Chris Peikert

MIT Computer Science and AI Laboratory

Theory of Cryptography Conference 5 March 2006

Sharing Secrets (mod q)

- Random p(·), deg(p) < k,
 s.t. p(0) = secret.
- P_i gets share $x_i = \mathbf{p}(i)$.

 (x_1, \ldots, x_n) is Reed-Solomon codewd.

Reconstruction

• P_i announces x_i.

Interpolation:
$$\mathbf{p}(\alpha) = \sum x_i \lambda_i$$
 for any α .

Sharing Secrets (mod q)

- Random p(·), deg(p) < k,
 s.t. p(0) = secret.
- P_i gets share $x_i = \mathbf{p}(i)$.

 (x_1, \ldots, x_n) is Reed-Solomon codewd.

Reconstruction

• P_i announces x_i.

Interpolation:
$$\mathbf{p}(\alpha) = \sum x_i \lambda_i$$
 for any α .
Error correction: [BeWe86, GuSu98]

Sharing Secrets (mod q)

- Random p(·), deg(p) < k,
 s.t. p(0) = secret.
- P_i gets share $x_i = \mathbf{p}(i)$.

 (x_1, \ldots, x_n) is Reed-Solomon codewd.

Placing Shares "in the Exponent"

[CJKR96, PK96, RG03, NPR99, D03, CD04, CG99, BF99,...] Cyclic group $G=\langle g
angle,$ order q

• P_i announces g^{x_i} .

Interpolation: $g^{\mathbf{p}(\alpha)} = \prod (g^{x_i})^{\lambda_i}$

Sharing Secrets (mod q)

- Random p(·), deg(p) < k,
 s.t. p(0) = secret.
- P_i gets share $x_i = \mathbf{p}(i)$.

 (x_1, \ldots, x_n) is Reed-Solomon codewd.

Placing Shares "in the Exponent"

[CJKR96, PK96, RG03, NPR99, D03, CD04, CG99, BF99,...] Cyclic group $G=\langle g
angle,$ order q

• P_i announces g^{x_i} .

Interpolation: $g^{\mathbf{p}(\alpha)} = \prod (g^{x_i})^{\lambda_i}$

Sharing Secrets (mod q)

- Random p(·), deg(p) < k,
 s.t. p(0) = secret.
- P_i gets share $x_i = \mathbf{p}(i)$.

 (x_1, \ldots, x_n) is Reed-Solomon codewd.

Placing Shares "in the Exponent"

[CJKR96, PK96, RG03, NPR99, D03, CD04, CG99, BF99,...] Cyclic group $G=\langle g
angle,$ order q

• P_i announces g^{x_i} .

Interpolation: $g^{\mathbf{p}(\alpha)} = \prod (g^{x_i})^{\lambda_i}$

ERROR CORRECTION: ???

• Guess-and-check: $\frac{n \log n}{k}$ errors

The first detailed study of the complexity of ECE.

The first detailed study of the complexity of ECE.

Unconditional Results

Errors	Complexity		
$n - \sqrt{nk}$	EASY AS DH		
$n-k-k^{1-\epsilon}$	HARD AS DLOG		

The first detailed study of the complexity of ECE.

Unconditional Results

	Errors	Complexity
Gap ┌→	$n - \sqrt{nk}$	EASY AS DH
$\approx \delta \cdot k {\textstyle \sqsubseteq } $	$n-k-k^{1-\epsilon}$	HARD AS DLOG

The first detailed study of the complexity of ECE.

Unconditional Results

	Errors	Complexity		
Gap ┌→	$n - \sqrt{nk}$	EASY AS DH	\leftarrow	link DH to
$\approx \delta \cdot k \square$	$n-k-k^{1-\epsilon}$	HARD AS DLOG	\leftarrow	DLOG?

The first detailed study of the complexity of ECE.

Unconditional Results

	Errors	Complexity		
Gap ┌→	$n - \sqrt{nk}$	EASY AS DH	\leftarrow	link DH to
$\approx \delta \cdot k \square$	$n-k-k^{1-\epsilon}$	HARD AS DLOG	\leftarrow	DLOG?

Results for Generic Algorithms

• Guess-and-check is optimal — even if DDH is easy.

The first detailed study of the complexity of ECE.

Unconditional Results

	Errors	Complexity		
Gap ┌→	$n - \sqrt{nk}$	EASY AS DH	\leftarrow	link DH to
$\approx \delta \cdot k \square$	$n-k-k^{1-\epsilon}$	HARD AS DLOG	\leftarrow	DLOG?

Results for Generic Algorithms

• Guess-and-check is optimal — even if DDH is easy.

Decoding (in the exponent) to distance $n - k - k^{1-\epsilon}$ is as hard as computing discrete logs in *G*.

Decoding (in the exponent) to distance $n - k - k^{1-\epsilon}$ is as hard as computing discrete logs in *G*.

