
Bootstrapping
(with Small Error Growth)

Chris Peikert

University of Michigan

HEAT Summer School
12 Oct 2015

1 / 14

Fully Homomorphic Encryption [RAD’78,Gentry’09]

I FHE lets you do this:

µ Eval(f) f(µ)

A cryptographic “holy grail” with countless applications.

First solved in [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,. . .]

I “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

µ Eval(f) f(µ) Eval(g) g(f(µ))

I Thus far, “bootstrapping” is required to achieve unbounded FHE.

2 / 14

Fully Homomorphic Encryption [RAD’78,Gentry’09]

I FHE lets you do this:

µ Eval(f) f(µ)

A cryptographic “holy grail” with countless applications.

First solved in [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,. . .]

I “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

µ Eval(f) f(µ) Eval(g) g(f(µ))

I Thus far, “bootstrapping” is required to achieve unbounded FHE.

2 / 14

Fully Homomorphic Encryption [RAD’78,Gentry’09]

I FHE lets you do this:

µ Eval(f) f(µ)

A cryptographic “holy grail” with countless applications.

First solved in [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,. . .]

I “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

µ Eval(f) f(µ) Eval(g) g(f(µ))

I Thus far, “bootstrapping” is required to achieve unbounded FHE.

2 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext µ , allowing further homomorphic operations.

I Decrypting µ as a function of sk:

sk Dec
(
· , µ

)
µ

I Homomorphically decrypting µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime of Eval(Dec) is controlled by complexity of Dec.

Error growth of Eval(Dec) determines strength of cryptographic

assumption – e.g., initial LWE noise “rate” of sk .

3 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext µ , allowing further homomorphic operations.

I Decrypting µ as a function of sk:

sk Dec
(
· , µ

)
µ

I Homomorphically decrypting µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime of Eval(Dec) is controlled by complexity of Dec.

Error growth of Eval(Dec) determines strength of cryptographic

assumption – e.g., initial LWE noise “rate” of sk .

3 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext µ , allowing further homomorphic operations.

I Decrypting µ as a function of sk:

sk Dec
(
· , µ

)
µ

I Homomorphically decrypting µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime of Eval(Dec) is controlled by complexity of Dec.

Error growth of Eval(Dec) determines strength of cryptographic

assumption – e.g., initial LWE noise “rate” of sk .

3 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext µ , allowing further homomorphic operations.

I Decrypting µ as a function of sk:

sk Dec
(
· , µ

)
µ

I Homomorphically decrypting µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime of Eval(Dec) is controlled by complexity of Dec.

Error growth of Eval(Dec) determines strength of cryptographic

assumption – e.g., initial LWE noise “rate” of sk .

3 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphically evaluate the SHE decryption function to “refresh” a
ciphertext µ , allowing further homomorphic operations.

I Decrypting µ as a function of sk:

sk Dec
(
· , µ

)
µ

I Homomorphically decrypting µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime of Eval(Dec) is controlled by complexity of Dec.

Error growth of Eval(Dec) determines strength of cryptographic

assumption – e.g., initial LWE noise “rate” of sk .

3 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphic decryption of µ on sk :

sk Eval
(

Dec
(
· , µ

))
µ

I Runtime: quasi-linear Õ(λ) using rings [GHS’12,AP’13]

I Error growth using [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known boolean decryption circuits have logarithmic O(log λ) depth.

=⇒ Quasi-polynomial λO(log λ) error growth & lattice approx factors.

Can we do better??

