Bootstrapping (with Small Error Growth)

Chris Peikert

University of Michigan

HEAT Summer School 12 Oct 2015 Fully Homomorphic Encryption [RAD'78,Gentry'09]

FHE lets you do this:

$$\mu \longrightarrow \mathsf{Eval}(f) \longrightarrow f(\mu)$$

A cryptographic "holy grail" with countless applications.

First solved in [Gentry'09], followed by [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

Fully Homomorphic Encryption [RAD'78,Gentry'09]

FHE lets you do this:

$$\mu \longrightarrow \mathsf{Eval}(f) \longrightarrow f(\mu)$$

A cryptographic "holy grail" with countless applications.

First solved in [Gentry'09], followed by [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

 "Naturally occurring" schemes are somewhat homomorphic (SHE): can only evaluate functions of an *a priori* bounded depth.

$$\mu \to \mathsf{Eval}(f) \to f(\mu) \to \mathsf{Eval}(g) \to g(f(\mu))$$

Fully Homomorphic Encryption [RAD'78,Gentry'09]

FHE lets you do this:

$$\mu \longrightarrow \mathsf{Eval}(f) \longrightarrow f(\mu)$$

A cryptographic "holy grail" with countless applications.

First solved in [Gentry'09], followed by [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

 "Naturally occurring" schemes are somewhat homomorphic (SHE): can only evaluate functions of an *a priori* bounded depth.

$$\mu \to \mathsf{Eval}(f) \to f(\mu) \to \mathsf{Eval}(g) \to g(f(\mu))$$

Thus far, "bootstrapping" is required to achieve unbounded FHE.

Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext µ, allowing further homomorphic operations.

Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext µ, allowing further homomorphic operations.

• Decrypting μ as a <u>function of sk</u>:

$$sk \longrightarrow \mathsf{Dec}\Big(\cdot \ , \mu \Big) \longrightarrow \mu$$

Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext µ, allowing further homomorphic operations.

• Decrypting μ as a function of sk:

$$sk \longrightarrow \mathsf{Dec}\Big(\cdot, \mu\Big) \longrightarrow \mu$$

• Homomorphically decrypting μ on sk:

$$sk \longrightarrow \mathsf{Eval}(\mathsf{Dec}(\cdot, \mu)) \longrightarrow \mu$$

Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext µ, allowing further homomorphic operations.

• Decrypting μ as a function of sk:

$$sk \longrightarrow \mathsf{Dec}\Big(\cdot \ , \mu\Big) \longrightarrow \mu$$

• Homomorphically decrypting μ on sk:

$$sk \longrightarrow \mathsf{Eval}(\mathsf{Dec}(\cdot, \mu)) \longrightarrow \mu$$

Runtime of Eval(Dec) is controlled by complexity of Dec.

Homomorphically evaluate the SHE decryption function to "refresh" a ciphertext µ, allowing further homomorphic operations.

• Decrypting μ as a function of sk:

$$sk \longrightarrow \mathsf{Dec}\Big(\cdot \ , \mu\Big) \longrightarrow \mu$$

• Homomorphically decrypting μ on sk:

$$sk \longrightarrow \mathsf{Eval}(\mathsf{Dec}(\cdot, \mu)) \longrightarrow \mu$$

Runtime of Eval(Dec) is controlled by complexity of Dec. Error growth of Eval(Dec) determines strength of cryptographic assumption – e.g., initial LWE noise "rate" of sk.

• Homomorphic decryption of μ on sk :

$$sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$$

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

• Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
 - *** Homom Addition:** Error grows additively.

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

• Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]

Error growth using [BGV'12,B'12,GSW'13]:

- * Homom Addition: Error grows additively.
- *** Homom Multiplication:** Error grows by $poly(\lambda)$ factor.

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

- Runtime: quasi-linear $\tilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
 - * Homom Addition: Error grows additively.
 - *** Homom Multiplication:** Error grows by $poly(\lambda)$ factor.
- Known boolean decryption circuits have logarithmic $O(\log \lambda)$ depth.

