# Bootstrapping (with Small Error Growth) 

Chris Peikert

University of Michigan

HEAT Summer School<br>12 Oct 2015

## Fully Homomorphic Encryption [RAD'78,Gentry'09]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f) \longrightarrow f(\mu)
$$

A cryptographic "holy grail" with countless applications.
First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

## Fully Homomorphic Encryption [RAD'78,Gentry'09]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f) \longrightarrow f(\mu)
$$

A cryptographic "holy grail" with countless applications.
First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

- "Naturally occurring" schemes are somewhat homomorphic (SHE): can only evaluate functions of an a priori bounded depth.

$$
\mu \rightarrow \operatorname{Eval}(f) \rightarrow f(\mu) \rightarrow \operatorname{Eval}(g) \rightarrow g(f(\mu))
$$

## Fully Homomorphic Encryption [RAD'78,Gentry'09]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f) \longrightarrow f(\mu)
$$

A cryptographic "holy grail" with countless applications.
First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

- "Naturally occurring" schemes are somewhat homomorphic (SHE): can only evaluate functions of an a priori bounded depth.

$$
\mu \rightarrow \operatorname{Eval}(f) \rightarrow f(\mu) \rightarrow \operatorname{Eval}(g) \rightarrow g(f(\mu))
$$

- Thus far, "bootstrapping" is required to achieve unbounded FHE.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext $\mu$, allowing further homomorphic operations.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext $\bar{\mu}$, allowing further homomorphic operations.
- Decrypting $\mu$ as a function of $s k$ :

$$
s k \longrightarrow \operatorname{Dec}(\cdot, \mu) \longrightarrow \mu
$$

## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext $\mu$, allowing further homomorphic operations.
- Decrypting $\mu$ as a function of $s k$ :

$$
s k \longrightarrow \operatorname{Dec}(\cdot, \mu) \longrightarrow \mu
$$

- Homomorphically decrypting $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext $\mu$, allowing further homomorphic operations.
- Decrypting $\mu$ as a function of $s k$ :

$$
s k \longrightarrow \operatorname{Dec}(\cdot, \mu) \longrightarrow \mu
$$

- Homomorphically decrypting $\mu$ on $s k$ :

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime of Eval(Dec) is controlled by complexity of Dec.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext $\mu$, allowing further homomorphic operations.
- Decrypting $\mu$ as a function of $s k$ :

$$
s k \longrightarrow \operatorname{Dec}(\cdot, \mu) \longrightarrow \mu
$$

- Homomorphically decrypting $\mu$ on $s k$ :

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime of Eval(Dec) is controlled by complexity of Dec. Error growth of Eval(Dec) determines strength of cryptographic assumption - e.g., initial LWE noise "rate" of $s k$.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.
$\star$ Homom Multiplication: Error grows by poly $(\lambda)$ factor.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.
$\star$ Homom Multiplication: Error grows by poly $(\lambda)$ factor.
- Known boolean decryption circuits have logarithmic $O(\log \lambda)$ depth.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
$\star$ Homom Addition: Error grows additively.
$\star$ Homom Multiplication: Error grows by poly $(\lambda)$ factor.
- Known boolean decryption circuits have logarithmic $O(\log \lambda)$ depth. $\Longrightarrow$ Quasi-polynomial $\lambda^{O(\log \lambda)}$ error growth \& lattice approx factors.


## Bootstrapping: SHE $\rightarrow$ FHE [Gentry'09]

- Homomorphic decryption of $\mu$ on $s k$ :

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
$\star$ Homom Addition: Error grows additively.
$\star$ Homom Multiplication: Error grows by poly $(\lambda)$ factor.
- Known boolean decryption circuits have logarithmic $O(\log \lambda)$ depth. $\Longrightarrow$ Quasi-polynomial $\lambda^{O(\log \lambda)}$ error growth \& lattice approx factors.


## Can we do better??

## Agenda for the Talk

(1) Branching program bootstrapping with (large) polynomial runtime and error growth
[BrakerskiVaikuntanathan'14]

## Agenda for the Talk

(1) Branching program bootstrapping with (large) polynomial runtime and error growth
[BrakerskiVaikuntanathan'14]
(2) Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert'14]

## Agenda for the Talk

(1) Branching program bootstrapping with (large) polynomial runtime and error growth
[BrakerskiVaikuntanathan'14]
(2) Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert'14]
(3) Fast ( $<1$ s) ring-based implementation
[DucasMicciancio'15]

## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$, $\mathbf{G}^{-1}(\mathbf{A})$ is short (over $\left.\mathbb{Z}\right) \quad$ and $\quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)$.


## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

- Homomorphic add: $\mathbf{C}_{1} \boxplus \mathbf{C}_{2}:=\mathbf{C}_{1}+\mathbf{C}_{2}$.


## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

- Homomorphic add: $\mathbf{C}_{1} \boxplus \mathbf{C}_{2}:=\mathbf{C}_{1}+\mathbf{C}_{2}$.
- Homomorphic mult: $\mathbf{C}_{1} \square \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.


## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

- Homomorphic add: $\mathbf{C}_{1} \boxplus \mathbf{C}_{2}:=\mathbf{C}_{1}+\mathbf{C}_{2}$.
- Homomorphic mult: $\mathbf{C}_{1} \square \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\mathbf{s} \cdot \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)=\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)
$$

## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

- Homomorphic add: $\mathbf{C}_{1} \boxplus \mathbf{C}_{2}:=\mathbf{C}_{1}+\mathbf{C}_{2}$.
- Homomorphic mult: $\mathbf{C}_{1} \square \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s} \cdot \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) & =\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \cdot \mathbf{s} \mathbf{C}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)
\end{aligned}
$$

## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

- Homomorphic add: $\mathbf{C}_{1} \boxplus \mathbf{C}_{2}:=\mathbf{C}_{1}+\mathbf{C}_{2}$.
- Homomorphic mult: $\mathbf{C}_{1} \square \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s} \cdot \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) & =\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \cdot \mathbf{s} \mathbf{C}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \mu_{2} \cdot \mathbf{s G}+\underbrace{\mu_{1} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)}_{\text {new error e }} .
\end{aligned}
$$

## Somewhat Homomorphic Encryption [GentrySahaiWaters'13]

- Recall "gadget" matrix $\mathbf{G}$ over $\mathbb{Z}_{q}$ [MP'12]: for any matrix $\mathbf{A}$ over $\mathbb{Z}_{q}$,

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short }(\text { over } \mathbb{Z}) \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in \mathbb{Z}$ under $\mathbf{s}$ is a $\mathbb{Z}_{q}$-matrix $\mathbf{C}$ satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \approx \mu \cdot \mathbf{s} \mathbf{G} \quad(\bmod q)
$$

- Homomorphic add: $\mathbf{C}_{1} \boxplus \mathbf{C}_{2}:=\mathbf{C}_{1}+\mathbf{C}_{2}$.
- Homomorphic mult: $\mathbf{C}_{1} \square \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s} \cdot \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) & =\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \cdot \mathbf{s} \mathbf{C}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \mu_{2} \cdot \mathbf{s G}+\underbrace{\mu_{1} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)}_{\text {new error e }} .
\end{aligned}
$$

- (Can randomize $\mathrm{G}^{-1}$ for tighter error growth, full rerandomization.)


## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication is asymmetric and "quasi-additive:"

Error in $\mathbf{C}:=\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}$ is $\mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2}$.

## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication is asymmetric and "quasi-additive:"

$$
\text { Error in } \mathbf{C}:=\mathbf{C}_{1} \boxtimes \mathbf{C}_{2} \text { is } \mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2} .
$$

- Right-associative multiplication: for $\mathbf{C}_{i}$ encrypting $\mu_{i} \in\{0, \pm 1\}$,

$$
\mathbf{C}_{1} \boxtimes\left(\cdots\left(\mathbf{C}_{t-2} \boxtimes\left(\mathbf{C}_{t-1} \backsim \mathbf{C}_{t}\right)\right) \cdots\right) \text { has error } \sum_{i} \mathbf{e}_{i} \cdot \operatorname{poly}(\lambda) .
$$

## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication is asymmetric and "quasi-additive:"

$$
\text { Error in } \mathbf{C}:=\mathbf{C}_{1} \boxtimes \mathbf{C}_{2} \text { is } \mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2} .
$$