4 / 14

Agenda for the Talk

1 Branching program bootstrapping with (large) polynomial runtime
and error growth [BrakerskiVaikuntanathan’14]

2 Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert’14]

3 Fast (< 1s) ring-based implementation
[DucasMicciancio’15]

5 / 14

Agenda for the Talk

1 Branching program bootstrapping with (large) polynomial runtime
and error growth [BrakerskiVaikuntanathan’14]

2 Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert’14]

3 Fast (< 1s) ring-based implementation
[DucasMicciancio’15]

5 / 14

Agenda for the Talk

1 Branching program bootstrapping with (large) polynomial runtime
and error growth [BrakerskiVaikuntanathan’14]

2 Arithmetic bootstrapping with small polynomial runtime and growth
[Alperin-SheriffPeikert’14]

3 Fast (< 1s) ring-based implementation
[DucasMicciancio’15]

5 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Somewhat Homomorphic Encryption [GentrySahaiWaters’13]

I Recall “gadget” matrix G over Zq [MP’12]: for any matrix A over Zq,

G−1(A) is short (over Z) and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ Z under s is a Zq-matrix C satisfying

sC = µ · sG+ e ≈ µ · sG (mod q).

I Homomorphic add: C1 ‘ C2 := C1 +C2.

I Homomorphic mult: C1 d C2 := C1 ·G−1(C2).

s ·C1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error e

.

I (Can randomize G−1 for tighter error growth, full rerandomization.)

6 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Error growth for multiplication is asymmetric and “quasi-additive:”

Error in C := C1 d C2 is e1 · poly(λ) + µ1 · e2.

I Right-associative multiplication: for Ci encrypting µi ∈ {0,±1},

C1 d (· · · (Ct−2 d (Ct−1 d Ct)) · · ·) has error
∑

i ei · poly(λ).

I Generalizes to orthogonal matrices over Z, e.g., permutation matrices.

Encrypt bitwise:(
0 1

1 0

)
︸ ︷︷ ︸

P1

d

(
0 1

1 0

)
︸ ︷︷ ︸

P2

=

(
1 0

0 1

)
︸ ︷︷ ︸

P1·P2(
e1,1 e1,2
e2,1 e2,2

)
︸ ︷︷ ︸

E

,

(
f1,1 f1,2
f2,1 f2,2

)
︸ ︷︷ ︸

F

→ E · poly(λ) +
(
f2,1 f2,2
f1,1 f1,2

)
︸ ︷︷ ︸

P1·F

7 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Error growth for multiplication is asymmetric and “quasi-additive:”

Error in C := C1 d C2 is e1 · poly(λ) + µ1 · e2.

I Right-associative multiplication: for Ci encrypting µi ∈ {0,±1},

C1 d (· · · (Ct−2 d (Ct−1 d Ct)) · · ·) has error
∑

i ei · poly(λ).

I Generalizes to orthogonal matrices over Z, e.g., permutation matrices.

Encrypt bitwise:(
0 1

1 0

)
︸ ︷︷ ︸

P1

d

(
0 1

1 0

)
︸ ︷︷ ︸

P2

=

(
1 0

0 1

)
︸ ︷︷ ︸

P1·P2(
e1,1 e1,2
e2,1 e2,2

)
︸ ︷︷ ︸

E

,

(
f1,1 f1,2
f2,1 f2,2

)
︸ ︷︷ ︸

F

→ E · poly(λ) +
(
f2,1 f2,2
f1,1 f1,2

)
︸ ︷︷ ︸

P1·F

7 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Error growth for multiplication is asymmetric and “quasi-additive:”

Error in C := C1 d C2 is e1 · poly(λ) + µ1 · e2.

I Right-associative multiplication: for Ci encrypting µi ∈ {0,±1},

C1 d (· · · (Ct−2 d (Ct−1 d Ct)) · · ·) has error
∑

i ei · poly(λ).

I Generalizes to orthogonal matrices over Z, e.g., permutation matrices.

Encrypt bitwise:(
0 1

1 0

)
︸ ︷︷ ︸

P1

d

(
0 1

1 0

)
︸ ︷︷ ︸

P2

=

(
1 0

0 1

)
︸ ︷︷ ︸

P1·P2(
e1,1 e1,2
e2,1 e2,2

)
︸ ︷︷ ︸

E

,

(
f1,1 f1,2
f2,1 f2,2

)
︸ ︷︷ ︸

F

→ E · poly(λ) +
(
f2,1 f2,2
f1,1 f1,2

)
︸ ︷︷ ︸

P1·F

7 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Polynomial error growth for any product of encrypted permutations.