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

- Runtime: quasi-linear $ilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
 - * Homom Addition: Error grows additively.
 - *** Homom Multiplication:** Error grows by $poly(\lambda)$ factor.
- Known boolean decryption circuits have logarithmic O(log λ) depth.
 ⇒ Quasi-polynomial λ^{O(log λ)} error growth & lattice approx factors.

► Homomorphic decryption of
$$\mu$$
 on sk :
 $sk \longrightarrow Eval(Dec(\cdot, \mu)) \longrightarrow \mu$

- Runtime: quasi-linear $ilde{O}(\lambda)$ using rings [GHS'12,AP'13]
- Error growth using [BGV'12,B'12,GSW'13]:
 - * Homom Addition: Error grows additively.
 - * Homom Multiplication: Error grows by $poly(\lambda)$ factor.
- Known boolean decryption circuits have logarithmic O(log λ) depth. ⇒ Quasi-polynomial λ^{O(log λ)} error growth & lattice approx factors.

Can we do better??

Agenda for the Talk

 Branching program bootstrapping with (large) polynomial runtime and error growth [BrakerskiVaikuntanathan'14]

Agenda for the Talk

- Branching program bootstrapping with (large) polynomial runtime and error growth [BrakerskiVaikuntanathan'14]
- 2 Arithmetic bootstrapping with small polynomial runtime and growth [Alperin-SheriffPeikert'14]

Agenda for the Talk

- Branching program bootstrapping with (large) polynomial runtime and error growth [BrakerskiVaikuntanathan'14]
- 2 Arithmetic bootstrapping with small polynomial runtime and growth [Alperin-SheriffPeikert'14]
- **3** Fast (< 1s) ring-based implementation

[DucasMicciancio'15]

▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

• Homomorphic add: $\mathbf{C}_1 \boxplus \mathbf{C}_2 := \mathbf{C}_1 + \mathbf{C}_2$.

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

- Homomorphic add: $\mathbf{C}_1 \boxplus \mathbf{C}_2 := \mathbf{C}_1 + \mathbf{C}_2$.
- Homomorphic mult: $\mathbf{C}_1 \boxdot \mathbf{C}_2 := \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2).$

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

- Homomorphic add: $\mathbf{C}_1 \boxplus \mathbf{C}_2 := \mathbf{C}_1 + \mathbf{C}_2$.
- Homomorphic mult: $\mathbf{C}_1 \boxdot \mathbf{C}_2 := \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

$$\mathbf{s} \cdot \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2) = (\mu_1 \cdot \mathbf{s}\mathbf{G} + \mathbf{e}_1) \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$$

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

- Homomorphic add: $\mathbf{C}_1 \boxplus \mathbf{C}_2 := \mathbf{C}_1 + \mathbf{C}_2$.
- Homomorphic mult: $\mathbf{C}_1 \boxdot \mathbf{C}_2 := \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2).$

$$\mathbf{s} \cdot \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2) = (\mu_1 \cdot \mathbf{s}\mathbf{G} + \mathbf{e}_1) \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$$
$$= \mu_1 \cdot \mathbf{s}\mathbf{C}_2 + \mathbf{e}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$$

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

- Homomorphic add: $\mathbf{C}_1 \boxplus \mathbf{C}_2 := \mathbf{C}_1 + \mathbf{C}_2$.
- Homomorphic mult: $\mathbf{C}_1 \boxdot \mathbf{C}_2 := \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2).$

$$\mathbf{s} \cdot \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2) = (\mu_1 \cdot \mathbf{s}\mathbf{G} + \mathbf{e}_1) \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$$

= $\mu_1 \cdot \mathbf{s}\mathbf{C}_2 + \mathbf{e}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$
= $\mu_1 \mu_2 \cdot \mathbf{s}\mathbf{G} + \underbrace{\mu_1 \cdot \mathbf{e}_2 + \mathbf{e}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)}_{\text{new error } \mathbf{e}}.$

- ▶ Recall "gadget" matrix **G** over \mathbb{Z}_q [MP'12]: for any matrix **A** over \mathbb{Z}_q , **G**⁻¹(**A**) is short (over \mathbb{Z}) and **G** · **G**⁻¹(**A**) = **A** (mod q).
- Ciphertext encrypting $\mu \in \mathbb{Z}$ under s is a \mathbb{Z}_q -matrix C satisfying

$$\mathbf{sC} = \mu \cdot \mathbf{sG} + \mathbf{e} \approx \mu \cdot \mathbf{sG} \pmod{q}.$$

