) are uniformly random subject to: $b_i - a_i \cdot s \approx 0$. <u>Errors are subtle!</u> Coeffs of e_i are small in "decoding" Z-basis of R, and not necessarily independent!

- Let R be a cyclotomic ring and R_q = R/qR = Z_q[ζ_m].
 For prime q = 1 (mod m), Õ(n)-time ring ops in R_q via CRT basis.
 (For product q = q₁ ··· q_t of distinct primes, R_q ≅ R_{q1} × ··· × R_{qt}.)
- **Search**: <u>find</u> secret ring element $s \in R_q$, given:

$$\begin{array}{cccc} a_{1} \leftarrow R_{q} & , & b_{1} = a_{1} \cdot s + e_{1} \in R_{q} \\ a_{2} \leftarrow R_{q} & , & b_{2} = a_{2} \cdot s + e_{2} \in R_{q} \\ a_{3} \leftarrow R_{q} & , & b_{3} = a_{3} \cdot s + e_{3} \in R_{q} \\ & \vdots & & \sqrt{n} \leq \operatorname{error coeffs} \ll q \end{array}$$

Note: (a_i, b_i) are uniformly random subject to: $b_i - a_i \cdot s \approx 0$. <u>Errors are subtle!</u> Coeffs of e_i are small in "decoding" \mathbb{Z} -basis of R, and not necessarily independent!

Decision: distinguish (a_i, b_i) from uniform $(a_i, b_i) \in R_q \times R_q$.

Two main theorems (reductions):

Two main theorems (reductions):

* If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.

Two main theorems (reductions):

- * If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- ★ If you can find *s*, then you can find approximately shortest vectors in *any* ideal lattice in *R*, using a quantum algorithm.

Two main theorems (reductions):

- ★ If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- ★ If you can find *s*, then you can find approximately shortest vectors in *any* ideal lattice in *R*, using a quantum algorithm.

Then:

decision Ring-LWE \leq tons of crypto!

Two main theorems (reductions):

- * If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- ★ If you can find *s*, then you can find approximately shortest vectors in *any* ideal lattice in *R*, using a quantum algorithm.

Then:

decision Ring-LWE \leq tons of crypto!

★ If you can break the crypto, then you can distinguish (a_i, b_i) from (a_i, b_i) ...

Secret key: $s \leftarrow R_q$.

Secret key: $s \leftarrow R_q$.

Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0, c_1) = (\mathbf{a} \cdot \mathbf{s} + \mathbf{e}, -\mathbf{a}).$$

- Secret key: $s \leftarrow R_q$.
- Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0,c_1)=(\mathbf{a}\cdot s+e\,,\,-\mathbf{a}).$$

• Decrypt: 'lift' $c_0 + c_1 \cdot s \in R_q$ to $e \in R$, output $\mu = e \mod 2R$.

- Secret key: $s \leftarrow R_q$.
- Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0,c_1)=(\mathbf{a}\cdot s+e\,,\,-\mathbf{a}).$$

• Decrypt: 'lift' $c_0 + c_1 \cdot s \in R_q$ to $e \in R$, output $\mu = e \mod 2R$.

Security

Ciphertexts are RLWE samples, so can't distinguish them from uniform (c₀, c₁), so message is hidden.

Secret key:
$$s \leftarrow R_q$$
.

• Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0, c_1) = (\mathbf{a} \cdot \mathbf{s} + \mathbf{e}, -\mathbf{a}).$$

• Decrypt: 'lift' $c_0 + c_1 \cdot s \in R_q$ to $e \in R$, output $\mu = e \mod 2R$.

Security

Ciphertexts are RLWE samples, so can't distinguish them from uniform (c₀, c₁), so message is hidden.

Alternative Interpretation

• Encryption of $\mu \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_q[S]$:

1
$$c(s) = e pprox 0 \mod qR$$
, and

 $e = m \mod 2R.$

Need a system where: if c, c' encrypt m, m', then $c \boxplus c'$ encrypts m + m'. $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

• Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_q[S]$:

1)
$$c(s) = e pprox 0 \mod qR$$
, and

$$2 e = m \mod 2R.$$

Need a system where: if c, c' encrypt m, m', then $c \boxplus c'$ encrypts m + m'. $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:

1 $c(s) = e \approx 0 \mod qR$, and

 $2 \ e = m \bmod 2R.$

Full Homomorphism

• Define \boxplus , \boxdot to be simply +, \cdot in $R_q[S]$:

Need a system where: if c, c' encrypt m, m', then $c \boxplus c'$ encrypts m + m', $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:

1 $c(s) = e \approx 0 \mod qR$, and

 $e = m \mod 2R$.

Full Homomorphism

• Define \boxplus, \boxdot to be simply $+, \cdot$ in $R_q[S]$:

$$(c+c')(s) = c(s) + c'(s) = (e+e') \approx 0 \mod qR$$

 $(e+e') = (m+m') \mod 2R.$

Need a system where: if c, c' encrypt m, m', then $c \boxplus c'$ encrypts m + m', $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:

1 $c(s) = e \approx 0 \mod qR$, and

 $2 \ e = m \bmod 2R.$

Full Homomorphism

• Define \boxplus, \boxdot to be simply $+, \cdot$ in $R_q[S]$:

$$(c \cdot c')(s) = c(s) \cdot c'(s) = (e \cdot e') \approx 0 \mod qR$$
$$(e \cdot e') = (m \cdot m') \mod 2R.$$

Need a system where: if c, c' encrypt m, m', then $c \boxplus c'$ encrypts m + m', $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:

1 $c(s) = e \approx 0 \mod qR$, and

 $2 \ e = m \bmod 2R.$

Full Homomorphism

• Define \boxplus, \boxdot to be simply $+, \cdot$ in $R_q[S]$:

$$(c \cdot c')(s) = c(s) \cdot c'(s) = (e \cdot e') \approx 0 \mod qR$$

 $(e \cdot e') = (m \cdot m') \mod 2R.$

Error size and polynomial degree (in S) grow with \boxplus, \boxdot . Use "linearization/key switching" and "modulus reduction" to shrink.