- Right-associative multiplication: for $\mathbf{C}_{i}$ encrypting $\mu_{i} \in\{0, \pm 1\}$,

$$
\mathbf{C}_{1} \bullet\left(\cdots\left(\mathbf{C}_{t-2} \boxtimes\left(\mathbf{C}_{t-1} \bullet \mathbf{C}_{t}\right)\right) \cdots\right) \text { has error } \sum_{i} \mathbf{e}_{i} \cdot \operatorname{poly}(\lambda) .
$$

- Generalizes to orthogonal matrices over $\mathbb{Z}$, e.g., permutation matrices. Encrypt bitwise:

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ll}
\boxed{0} & \boxed{1} \\
\hline 1 & \boxed{0}
\end{array}\right)}_{\mathbf{P}_{1}} \cdot \underbrace{\left(\begin{array}{ll}
\boxed{0} & \begin{array}{|c}
1 \\
\hline 1
\end{array} \\
\hline 0
\end{array}\right)}_{\mathbf{P}_{2}}=\underbrace{\left(\begin{array}{ll}
\boxed{1} & \boxed{0} \\
\hline 0 & , \\
\hline 1
\end{array}\right)}_{\mathbf{P}_{1} \cdot \mathbf{P}_{2}} \\
& \underbrace{\left(\begin{array}{ll}
\mathbf{e}_{1,1} & \mathbf{e}_{1,2} \\
\mathbf{e}_{2,1} & \mathbf{e}_{2,2}
\end{array}\right)}_{\mathbf{E}}, \underbrace{\left(\begin{array}{ll}
\mathbf{f}_{1,1} & \mathbf{f}_{1,2} \\
\mathbf{f}_{2,1} & \mathbf{f}_{2,2}
\end{array}\right)}_{\mathbf{F}} \rightarrow \mathbf{E} \cdot \operatorname{poly}(\lambda)+\underbrace{\left(\begin{array}{ll}
\mathbf{f}_{2,1} & \mathbf{f}_{2,2} \\
\mathbf{f}_{1,1} & \mathbf{f}_{1,2}
\end{array}\right)}_{\mathbf{P}_{1} \cdot \mathbf{F}}
\end{aligned}
$$

## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Polynomial error growth for any product of encrypted permutations.


## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Polynomial error growth for any product of encrypted permutations.
- Barrington's Theorem: boolean circuit $\rightarrow$ branching program:

depth $d$
length $4^{d}$


## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Polynomial error growth for any product of encrypted permutations.
- Barrington's Theorem: boolean circuit $\rightarrow$ branching program:



## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Polynomial error growth for any product of encrypted permutations.
- Barrington's Theorem: boolean circuit $\rightarrow$ branching program:

- To refresh $\mu$ : convert $\operatorname{Dec}(\cdot, \mu)$ to BP ; homomorphically evaluate using encrypted bits of $s k$ to select from pairs $\mathbf{P}_{i, 0}, \mathbf{P}_{i, 1}$.


## Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Polynomial error growth for any product of encrypted permutations.
- Barrington's Theorem: boolean circuit $\rightarrow$ branching program:

- To refresh $\mu$ : convert $\operatorname{Dec}(\cdot, \mu)$ to BP ; homomorphically evaluate using encrypted bits of $s k$ to select from pairs $\mathbf{P}_{i, 0}, \mathbf{P}_{i, 1}$.
$X$ Drawback: Barrington's transformation is very inefficient.


## More Efficient Bootstrapping [Alperin-SheriffPeikert' 14]

- Faster algorithm with small polynomial error growth


## More Efficient Bootstrapping [Alperin-SheriffPeikert' 14]

- Faster algorithm with small polynomial error growth Result: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}\left(\lambda^{2}\right)$ error growth.


## More Efficient Bootstrapping [Alperin-SheriffPeikert' 14]

- Faster algorithm with small polynomial error growth

Result: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}\left(\lambda^{2}\right)$ error growth.

- Treats decryption as an arithmetic function over $\mathbb{Z}_{q}$, not a circuit.


## More Efficient Bootstrapping [Alperin-SheriffPeikert' 14]

- Faster algorithm with small polynomial error growth

Result: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}\left(\lambda^{2}\right)$ error growth.

- Treats decryption as an arithmetic function over $\mathbb{Z}_{q}$, not a circuit.

Avoids Barrington's Theorem - but still uses permutation matrices!

## More Efficient Bootstrapping [Alperin-SheriffPeikert' 14]

- Faster algorithm with small polynomial error growth Result: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}\left(\lambda^{2}\right)$ error growth.
- Treats decryption as an arithmetic function over $\mathbb{Z}_{q}$, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!
- Key idea: embed additive group $\left(\mathbb{Z}_{q},+\right)$ into a small symmetric group.