- Homomorphic add: $\mathbf{C}_1 \boxplus \mathbf{C}_2 := \mathbf{C}_1 + \mathbf{C}_2$.
- Homomorphic mult: $\mathbf{C}_1 \boxdot \mathbf{C}_2 := \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2).$

$$\mathbf{s} \cdot \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2) = (\mu_1 \cdot \mathbf{s}\mathbf{G} + \mathbf{e}_1) \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$$

= $\mu_1 \cdot \mathbf{s}\mathbf{C}_2 + \mathbf{e}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$
= $\mu_1 \mu_2 \cdot \mathbf{s}\mathbf{G} + \underbrace{\mu_1 \cdot \mathbf{e}_2 + \mathbf{e}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)}_{\text{new error } \mathbf{e}}.$

• (Can randomize \mathbf{G}^{-1} for tighter error growth, full rerandomization.)

Error growth for multiplication is asymmetric and "quasi-additive:"

Error in $\mathbf{C} := \mathbf{C}_1 \boxdot \mathbf{C}_2$ is $\mathbf{e}_1 \cdot \mathsf{poly}(\lambda) + \mu_1 \cdot \mathbf{e}_2$.

- Firror growth for multiplication is asymmetric and "quasi-additive:" Error in $\mathbf{C} := \mathbf{C}_1 \boxdot \mathbf{C}_2$ is $\mathbf{e}_1 \cdot \mathsf{poly}(\lambda) + \mu_1 \cdot \mathbf{e}_2$.
- ▶ Right-associative multiplication: for \mathbf{C}_i encrypting $\mu_i \in \{0, \pm 1\}$, $\mathbf{C}_1 \boxdot (\cdots (\mathbf{C}_{t-2} \boxdot (\mathbf{C}_{t-1} \boxdot \mathbf{C}_t)) \cdots)$ has error $\sum_i \mathbf{e}_i \cdot \mathsf{poly}(\lambda)$.

Error growth for multiplication is asymmetric and "quasi-additive:"

Error in $\mathbf{C} := \mathbf{C}_1 \odot \mathbf{C}_2$ is $\mathbf{e}_1 \cdot \mathsf{poly}(\lambda) + \mu_1 \cdot \mathbf{e}_2$.

▶ Right-associative multiplication: for C_i encrypting $\mu_i \in \{0, \pm 1\}$,

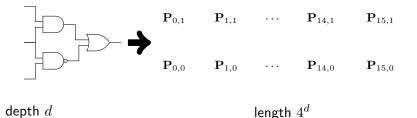
 $\mathbf{C}_1 \boxdot (\cdots (\mathbf{C}_{t-2} \boxdot (\mathbf{C}_{t-1} \boxdot \mathbf{C}_t)) \cdots) \text{ has error } \sum_i \mathbf{e}_i \cdot \mathsf{poly}(\lambda).$

Generalizes to orthogonal matrices over Z, e.g., permutation matrices. Encrypt bitwise:

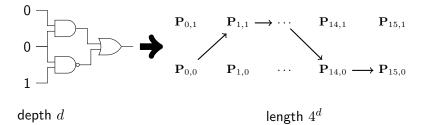
$$\underbrace{\begin{pmatrix} \begin{matrix} 0 \\ 1 \end{matrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} P_1 \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} P_2 \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} P_2 \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} P_1 \cdot P_2 \end{matrix} \\ \hline \begin{matrix} P_1 \cdot P_2 \end{matrix} \\ \hline \begin{matrix} P_{1,1} \cdot P_2 \end{matrix} \\ \hline \hline \begin{matrix} P_{1,1} \cdot P_2 \end{matrix} \\ \hline \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} P_{1,1} \cdot P_2 \end{matrix} \\ \hline \hline \end{matrix} \\ \hline \end{matrix}$$
 \\ \hline \end{matrix} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{matrix} \\ \hline \\ \hline \\ \hline \\ \hline

Polynomial error growth for any product of encrypted permutations.