Proof Sketch

- **1** Finding a representation on uniform $\mathbf{w} \in G^n$ is as hard as dlog.
- 2 Uniform w is close (in the exponent) to some codeword.
- **3** Decoding w yields a representation on w.

Decoding (in the exponent) to distance $n - k - k^{1-\epsilon}$ is as hard as computing discrete logs in *G*.

Proof Sketch

- **1** Finding a representation on uniform $\mathbf{w} \in G^n$ is as hard as dlog.
- 2 Uniform w is close (in the exponent) to some codeword.
- **Objection States and States and**
 - Representation on w: nonzero $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{Z}_q^n$ s.t.

$$\prod_i w_i^{a_i} = 1.$$

- [Bra93] showed hardness.

Decoding (in the exponent) to distance $n - k - k^{1-\epsilon}$ is as hard as computing discrete logs in *G*.

Proof Sketch

- **1** Finding a representation on uniform $\mathbf{w} \in G^n$ is as hard as dlog.
- 2 Uniform w is close (in the exponent) to some codeword.
- **3** Decoding w yields a representation on w.

We show $\exists \ell = k + k^{1-\epsilon}$ points $w_i = g^{x_i}$, with x_i on poly of deg < k.

- There are $\binom{n}{\ell}$ distinct events (each very rare).
- These events have limited dependence.

Decoding (in the exponent) to distance $n - k - k^{1-\epsilon}$ is as hard as computing discrete logs in *G*.

Proof Sketch

- **1** Finding a representation on uniform $\mathbf{w} \in G^n$ is as hard as dlog.
- 2 Uniform w is close (in the exponent) to some codeword.
- **Objective and a set of the set o**

We show $\exists \ell = k + k^{1-\epsilon}$ points $w_i = g^{x_i}$, with x_i on poly of deg < k.

- There are $\binom{n}{\ell}$ distinct events (each very rare).
- These events have limited dependence.

Decoding (in the exponent) to distance $n - k - k^{1-\epsilon}$ is as hard as computing discrete logs in *G*.

Proof Sketch

- **1** Finding a representation on uniform $\mathbf{w} \in G^n$ is as hard as dlog.
- 2 Uniform w is close (in the exponent) to some codeword.
- 3 Decoding w yields a representation on w.
 - Decode w to $(g^{x_1}, \ldots, g^{x_n})$, where x_i lie on poly of deg < k.
 - There are $\gg k$ points $w_i = g^{x_i}$. wlog: w_1, \ldots, w_{k+1} .
 - Interpolate in the exponent:

$$w_{k+1} = \prod_{i=1}^{k} w_i^{\lambda_i} \Rightarrow$$
 representation!

Treat group as "black-box" — don't use element representations

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

Treat group as "black-box" — don't use element representations

Formalization

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

$$\sigma(x_0) \ \sigma(x_1) \ \sigma(x_2) \ \sigma(x_3) \ \sigma(x_4)$$

Alg

. . .

Treat group as "black-box" — don't use element representations

Formalization

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

$$\sigma(x_0) \sigma(x_1) \sigma(x_2) \sigma(x_3) \sigma(x_4) \sigma(x_5) \cdots$$

Alg

Treat group as "black-box" — don't use element representations

- Random encoding $\sigma: G \to \{0,1\}^*$
- Oracle for group operation [wlog $G = (\mathbb{Z}_q, +)$]

$$\sigma(x_0) \ \sigma(x_1) \ \sigma(x_2) \ \sigma(x_3) \ \sigma(x_4) \ \sigma(x_5) \ \cdot \cdot$$

Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longmapsto \mathbf{p}(0)$

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longrightarrow \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longrightarrow \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms. Guess-and-check is optimal!

Chris Peikert (MIT)

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longrightarrow \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longrightarrow \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \quad \longmapsto \quad \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \quad \longmapsto \quad \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

$$\sigma(F_1) \qquad \cdots \qquad \sigma(F_n) \quad \sigma(F_{n+1}) \quad \sigma(F_{n+2}) \qquad \cdots$$
Alg

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longrightarrow \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

• Leave \mathbf{p} and \mathbf{e} as indeterminants; encode polynomials $F(\mathbf{p}, \mathbf{e})$

$$\sigma(F_1) \qquad \cdots \qquad \sigma(F_n) \quad \sigma(F_{n+1}) \quad \sigma(F_{n+2}) \quad \sigma(F_{n+3}) \qquad \cdots$$

Alg

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \longrightarrow \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

$$\sigma(F_1)$$
 \cdots $\sigma(F_n)$ $\sigma(F_{n+1})$ $\sigma(F_{n+2})$ $\sigma(F_{n+3})$ \cdots

$$\left(\text{Alg} \right) \xrightarrow{} \sigma(F_0)$$

■ Interpolation w/ Errors: $(\mathbf{p}(1), \ldots, \mathbf{p}(n)) + \mathbf{e} \quad \longmapsto \quad \mathbf{p}(0)$

Theorem

Interpolation under $\gg \frac{n \log n}{k}$ errors is hard for generic algorithms.