## Overview of Bootstrapping Algorithm [AP'14]

- Decryption in LWE-based schemes is a "rounded inner product:"

$$
\operatorname{Dec}(\mathbf{s}, \mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle\rceil_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

## Overview of Bootstrapping Algorithm [AP'14]

- Decryption in LWE-based schemes is a "rounded inner product:"

$$
\operatorname{Dec}(\mathbf{s}, \mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle\rceil_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$, embedded into a certain group $G$.

## Overview of Bootstrapping Algorithm [AP'14]

- Decryption in LWE-based schemes is a "rounded inner product:"

$$
\operatorname{Dec}(\mathbf{s}, \mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle\rceil_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$, embedded into a certain group $G$. We need two homomorphic algorithms for $\mathbb{Z}_{q} \subseteq G$ :

$$
a \boxplus \boxed{b}=a+b \quad \text { and } \quad \text { Equal? }(\boxed{v}, z)= \begin{cases}1 & \text { if } v=z \\ 0 & \text { otherwise }\end{cases}
$$

## Overview of Bootstrapping Algorithm [AP'14]

- Decryption in LWE-based schemes is a "rounded inner product:"

$$
\operatorname{Dec}(\mathbf{s}, \mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle\rceil_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$, embedded into a certain group $G$. We need two homomorphic algorithms for $\mathbb{Z}_{q} \subseteq G$ :

$$
a \boxplus \boxed{b}=a+b \quad \text { and } \quad \text { Equal? }(\boxed{v}, z)= \begin{cases}1 & \text { if } v=z \\ 0 & \text { otherwise }\end{cases}
$$

Given ciphertext $\mathbf{c} \in\{0,1\}^{n}$ and encryptions $s_{j}$, we evaluate:
(2) Inner Product: compute $\sqrt[v]{ }:=\langle\widehat{\mathbf{s}}, \mathbf{c}\rangle=\square_{j: c_{j}=1} s_{j}$

## Overview of Bootstrapping Algorithm [AP'14]

- Decryption in LWE-based schemes is a "rounded inner product:"

$$
\operatorname{Dec}(\mathbf{s}, \mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle\rceil_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$, embedded into a certain group $G$. We need two homomorphic algorithms for $\mathbb{Z}_{q} \subseteq G$ :

$$
a \rightarrow \boxed{b}=a+b \quad \text { and } \quad \text { Equal? }(\sqrt{v}, z)= \begin{cases}\boxed{1} & \text { if } v=z \\ 0 & \text { otherwise }\end{cases}
$$

Given ciphertext $\mathbf{c} \in\{0,1\}^{n}$ and encryptions $s_{j}$, we evaluate:
(2) Inner Product: compute $\sqrt[v]{ }:=\langle\widehat{\mathbf{s}}, \mathbf{c}\rangle=\square_{j: c_{j}=1} s_{j}$
(3) Round: compute $\lfloor v\rceil_{2}:=\underset{z:\lfloor z\rceil_{2}=1}{\square}$ Equal? $(\boxed{v}, z)$

## Overview of Bootstrapping Algorithm [AP'14]

- Decryption in LWE-based schemes is a "rounded inner product:"

$$
\operatorname{Dec}(\mathbf{s}, \mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle\rceil_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$, embedded into a certain group $G$. We need two homomorphic algorithms for $\mathbb{Z}_{q} \subseteq G$ :

$$
a \rightarrow \boxed{b}=a+b \quad \text { and } \quad \text { Equal? }(\sqrt{v}, z)= \begin{cases}\boxed{1} & \text { if } v=z \\ 0 & \text { otherwise }\end{cases}
$$

Given ciphertext $\mathbf{c} \in\{0,1\}^{n}$ and encryptions $s_{j}$, we evaluate:
(2) Inner Product: compute $\sqrt[v]{ }:=\langle\widehat{\mathbf{s}}, \mathbf{c}\rangle=\underset{j: c_{j}=1}{\square} s_{j}$
(3) Round: compute $\lfloor v\rceil_{2}:=\square_{z:\lfloor z\rceil_{2}=1}^{\dagger}$ Equal? $(\boxed{v}, z)$