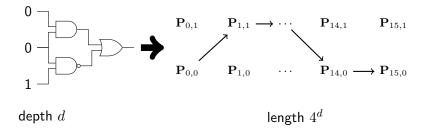
- Polynomial error growth for any product of encrypted permutations.
- ▶ Barrington's Theorem: boolean circuit → branching program:



- Polynomial error growth for any product of encrypted permutations.
- ▶ Barrington's Theorem: boolean circuit → branching program:

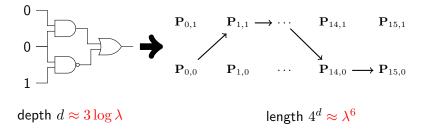


- Polynomial error growth for any product of encrypted permutations.
- ▶ Barrington's Theorem: boolean circuit → branching program:



To refresh μ: convert Dec(·, μ) to BP; homomorphically evaluate using encrypted bits of sk to select from pairs P_{i,0}, P_{i,1}.

- Polynomial error growth for any product of encrypted permutations.
- ▶ Barrington's Theorem: boolean circuit → branching program:



- To refresh μ: convert Dec(·, μ) to BP; homomorphically evaluate using encrypted bits of sk to select from pairs P_{i,0}, P_{i,1}.
- X Drawback: Barrington's transformation is very inefficient.

Faster algorithm with small polynomial error growth

Faster algorithm with small polynomial error growth <u>Result</u>: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}(\lambda^2)$ error growth.

- Faster algorithm with small polynomial error growth <u>Result</u>: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}(\lambda^2)$ error growth.
- Treats decryption as an arithmetic function over \mathbb{Z}_q , not a circuit.

- Faster algorithm with small polynomial error growth <u>Result</u>: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}(\lambda^2)$ error growth.
- Treats decryption as an arithmetic function over Z_q, not a circuit. Avoids Barrington's Theorem – but still uses permutation matrices!

- Faster algorithm with small polynomial error growth <u>Result</u>: quasi-optimal $\tilde{O}(\lambda)$ homom ops; $\tilde{O}(\lambda^2)$ error growth.
- Treats decryption as an arithmetic function over Z_q, not a circuit. Avoids Barrington's Theorem – but still uses permutation matrices!
- Key idea: embed additive group $(\mathbb{Z}_q, +)$ into a small symmetric group.

▶ Decryption in LWE-based schemes is a "rounded inner product:" $Dec(\mathbf{s}, \mathbf{c}) := \lfloor \langle \mathbf{s}, \mathbf{c} \rangle \rceil_2 \in \{0, 1\}$ with $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{c} \in \{0, 1\}^n$

▶ Decryption in LWE-based schemes is a "rounded inner product:" $Dec(\mathbf{s}, \mathbf{c}) := \lfloor \langle \mathbf{s}, \mathbf{c} \rangle \rceil_2 \in \{0, 1\}$ with $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{c} \in \{0, 1\}^n$

1 Prepare: Encrypt each $s_j \in \mathbb{Z}_q$, embedded into a certain group G.

▶ Decryption in LWE-based schemes is a "rounded inner product:" $Dec(\mathbf{s}, \mathbf{c}) := \lfloor \langle \mathbf{s}, \mathbf{c} \rangle \rceil_2 \in \{0, 1\}$ with $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{c} \in \{0, 1\}^n$

1 Prepare: Encrypt each $s_j \in \mathbb{Z}_q$, embedded into a certain group G. We need two homomorphic algorithms for $\mathbb{Z}_q \subseteq G$:

$$\boxed{a} \boxplus \boxed{b} = \boxed{a+b} \quad \text{and} \quad \mathsf{Equal?}(\boxed{v}, z) = \begin{cases} \boxed{1} & \text{if } v = z \\ \boxed{0} & \text{otherwise} \end{cases}$$

▶ Decryption in LWE-based schemes is a "rounded inner product:" $Dec(\mathbf{s}, \mathbf{c}) := \lfloor \langle \mathbf{s}, \mathbf{c} \rangle \rceil_2 \in \{0, 1\}$ with $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{c} \in \{0, 1\}^n$