I Barrington’s Theorem: boolean circuit → branching program:

0

0

1

P0,1

P0,0

P1,1

P1,0

. . .

. . .

P14,1

P14,0

P15,1

P15,0

I To refresh µ : convert Dec(·, µ) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs Pi,0,Pi,1.

7 Drawback: Barrington’s transformation is very inefficient.

8 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Polynomial error growth for any product of encrypted permutations.

I Barrington’s Theorem: boolean circuit → branching program:

0

0

1

depth d

≈ 3 log λ

P0,1

P0,0

P1,1

P1,0

. . .

. . .

P14,1

P14,0

P15,1

P15,0

length 4d

≈ λ6

I To refresh µ : convert Dec(·, µ) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs Pi,0,Pi,1.

7 Drawback: Barrington’s transformation is very inefficient.

8 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Polynomial error growth for any product of encrypted permutations.

I Barrington’s Theorem: boolean circuit → branching program:

0

0

1

depth d

≈ 3 log λ

P0,1

P0,0

P1,1

P1,0

. . .

. . .

P14,1

P14,0

P15,1

P15,0

length 4d

≈ λ6

I To refresh µ : convert Dec(·, µ) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs Pi,0,Pi,1.

7 Drawback: Barrington’s transformation is very inefficient.

8 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Polynomial error growth for any product of encrypted permutations.

I Barrington’s Theorem: boolean circuit → branching program:

0

0

1

depth d

≈ 3 log λ

P0,1

P0,0

P1,1

P1,0

. . .

. . .

P14,1

P14,0

P15,1

P15,0

length 4d

≈ λ6

I To refresh µ : convert Dec(·, µ) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs Pi,0,Pi,1.

7 Drawback: Barrington’s transformation is very inefficient.

8 / 14

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Polynomial error growth for any product of encrypted permutations.

I Barrington’s Theorem: boolean circuit → branching program:

0

0

1

depth d ≈ 3 log λ

P0,1

P0,0

P1,1

P1,0

. . .

. . .

P14,1

P14,0

P15,1

P15,0

length 4d ≈ λ6

I To refresh µ : convert Dec(·, µ) to BP; homomorphically evaluate
using encrypted bits of sk to select from pairs Pi,0,Pi,1.

7 Drawback: Barrington’s transformation is very inefficient.

8 / 14

More Efficient Bootstrapping [Alperin-SheriffPeikert’14]

I Faster algorithm with small polynomial error growth

Result: quasi-optimal Õ(λ) homom ops; Õ(λ2) error growth.

I Treats decryption as an arithmetic function over Zq, not a circuit.

Avoids Barrington’s Theorem – but still uses permutation matrices!

I Key idea: embed additive group (Zq,+) into a small symmetric group.

9 / 14

More Efficient Bootstrapping [Alperin-SheriffPeikert’14]

I Faster algorithm with small polynomial error growth

Result: quasi-optimal Õ(λ) homom ops; Õ(λ2) error growth.

I Treats decryption as an arithmetic function over Zq, not a circuit.

Avoids Barrington’s Theorem – but still uses permutation matrices!

I Key idea: embed additive group (Zq,+) into a small symmetric group.

9 / 14

More Efficient Bootstrapping [Alperin-SheriffPeikert’14]

I Faster algorithm with small polynomial error growth

Result: quasi-optimal Õ(λ) homom ops; Õ(λ2) error growth.

I Treats decryption as an arithmetic function over Zq, not a circuit.

Avoids Barrington’s Theorem – but still uses permutation matrices!

I Key idea: embed additive group (Zq,+) into a small symmetric group.

9 / 14

More Efficient Bootstrapping [Alperin-SheriffPeikert’14]

I Faster algorithm with small polynomial error growth

Result: quasi-optimal Õ(λ) homom ops; Õ(λ2) error growth.

I Treats decryption as an arithmetic function over Zq, not a circuit.

Avoids Barrington’s Theorem – but still uses permutation matrices!

