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Agenda
@ Polynomial rings, ideal lattices and Ring-LWE

® Basic Ring-LWE encryption
©® Fully homomorphic encryption
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Rings in Lattice Cryptography (A Selective History)

1996-97

1996

2002

2005

2008-

2010

Ajtai(-Dwork) worst-case/average-case reduction,
one-way function & public-key encryption  (very inefficient)

NTRU efficient “ring-based” encryption  (heuristic security)

Micciancio's ring-based one-way function with worst-case
hardness from ideal lattices (no encryption)

Regev’'s LWE: encryption with worst-case hardness
(inefficient)

Countless applications of LWE (still inefficient)

Ring-LWE: very efficient encryption, worst-case hardness ()
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Cyclotomic Rings

» The mth cyclotomic ring is R = Z[(] where ¢ = (,, has order m.
le, (m=1and ¢/ #£1forl<j<m.

> Fact: X™ —1 =[], Pa(X) for irreducible

¢, (X) = H (X —w'") € Z[X], w=exp(2mrv/—1/m) € C.

i€z,
Therefore, Z[(] = Z[X]/ P (X) via ¢ <> X.

» We have deg(R) = deg(®,,) = n := p(m),
and R has a Z-basis {¢°,¢!,...,¢" !} the power basis.
This corresponds to Z[X|/®,,(X) representation.

> There are other Z-bases, e.g., {¢, ... 5_1, ;f“, L
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Cyclotomic Rings

Key Facts

® For prime p: ®,(X) =1+ X + X2+ ...+ XL
@ For m = p®: &,,(X) = O,(X"/P) =14 X™P 4 ... X7"/P,
X Otherwise, ®,,,(X) is less “regular” and more “dense.”

So it can be cumbersome to work with Z[X]/®,,(X).

Reduction to the Prime-Power Case

| A

> Say m has prime-power factorization 11 - - - my. By (m, <> cm/m

R=Z[Cu] = Z[Gns, ---» Gnel-

> R has powerful Z-basis {¢}}, ---Clt,} = ®{C7]rlu} 0 < ji < o(my).
In general, powerful basis # power basis {(,Jn} 0<j<e(m).

P> Bottom line: we can efficiently reduce operations in R to independent
operations in prime-power cyclotomics Z[(p,].

5 /13



Canonical Geometry of R

> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use?

13



Canonical Geometry of R

> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

6/13



Canonical Geometry of R
> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

» R = Z[(m] has n = p(m) ring embeddings into C, given by
mapping (,, to each primitive mth root of unity:

0i(Gm) =wh, €C, i € ZF,.

6

13



Canonical Geometry of R

> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

» R = Z[(m] has n = p(m) ring embeddings into C, given by
mapping (,, to each primitive mth root of unity:

0i(Gm) =wh, €C, i € ZF,.
» The canonical embedding o: R — C" is o(a) = (0i(a))icz:, -

Canonical because it is independent of representation (basis) of R.

6/13



Canonical Geometry of R
> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

» R = Z[(m] has n = p(m) ring embeddings into C, given by
mapping (,, to each primitive mth root of unity:

0i((m) =w! €C, i € Z},.

» The canonical embedding o: R — C" is o(a) = (0i(a))icz:, -

Canonical because it is independent of representation (basis) of R.

» Define all geometric quantities using o: e.g., ||a||y := ||o(a),.

6

13



Canonical Geometry of R
> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

» R = Z[(m] has n = p(m) ring embeddings into C, given by
mapping (,, to each primitive mth root of unity:

0i(Gm) =wh, €C, i € ZF,.
» The canonical embedding o: R — C" is o(a) = (0i(a))icz:, -
Canonical because it is independent of representation (basis) of R.

» Define all geometric quantities using o: e.g., ||a||, := ||o(a)|,.

Nice Properties
¢ Under o, both + and - are coordinate-wise: o(a - b) = a(a) ® o(b).




Canonical Geometry of R
> Need a geometry and notion of “short” for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

» R = Z[(m] has n = p(m) ring embeddings into C, given by
mapping (,, to each primitive mth root of unity:

0i(Gm) =wh, €C, i € ZF,.
» The canonical embedding o: R — C" is o(a) = (0i(a))icz:, -
Canonical because it is independent of representation (basis) of R.

» Define all geometric quantities using o: e.g., ||a||, := ||o(a)|,.

Nice Properties
¢ Under o, both + and - are coordinate-wise: o(a - b) = a(a) ® o(b).
This yields the “expansion” bound

la-blly < llallo - [Iblly, where [laf| = max|os(a)].




Example 1

> 4th cyclotomic R = Z[X]/(1 + X?): embeddings X + £+/—1

13



Example 1

> 4th cyclotomic R = Z[X]/(1 + X?): embeddings X + £+/—1

13



Example 1

> 4th cyclotomic R = Z[X]/(1 + X?): embeddings X + £+/—1

In Any 2*-th Cyclotomic. ..
v For any j, | X7, = v/n and || X7 = 1.