1 Prepare: Encrypt each $s_j \in \mathbb{Z}_q$, embedded into a certain group G. We need two homomorphic algorithms for $\mathbb{Z}_q \subseteq G$:

$$\label{eq:constraint} \fbox{a} \boxplus \fbox{b} = \fbox{a} + b \qquad \text{and} \qquad \texttt{Equal?}(\fbox{v}, z) = \begin{cases} \fbox{1} & \text{if } v = z \\ \fbox{0} & \text{otherwise} \end{cases}$$

Given ciphertext $\mathbf{c} \in \{0,1\}^n$ and encryptions s_j , we evaluate:

2 Inner Product: compute
$$v := \langle \mathbf{s}, \mathbf{c} \rangle = \bigoplus_{j: c_j = 1} s_j$$

▶ Decryption in LWE-based schemes is a "rounded inner product:" $\mathsf{Dec}(\mathbf{s}, \mathbf{c}) := \lfloor \langle \mathbf{s}, \mathbf{c} \rangle \rceil_2 \in \{0, 1\}$ with $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{c} \in \{0, 1\}^n$

1 Prepare: Encrypt each $s_j \in \mathbb{Z}_q$, embedded into a certain group G. We need two homomorphic algorithms for $\mathbb{Z}_q \subseteq G$:

$$\boxed{a} \boxplus \boxed{b} = \boxed{a+b} \quad \text{and} \quad \mathsf{Equal}?(\boxed{v}, z) = \begin{cases} \boxed{1} & \text{if } v = z \\ \boxed{0} & \text{otherwise} \end{cases}$$

Given ciphertext $\mathbf{c} \in \{0,1\}^n$ and encryptions s_j , we evaluate:

2 Inner Product: compute
$$v := \langle \mathbf{s}, \mathbf{c} \rangle = \bigoplus_{j: c_j = 1} s_j$$

3 Round: compute
$$\lfloor \lfloor v \rceil_2 \rfloor := \bigoplus_{z: \lfloor z \rceil_2 = 1}$$
Equal? (v, z)

▶ Decryption in LWE-based schemes is a "rounded inner product:" $\mathsf{Dec}(\mathbf{s}, \mathbf{c}) := \lfloor \langle \mathbf{s}, \mathbf{c} \rangle \rceil_2 \in \{0, 1\}$ with $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{c} \in \{0, 1\}^n$

1 Prepare: Encrypt each $s_j \in \mathbb{Z}_q$, embedded into a certain group G. We need two homomorphic algorithms for $\mathbb{Z}_q \subseteq G$:

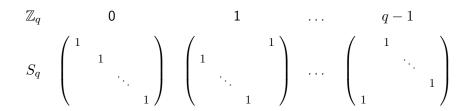
$$\label{eq:constraint} \fbox{a} \boxplus \fbox{b} = \fbox{a} + b \qquad \text{and} \qquad \texttt{Equal}?(\fbox{v},z) = \begin{cases} \fbox{1} & \text{if } v = z \\ \fbox{0} & \text{otherwise} \end{cases}$$

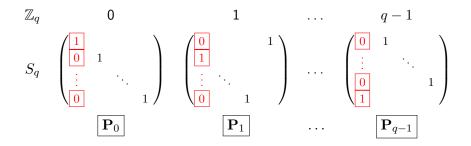
Given ciphertext $\mathbf{c} \in \{0,1\}^n$ and encryptions s_j , we evaluate:

2 Inner Product: compute
$$v := \langle \mathbf{s}, \mathbf{c} \rangle = \bigoplus_{j: c_j = 1} s_j$$

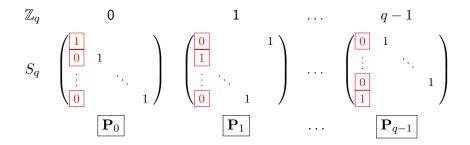
3 Round: compute
$$\boxed{\lfloor v \rceil_2} := \underset{z: \lfloor z \rceil_2 = 1}{\coprod} Equal?(\boxed{v}, z)$$

▶ It remains to define the group G and \square , Equal? operations





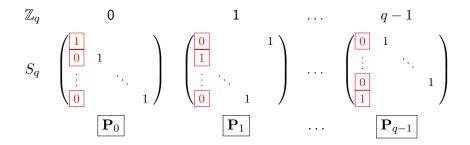
Embed $s \in \mathbb{Z}_q$ as \mathbf{P}_s and encrypt entry-wise (only need first column).