I Key idea: embed additive group (Zq,+) into a small symmetric group.

9 / 14

More Efficient Bootstrapping [Alperin-SheriffPeikert’14]

I Faster algorithm with small polynomial error growth

Result: quasi-optimal Õ(λ) homom ops; Õ(λ2) error growth.

I Treats decryption as an arithmetic function over Zq, not a circuit.

Avoids Barrington’s Theorem – but still uses permutation matrices!

I Key idea: embed additive group (Zq,+) into a small symmetric group.

9 / 14

Overview of Bootstrapping Algorithm [AP’14]

I Decryption in LWE-based schemes is a “rounded inner product:”

Dec(s, c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq, embedded into a certain group G.

We need two homomorphic algorithms for Zq ⊆ G:

a ‘ b = a+ b and Equal?(v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , we evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equal?(v , z)

I It remains to define the group G and
Ð

, Equal? operations

10 / 14

Overview of Bootstrapping Algorithm [AP’14]

I Decryption in LWE-based schemes is a “rounded inner product:”

Dec(s, c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq, embedded into a certain group G.

We need two homomorphic algorithms for Zq ⊆ G:

a ‘ b = a+ b and Equal?(v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , we evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equal?(v , z)

I It remains to define the group G and
Ð

, Equal? operations

10 / 14

Overview of Bootstrapping Algorithm [AP’14]

I Decryption in LWE-based schemes is a “rounded inner product:”

Dec(s, c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq, embedded into a certain group G.

We need two homomorphic algorithms for Zq ⊆ G:

a ‘ b = a+ b and Equal?(v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , we evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equal?(v , z)

I It remains to define the group G and
Ð

, Equal? operations

10 / 14

Overview of Bootstrapping Algorithm [AP’14]

I Decryption in LWE-based schemes is a “rounded inner product:”

Dec(s, c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq, embedded into a certain group G.

We need two homomorphic algorithms for Zq ⊆ G:

a ‘ b = a+ b and Equal?(v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , we evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equal?(v , z)

I It remains to define the group G and
Ð

, Equal? operations

10 / 14

Overview of Bootstrapping Algorithm [AP’14]

I Decryption in LWE-based schemes is a “rounded inner product:”

Dec(s, c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq, embedded into a certain group G.

We need two homomorphic algorithms for Zq ⊆ G:

a ‘ b = a+ b and Equal?(v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , we evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equal?(v , z)

I It remains to define the group G and
Ð

, Equal? operations

10 / 14

Overview of Bootstrapping Algorithm [AP’14]

I Decryption in LWE-based schemes is a “rounded inner product:”

Dec(s, c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq, embedded into a certain group G.

We need two homomorphic algorithms for Zq ⊆ G:

a ‘ b = a+ b and Equal?(v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , we evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equal?(v , z)

I It remains to define the group G and
Ð

, Equal? operations
10 / 14

Warmup: Embedding (Zq,+) into G = (Sq, ·)

Zq 0 1 . . . q − 1

Sq

1

1 1

0

1

...

. . .

0

1

0 1

1

1

1
...

. . .

0

1

 . . .

0

1

1
... 1

. . .

0

1

1

1

P0 P1 . . . Pq−1

I Embed s ∈ Zq as Ps and encrypt entry-wise (only need first column).

I Addition: a ‘ b implemented as Pa d Pb = Pa ·Pb

F Recall: Right-associative multiplication yields polynomial error growth.

I Equality test: Equal?(Pa , b): output bth entry.

I Bottom line: Õ(λ3) homomorphic operations to bootstrap.

11 / 14

Warmup: Embedding (Zq,+) into G = (Sq, ·)

Zq 0 1 . . . q − 1

Sq

1

1 1

0 1
...

. . .

0 1

0

1

1

1

1

...
. . .

0 1

 . . .

0 1

1

...

1

. . .

0 1

1

1

P0 P1 . . . Pq−1

I Embed s ∈ Zq as Ps and encrypt entry-wise (only need first column).