Example 1

> 4th cyclotomic R = Z[X]/(1 + X?): embeddings X + £+/—1

In Any 2*-th Cyclotomic. ..
v For any j, | X7, = v/n and || X7 = 1.
v Power basis {1, X,..., X" !} is orthogonal under embedding o.

So power & canonical geometries are equivalent (up to y/n scaling).
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Example 2

» 3rd cyclotomic R = Z[X]/(1 + X + X?): embed X +— —3 +

2

1
2

In Any Cyclotomic. ..
v For any j, | X7, = v/n and || X7|| = 1.

» Power basis {1, X,..., X"} is not orthogonal (unless m = 2¥).

P In power basis, short elements can have long coeff vectors.
Eg.e=1+X+ +X77 but [lef = 1] =[X||=vF=T.
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Ideal Lattices

» Anideal Z C R is closed under + and —, and under - with R.
Every ideal Z embeds as an ideal lattice o(Z).

> E.g, R=7Z[X]/(X?+1). Embeddings send X + 4+/—1.
Z=(X—-2,-3X+1)isan ideal in R.

(Approximate) Ideal Shortest Vector Problem

» Given a Z-basis of an ideal Z C R, find a nearly shortest nonzero
a€l.
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» Let R be a cyclotomic ring and Ry, = R/qR = Zg[(m).
For prime ¢ = 1 (mod m), O(n)-time ring ops in R, via CRT basis.
(For product g = g1 - - - g+ of distinct primes, Ry & Ry, X -+ X Rg,.)

» Search: find secret ring element s € R, given:

(1/1<_Rq , b1:(1/1'8+€1€Rq
ay < Ry , by=az-s+ey € Ry ’
agqu , b3:a3'3+63€Rq ‘.|\|M MMI\.

Vv/n < error coeffs < ¢

Note: (a;, b;) are uniformly random subject to: .

Errors are subtle! Coeffs of e; are small in “decoding” Z-basis of R,
and not necessarily independent!

» Decision: distinguish (a; , b;) from uniform (a; , b;) € Ry X R,,.
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» Two main theorems (reductions):

worst-case approx-SVP < search Ring-LWE < decision Ring-LWE

on ideal lattices y 5
(quantum, (classical,
any R = Ok) any cyclotomic R)

* If you can distinguish (a; , b;) from (a; , b;), then you can find s.

* If you can find s, then you can find approximately shortest vectors in
any ideal lattice in R, using a quantum algorithm.

» Then:

decision Ring-LWE < tons of crypto! J

* If you can break the crypto, then you can distinguish (a; , b;) from
(ai s bz) ..
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Ring-LWE Symmetric Cryptosystem  [LyubashevskyPeikertRegev'10]
> Secret key: s < Ry.
» Encrypt 4 € Ry: choose error e € R s.t. e = 4y mod 2R. Output
(co,c1) =(a-s+e, —a).

» Decrypt: ‘lift' cg+c1 -5 € R, to e € R, output 4 = e mod 2R.

| A\

Security

» Ciphertexts are RLWE samples, so can't distinguish them from
uniform (cp, ¢1), so message is hidden.
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Ring-LWE Symmetric Cryptosystem  [LyubashevskyPeikertRegev'10]
> Secret key: s < Ry.
» Encrypt 4 € Ry: choose error e € R s.t. e = 4y mod 2R. Output
(co,c1) =(a-s+e, —a).

» Decrypt: ‘lift' cg+c1 -5 € R, to e € R, output 4 = e mod 2R.

| \

Security

» Ciphertexts are RLWE samples, so can't distinguish them from
uniform (cp, ¢1), so message is hidden.

Alternative Interpretation

| A\

» Encryption of 1 € Ry is a linear polynomial ¢(S) = cp + 1.5 € Ry[5]:
@ c(s) = e~ 0mod gR, and
® ¢ =m mod 2R.
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Ful |y Homomorphic Encryption [BrakerskiVaikuntanathan'11]

» Need a system where: if ¢, encrypt m,m’, then
cBd encrypts m+m/,

cBld encrypts m-m'.

Symmetric Cryptosystem

» Encryption of m € Ry is a linear polynomial ¢(S) = co +c15 € Ry[S]:
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@ c(s) = e~ 0mod ¢R, and
® ¢ =m mod 2R.
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» Define 8, to be simply +, - in R4[S]:
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Ful |y Homomorphic Encryption [BrakerskiVaikuntanathan'11]

» Need a system where: if ¢, encrypt m,m’, then
cBd encrypts m+m/,

cBld encrypts m-m'.

Symmetric Cryptosystem

» Encryption of m € Ry is a linear polynomial ¢(S) = co +¢15 € Ry[S]:
@ c(s) = e~ 0mod ¢R, and
® ¢ =m mod 2R.

Full Homomorphism

» Define 8, to be simply +, - in R4[S]:
(c-d)s)=c(s)-d(s) = (e-€)~0modqR
(e-€) = (m-m')mod2R.

» Error size and polynomial degree (in S) grow with H, .
Use “linearization/key switching” and “modulus reduction” to shrink.
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