Embed $s \in \mathbb{Z}_q$ as \mathbf{P}_s and encrypt entry-wise (only need first column).

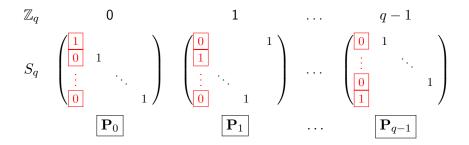
Addition: $a \oplus b$ implemented as $\mathbf{P}_a \odot \mathbf{P}_b = \mathbf{P}_a \cdot \mathbf{P}_b$

* Recall: Right-associative multiplication yields polynomial error growth.



• Embed $s \in \mathbb{Z}_q$ as \mathbf{P}_s and encrypt entry-wise (only need first column).

- Addition: $a \oplus b$ implemented as $\mathbf{P}_a \odot \mathbf{P}_b = \mathbf{P}_a \cdot \mathbf{P}_b$
 - * Recall: Right-associative multiplication yields polynomial error growth.
- Equality test: Equal? (\mathbf{P}_a, b) : output *b*th entry.



• Embed $s \in \mathbb{Z}_q$ as \mathbf{P}_s and encrypt entry-wise (only need first column).

- Addition: $a \boxplus b$ implemented as $\mathbf{P}_a \cdot \mathbf{P}_b = \mathbf{P}_a \cdot \mathbf{P}_b$
 - * Recall: Right-associative multiplication yields polynomial error growth.
- Equality test: Equal? ($|\mathbf{P}_a|, b$): output *b*th entry.
- Bottom line: $\tilde{O}(\lambda^3)$ homomorphic operations to bootstrap.

• Use
$$q = p_1 \cdots p_t = \tilde{O}(\lambda)$$
 for distinct prime p_i .

* Prime Number Theorem allows $p_i, t = O(\log \lambda)$.

• Use
$$q = p_1 \cdots p_t = \tilde{O}(\lambda)$$
 for distinct prime p_i .

* Prime Number Theorem allows $p_i, t = O(\log \lambda)$. Chinese Remainder Theorem: $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_t}$

• Use
$$q = p_1 \cdots p_t = \tilde{O}(\lambda)$$
 for distinct prime p_i .

* Prime Number Theorem allows $p_i, t = O(\log \lambda)$. Chinese Remainder Theorem: $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_t}$

New embedding:

$$\mathbb{Z}_q \to S_{p_1} \times \dots \times S_{p_t} \quad \left[\subseteq S_{\sum p_i}\right]$$
$$x \mapsto (\mathbf{P}_{x \bmod p_1}, \dots, \mathbf{P}_{x \bmod p_t})$$

• Use
$$q = p_1 \cdots p_t = \tilde{O}(\lambda)$$
 for distinct prime p_i .

* Prime Number Theorem allows $p_i, t = O(\log \lambda)$. Chinese Remainder Theorem: $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_t}$

New embedding:

$$\mathbb{Z}_q \to S_{p_1} \times \dots \times S_{p_t} \quad \left[\subseteq S_{\sum p_i}\right]$$
$$x \mapsto (\mathbf{P}_{x \bmod p_1}, \dots, \mathbf{P}_{x \bmod p_t})$$

Addition II: same as in warmup, but component-wise

• Use
$$q = p_1 \cdots p_t = \tilde{O}(\lambda)$$
 for distinct prime p_i .