I Addition: a ‘ b implemented as Pa d Pb = Pa ·Pb

F Recall: Right-associative multiplication yields polynomial error growth.

I Equality test: Equal?(Pa , b): output bth entry.

I Bottom line: Õ(λ3) homomorphic operations to bootstrap.

11 / 14

Warmup: Embedding (Zq,+) into G = (Sq, ·)

Zq 0 1 . . . q − 1

Sq

1

1 1

0 1
...

. . .

0 1

0

1

1

1

1

...
. . .

0 1

 . . .

0 1

1

...

1

. . .

0 1

1

1

P0 P1 . . . Pq−1

I Embed s ∈ Zq as Ps and encrypt entry-wise (only need first column).

I Addition: a ‘ b implemented as Pa d Pb = Pa ·Pb

F Recall: Right-associative multiplication yields polynomial error growth.

I Equality test: Equal?(Pa , b): output bth entry.

I Bottom line: Õ(λ3) homomorphic operations to bootstrap.

11 / 14

Warmup: Embedding (Zq,+) into G = (Sq, ·)

Zq 0 1 . . . q − 1

Sq

1

1 1

0 1
...

. . .

0 1

0

1

1

1

1

...
. . .

0 1

 . . .

0 1

1

...

1

. . .

0 1

1

1

P0 P1 . . . Pq−1

I Embed s ∈ Zq as Ps and encrypt entry-wise (only need first column).

I Addition: a ‘ b implemented as Pa d Pb = Pa ·Pb

F Recall: Right-associative multiplication yields polynomial error growth.

I Equality test: Equal?(Pa , b): output bth entry.

I Bottom line: Õ(λ3) homomorphic operations to bootstrap.

11 / 14

Warmup: Embedding (Zq,+) into G = (Sq, ·)

Zq 0 1 . . . q − 1

Sq

1

1 1

0 1
...

. . .

0 1

0

1

1

1

1

...
. . .

0 1

 . . .

0 1

1

...

1

. . .

0 1

1

1

P0 P1 . . . Pq−1

I Embed s ∈ Zq as Ps and encrypt entry-wise (only need first column).

I Addition: a ‘ b implemented as Pa d Pb = Pa ·Pb

F Recall: Right-associative multiplication yields polynomial error growth.

I Equality test: Equal?(Pa , b): output bth entry.

I Bottom line: Õ(λ3) homomorphic operations to bootstrap.

11 / 14

Embedding (Zq,+) into Smaller Symmetric Groups

I Use q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt

I New embedding:

Zq → Sp1 × · · · × Spt
[
⊆ S∑ pi

]
x 7→ (Px mod p1 , . . . ,Px mod pt)

I Addition ‘: same as in warmup, but component-wise

I Equality test:

Equalq(a , b) =
ô

i

Equalpi(ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.

12 / 14

Embedding (Zq,+) into Smaller Symmetric Groups

I Use q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt

I New embedding:

Zq → Sp1 × · · · × Spt
[
⊆ S∑ pi

]
x 7→ (Px mod p1 , . . . ,Px mod pt)

I Addition ‘: same as in warmup, but component-wise

I Equality test:

Equalq(a , b) =
ô

i

Equalpi(ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.

12 / 14

Embedding (Zq,+) into Smaller Symmetric Groups

I Use q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt
I New embedding:

Zq → Sp1 × · · · × Spt
[
⊆ S∑ pi

]
x 7→ (Px mod p1 , . . . ,Px mod pt)

I Addition ‘: same as in warmup, but component-wise

I Equality test:

Equalq(a , b) =
ô

i

Equalpi(ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.

12 / 14

Embedding (Zq,+) into Smaller Symmetric Groups

I Use q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt
I New embedding:

Zq → Sp1 × · · · × Spt
[
⊆ S∑ pi

]
x 7→ (Px mod p1 , . . . ,Px mod pt)

I Addition ‘: same as in warmup, but component-wise

I Equality test:

Equalq(a , b) =
ô

i

Equalpi(ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.