- It remains to define the group $G$ and $\boxplus$, Equal? operations

Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $G=\left(S_{q}, \cdot\right)$

| $\mathbb{Z}_{q}$ | 0 | 1 | $q-1$ |
| :---: | :---: | :---: | :---: |
| $S_{q}$ | $\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & & & \\ & & & \\ & \ddots & & \\ & & 1\end{array}\right)$ | $\left(\begin{array}{llll} & 1 & & \\ & & \ddots & \\ & & & 1 \\ 1 & & & \end{array}\right)$ |

## Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $G=\left(S_{q}, \cdot\right)$



- Embed $s \in \mathbb{Z}_{q}$ as $\mathbf{P}_{s}$ and encrypt entry-wise (only need first column).


## Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $G=\left(S_{q}, \cdot\right)$

$\mathbb{Z}_{q}$
0
1
$q-1$

| $S_{q}\left(\begin{array}{cccc}\boxed{1} & & & \\ \begin{array}{\|cc\|}\hline 0 & 1\end{array} & & \\ \vdots & & \ddots & \\ \boxed{0} & & 1\end{array}\right)\left(\begin{array}{ccc}\boxed{0} & & 1 \\ \hline 1 & & \\ \vdots & \ddots & \\ \boxed{0} & & 1\end{array}\right)$ |
| :---: |
|  |
|  |
| $\mathbf{P}_{0}$ |

$\left.\begin{array}{c} \\ 1\end{array}\right)$

- Embed $s \in \mathbb{Z}_{q}$ as $\mathbf{P}_{s}$ and encrypt entry-wise (only need first column).
- Addition: $a \boxplus b$ implemented as $\mathbf{P}_{a} \square \mathbf{P}_{b}=\mathbf{P}_{a} \cdot \mathbf{P}_{b}$
* Recall: Right-associative multiplication yields polynomial error growth.


## Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $G=\left(S_{q}, \cdot\right)$

$\mathbb{Z}_{q}$
0
1
$q-1$

$1)$

- Embed $s \in \mathbb{Z}_{q}$ as $\mathbf{P}_{s}$ and encrypt entry-wise (only need first column).
- Addition: $a \boxplus b$ implemented as $\mathbf{P}_{a} \square \mathbf{P}_{b}=\mathbf{P}_{a} \cdot \mathbf{P}_{b}$
* Recall: Right-associative multiplication yields polynomial error growth.
- Equality test: Equal? $\left(\widehat{\mathbf{P}_{a}}, b\right)$ : output $b$ th entry.


## Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $G=\left(S_{q}, \cdot\right)$

$\mathbb{Z}_{q}$
0
1
$q-1$

$\left.\begin{array}{l} \\ 1\end{array}\right)$

- Embed $s \in \mathbb{Z}_{q}$ as $\mathbf{P}_{s}$ and encrypt entry-wise (only need first column).
- Addition: $a \boxplus b$ implemented as $\mathbf{P}_{a} \square \mathbf{P}_{b}=\mathbf{P}_{a} \cdot \mathbf{P}_{b}$
* Recall: Right-associative multiplication yields polynomial error growth.
- Equality test: Equal? $\left(\widehat{\mathbf{P}_{a}}, b\right)$ : output $b$ th entry.
- Bottom line: $\tilde{O}\left(\lambda^{3}\right)$ homomorphic operations to bootstrap.


## Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Use $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime $p_{i}$.
$\star$ Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.


## Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Use $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime $p_{i}$.
$\star$ Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$


## Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Use $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime $p_{i}$.
$\star$ Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \quad\left[\subseteq S_{\sum p_{i}}\right] \\
x & \mapsto\left(\mathbf{P}_{x \bmod p_{1}}, \ldots, \mathbf{P}_{x \bmod p_{t}}\right)
\end{aligned}
$$

## Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Use $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime $p_{i}$.
$\star$ Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \quad\left[\subseteq S_{\sum p_{i}}\right] \\
x & \mapsto\left(\mathbf{P}_{x \bmod p_{1}}, \ldots, \mathbf{P}_{x \bmod p_{t}}\right)
\end{aligned}
$$

- Addition $\boxplus$ : same as in warmup, but component-wise


## Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Use $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime $p_{i}$.
$\star$ Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \quad\left[\subseteq S_{\sum p_{i}}\right] \\
x & \mapsto\left(\mathbf{P}_{x \bmod p_{1}}, \ldots, \mathbf{P}_{x \bmod p_{t}}\right)
\end{aligned}
$$