Ideal Game

• Leave \mathbf{p} and \mathbf{e} as indeterminants; encode polynomials $F(\mathbf{p}, \mathbf{e})$

$$\sigma(F_1) \qquad \cdots \qquad \sigma(F_n) \quad \sigma(F_{n+1}) \quad \sigma(F_{n+2}) \quad \sigma(F_{n+3}) \qquad \cdots$$

$$Alg \qquad \longrightarrow \neq \sigma(F_0)$$

• Differs from real game only if $\exists F_i \neq F_j$, but $(F_i - F_j)(\mathbf{p}, \mathbf{e}) = 0$. Analyze event for "strange" distribution of \mathbf{p}, \mathbf{e} .

To Show

For all $F = F_i - F_j \neq 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

1 *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

- **1** *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).
- 2 e variables in e are uniform (others are zero).

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

- **1** *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).
- **2** *e* variables in e are uniform (others are zero).
- **③** F depends on *some* uniform variable (either in **p** or **e**).

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

- **1** *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).
- **2** *e* variables in e are uniform (others are zero).
- S F depends on some uniform variable (either in \mathbf{p} or \mathbf{e}).

Suppose F doesn't depend on any variables in \mathbf{p} .

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

- **1** *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).
- **2** *e* variables in e are uniform (others are zero).
- S F depends on some uniform variable (either in \mathbf{p} or \mathbf{e}).

Suppose *F* doesn't depend on any variables in **p**.

Then *F* depends on $\ge n - k$ positions of **e**. (Dual of Reed-Solomon code.)

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

- **1** *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).
- **2** *e* variables in e are uniform (others are zero).
- **3** F depends on *some* uniform variable (either in **p** or **e**).

Suppose *F* doesn't depend on any variables in **p**.

Then *F* depends on $\ge n - k$ positions of **e**. (Dual of Reed-Solomon code.)

With overwhelming prob, F depends on some uniform e_i .

To Show

For all $F = F_i - F_j \not\equiv 0$, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ is small.

Sketch

- **1** *F* is linear in **p**, **e** (because inputs F_1, \ldots, F_n are).
- **2** *e* variables in e are uniform (others are zero).
- S F depends on some uniform variable (either in \mathbf{p} or \mathbf{e}).

Suppose *F* doesn't depend on any variables in **p**.

Then *F* depends on $\ge n - k$ positions of e. (Dual of Reed-Solomon code.)

With overwhelming prob, F depends on some uniform e_i .

4 By Schwartz's Lemma, $\Pr[F(\mathbf{p}, \mathbf{e}) = 0]$ small.

Question

- Recall: error correction is easy, given DH oracle.
- What about DDH?

Question

- Recall: error correction is easy, given DH oracle.
- What about DDH?

Our Proposal

Augment generic algorithms with a DDH oracle.

Models "gap" groups: DDH is easy, but DH believed hard.

Question

- Recall: error correction is easy, given DH oracle.
- What about DDH?

Our Proposal

Augment generic algorithms with a DDH oracle.

Models "gap" groups: DDH is easy, but DH believed hard.

Theorem

For $e \cdot k = \omega(n \log n)$, there is no efficient DDH-augmented generic algorithm for interpolating noisy polynomials.

Question

- Recall: error correction is easy, given DH oracle.
- What about DDH?

Our Proposal

Augment generic algorithms with a DDH oracle.

Models "gap" groups: DDH is easy, but DH believed hard.

Theorem

For $e \cdot k = \omega(n \log n)$, there is no efficient DDH-augmented generic algorithm for interpolating noisy polynomials.

Converse does not appear to hold.

I.e., error correction seems strictly harder than DDH.

Chris Peikert (MIT)

Conclusions and Open Problems

Conclusions

- Characterized hardness of ECE for a spectrum of errors.
- Given evidence for DDH < ECE.
- Suggested a new approach for linking DH and DLOG.

Conclusions and Open Problems

Conclusions

- Characterized hardness of ECE for a spectrum of errors.
- Given evidence for DDH < ECE.
- Suggested a new approach for linking DH and DLOG.

Questions

- Construct crypto schemes based on hardness of ECE?
- Tighten gap between # errors for DLOG and DH reductions?
- Non-generic ECE algorithms (index calculus)?

Conclusions and Open Problems

Conclusions

- Characterized hardness of ECE for a spectrum of errors.
- Given evidence for DDH < ECE.
- Suggested a new approach for linking DH and DLOG.

Questions

- Construct crypto schemes based on hardness of ECE?
- Tighten gap between # errors for DLOG and DH reductions?
- Non-generic ECE algorithms (index calculus)?

Thank you!