12 / 14

Embedding (Zq,+) into Smaller Symmetric Groups

I Use q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt
I New embedding:

Zq → Sp1 × · · · × Spt
[
⊆ S∑ pi

]
x 7→ (Px mod p1 , . . . ,Px mod pt)

I Addition ‘: same as in warmup, but component-wise

I Equality test:

Equalq(a , b) =
ô

i

Equalpi(ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.

12 / 14

Embedding (Zq,+) into Smaller Symmetric Groups

I Use q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt
I New embedding:

Zq → Sp1 × · · · × Spt
[
⊆ S∑ pi

]
x 7→ (Px mod p1 , . . . ,Px mod pt)

I Addition ‘: same as in warmup, but component-wise

I Equality test:

Equalq(a , b) =
ô

i

Equalpi(ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.

12 / 14

Refinement and Implementation [DucasMicciancio’15]

I Observation [AP’14]: using ring-LWE in the mth cyclotomic ring R,
can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Zm o Sr.

In particular, m = q and r = 1 yields Zq.

I With a clever view of NAND as a mod-4 additive threshold, [DM’15]

designed a specialized “bootstrapped NAND” procedure.

I FFTW for fast ring operations =⇒ bootstrapping in 0.6 sec: FHEW!

13 / 14

Refinement and Implementation [DucasMicciancio’15]

I Observation [AP’14]: using ring-LWE in the mth cyclotomic ring R,
can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Zm o Sr.
In particular, m = q and r = 1 yields Zq.

I With a clever view of NAND as a mod-4 additive threshold, [DM’15]

designed a specialized “bootstrapped NAND” procedure.

I FFTW for fast ring operations =⇒ bootstrapping in 0.6 sec: FHEW!

13 / 14

Refinement and Implementation [DucasMicciancio’15]

I Observation [AP’14]: using ring-LWE in the mth cyclotomic ring R,
can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Zm o Sr.
In particular, m = q and r = 1 yields Zq.

I With a clever view of NAND as a mod-4 additive threshold, [DM’15]

designed a specialized “bootstrapped NAND” procedure.

I FFTW for fast ring operations =⇒ bootstrapping in 0.6 sec: FHEW!

13 / 14

Refinement and Implementation [DucasMicciancio’15]

I Observation [AP’14]: using ring-LWE in the mth cyclotomic ring R,
can work with r-dim orthogonal matrices over R (instead of Z):
the generalized symmetric group Zm o Sr.
In particular, m = q and r = 1 yields Zq.

I With a clever view of NAND as a mod-4 additive threshold, [DM’15]

designed a specialized “bootstrapped NAND” procedure.

I FFTW for fast ring operations =⇒ bootstrapping in 0.6 sec: FHEW!

13 / 14

Open Problems

I Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW’13]: few plaintext bits / ciphertext (no “packing”).

I Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

I Can we bootstrap FHS/ABE/PE?

Current schemes are like “somewhat homomorphic” encryption: they
have an a priori bound on circuits they can handle.

Thanks!

14 / 14

Open Problems

I Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW’13]: few plaintext bits / ciphertext (no “packing”).

I Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

I Can we bootstrap FHS/ABE/PE?

Current schemes are like “somewhat homomorphic” encryption: they
have an a priori bound on circuits they can handle.

Thanks!

14 / 14

Open Problems

I Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW’13]: few plaintext bits / ciphertext (no “packing”).

I Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

I Can we bootstrap FHS/ABE/PE?

Current schemes are like “somewhat homomorphic” encryption: they
have an a priori bound on circuits they can handle.

Thanks!

14 / 14

Open Problems

I Can we bootstrap in sublinear # homom ops with polynomial error?

Bottleneck in [GSW’13]: few plaintext bits / ciphertext (no “packing”).

I Circular security for unbounded FHE?

As usual, unbounded FHE requires a “circular security” assumption:
that it is safe to reveal an encryption of (embedded) sk under itself.

Does our representation of sk help or hurt security?

I Can we bootstrap FHS/ABE/PE?

Current schemes are like “somewhat homomorphic” encryption: they
have an a priori bound on circuits they can handle.

Thanks!

14 / 14