- Addition $\boxplus$ : same as in warmup, but component-wise
- Equality test:

$$
\text { Equal }_{q}(\boxed{a}, b)=\underset{i}{\square} \text { Equal }_{p_{i}}\left(\boxed{a_{i}}, b \bmod p_{i}\right)
$$

## Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Use $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime $p_{i}$.
$\star$ Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \quad\left[\subseteq S_{\sum p_{i}}\right] \\
x & \mapsto\left(\mathbf{P}_{x \bmod p_{1}}, \ldots, \mathbf{P}_{x \bmod p_{t}}\right)
\end{aligned}
$$

- Addition $\boxplus$ : same as in warmup, but component-wise
- Equality test:

$$
\text { Equal }_{q}(\boxed{a}, b)=\underset{i}{\square} \text { Equal }_{p_{i}}\left(\boxed{a_{i}}, b \bmod p_{i}\right)
$$

- Bottom line: $\tilde{O}(\lambda)$ homomorphic operations to bootstrap.


## Refinement and Implementation [DucasMicciancio'15]

- Observation [AP'14]: using ring-LWE in the $m$ th cyclotomic ring $R$, can work with $r$-dim orthogonal matrices over $R$ (instead of $\mathbb{Z}$ ): the generalized symmetric group $\mathbb{Z}_{m} 乙 S_{r}$.


## Refinement and Implementation [DucasMicciancio' 15]

- Observation [AP'14]: using ring-LWE in the $m$ th cyclotomic ring $R$, can work with $r$-dim orthogonal matrices over $R$ (instead of $\mathbb{Z}$ ): the generalized symmetric group $\mathbb{Z}_{m} \backslash S_{r}$.
In particular, $m=q$ and $r=1$ yields $\mathbb{Z}_{q}$.


## Refinement and Implementation [DucasMicciancio' 15]

- Observation [AP'14]: using ring-LWE in the $m$ th cyclotomic ring $R$, can work with $r$-dim orthogonal matrices over $R$ (instead of $\mathbb{Z}$ ): the generalized symmetric group $\mathbb{Z}_{m} \backslash S_{r}$. In particular, $m=q$ and $r=1$ yields $\mathbb{Z}_{q}$.
- With a clever view of NAND as a mod-4 additive threshold, [DM'15] designed a specialized "bootstrapped NAND" procedure.


## Refinement and Implementation [DucasMicciancio' 15]

- Observation [AP'14]: using ring-LWE in the $m$ th cyclotomic ring $R$, can work with $r$-dim orthogonal matrices over $R$ (instead of $\mathbb{Z}$ ): the generalized symmetric group $\mathbb{Z}_{m} \backslash S_{r}$. In particular, $m=q$ and $r=1$ yields $\mathbb{Z}_{q}$.
- With a clever view of NAND as a mod-4 additive threshold, [DM'15] designed a specialized "bootstrapped NAND" procedure.
- FFTW for fast ring operations $\Longrightarrow$ bootstrapping in 0.6 sec: FHEW!


## Open Problems

- Can we bootstrap in sublinear \# homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").


## Open Problems

- Can we bootstrap in sublinear \# homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").
- Circular security for unbounded FHE?

As usual, unbounded FHE requires a "circular security" assumption: that it is safe to reveal an encryption of (embedded) $s k$ under itself.
Does our representation of $s k$ help or hurt security?

## Open Problems

- Can we bootstrap in sublinear \# homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").
- Circular security for unbounded FHE?

As usual, unbounded FHE requires a "circular security" assumption: that it is safe to reveal an encryption of (embedded) $s k$ under itself.
Does our representation of $s k$ help or hurt security?

- Can we bootstrap FHS/ABE/PE?

Current schemes are like "somewhat homomorphic" encryption: they have an a priori bound on circuits they can handle.

## Open Problems

- Can we bootstrap in sublinear \# homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").
- Circular security for unbounded FHE?

As usual, unbounded FHE requires a "circular security" assumption: that it is safe to reveal an encryption of (embedded) $s k$ under itself.
Does our representation of $s k$ help or hurt security?

- Can we bootstrap FHS/ABE/PE?

Current schemes are like "somewhat homomorphic" encryption: they have an a priori bound on circuits they can handle.

Thanks!