* Prime Number Theorem allows $p_i, t = O(\log \lambda)$. Chinese Remainder Theorem: $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_t}$

New embedding:

$$\mathbb{Z}_q \to S_{p_1} \times \dots \times S_{p_t} \quad \left[\subseteq S_{\sum p_i}\right]$$
$$x \mapsto (\mathbf{P}_{x \bmod p_1}, \dots, \mathbf{P}_{x \bmod p_t})$$

► Addition ⊞: same as in warmup, but component-wise

Equality test:

$$\mathsf{Equal}_q(\boxed{a}, b) = \underbrace{\bullet}_i \mathsf{Equal}_{p_i}(\boxed{a_i}, b \bmod p_i)$$

• Use
$$q = p_1 \cdots p_t = \tilde{O}(\lambda)$$
 for distinct prime p_i .

* Prime Number Theorem allows $p_i, t = O(\log \lambda)$. Chinese Remainder Theorem: $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_t}$

New embedding:

$$\mathbb{Z}_q \to S_{p_1} \times \dots \times S_{p_t} \quad \left[\subseteq S_{\sum p_i}\right]$$
$$x \mapsto (\mathbf{P}_{x \bmod p_1}, \dots, \mathbf{P}_{x \bmod p_t})$$

► Addition ⊞: same as in warmup, but component-wise

Equality test:

$$\mathsf{Equal}_q(\boxed{a}, b) = \underbrace{\bullet}_i \mathsf{Equal}_{p_i}(\boxed{a_i}, b \bmod p_i)$$

• Bottom line: $\tilde{O}(\lambda)$ homomorphic operations to bootstrap.

▶ Observation [AP'14]: using ring-LWE in the *m*th cyclotomic ring R, can work with *r*-dim orthogonal matrices over R (instead of \mathbb{Z}): the generalized symmetric group $\mathbb{Z}_m \wr S_r$.

▶ Observation [AP'14]: using ring-LWE in the *m*th cyclotomic ring R, can work with *r*-dim orthogonal matrices over R (instead of \mathbb{Z}): the generalized symmetric group $\mathbb{Z}_m \wr S_r$.

In particular, m = q and r = 1 yields \mathbb{Z}_q .

• Observation [AP'14]: using ring-LWE in the *m*th cyclotomic ring R, can work with *r*-dim orthogonal matrices over R (instead of \mathbb{Z}): the generalized symmetric group $\mathbb{Z}_m \wr S_r$.

In particular, m = q and r = 1 yields \mathbb{Z}_q .

With a clever view of NAND as a mod-4 additive threshold, [DM'15] designed a specialized "bootstrapped NAND" procedure.

▶ Observation [AP'14]: using ring-LWE in the *m*th cyclotomic ring *R*, can work with *r*-dim orthogonal matrices over *R* (instead of \mathbb{Z}): the generalized symmetric group $\mathbb{Z}_m \wr S_r$.

In particular, m = q and r = 1 yields \mathbb{Z}_q .

- With a clever view of NAND as a mod-4 additive threshold, [DM'15] designed a specialized "bootstrapped NAND" procedure.
- ▶ FFTW for fast ring operations ⇒ bootstrapping in 0.6 sec: FHEW!

Can we bootstrap in sublinear # homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").

Can we bootstrap in sublinear # homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").

Circular security for unbounded FHE?

As usual, unbounded FHE requires a "circular security" assumption: that it is safe to reveal an encryption of (embedded) sk under itself. Does our representation of sk help or hurt security?

- Can we bootstrap in sublinear # homom ops with polynomial error?
 Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").
- Circular security for unbounded FHE? As usual, unbounded FHE requires a "circular security" assumption: that it is safe to reveal an encryption of (embedded) sk under itself. Does our representation of sk help or hurt security?
- Can we bootstrap FHS/ABE/PE?

Current schemes are like "somewhat homomorphic" encryption: they have an *a priori* bound on circuits they can handle.

- Can we bootstrap in sublinear # homom ops with polynomial error? Bottleneck in [GSW'13]: few plaintext bits / ciphertext (no "packing").
- Circular security for unbounded FHE? As usual, unbounded FHE requires a "circular security" assumption: that it is safe to reveal an encryption of (embedded) sk under itself. Does our representation of sk help or hurt security?
- Can we bootstrap FHS/ABE/PE?

Current schemes are like "somewhat homomorphic" encryption: they have an *a priori* bound on circuits they can handle.

Thanks!