Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Daniele Micciancio ${ }^{1} \quad$ Chris Peikert ${ }^{2}$

${ }^{1}$ UC San Diego
${ }^{2}$ Georgia Tech

IBM Research
8 September 2011

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Why?

- Simple \& efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajtai'96,...]
- Solve 'holy grail' problems like FHE [Gentry'09,...]

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{gathered}
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n} \\
(\text { "short" } \mathbf{x}, \text { surjective) }
\end{gathered}
$$

CRHF if SIS hard [Ajtai'96,...]

Lattice-Based One-Way Functions

- Public key $[\cdots A \quad \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{gathered}
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n} \\
(\text { "short" x, surjective) }
\end{gathered}
$$

CRHF if SIS hard [Ajtai'96,...]

$$
\begin{gathered}
g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short" } \mathbf{e}, \text { injective) }
\end{gathered}
$$

OWF if LWE hard [Regev'05,P'09]

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{array}{c|c}
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n} & g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short" } \mathbf{x}, \text { surjective) } & \text { ("short" } \mathbf{e}, \text { injective) }
\end{array}
$$

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

- Lattice interpretation: $\Lambda^{\perp}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{Z}^{m}: f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=\mathbf{0} \bmod q\right\}$

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{array}{c|c}
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n} & g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short" x, surjective) } & \text { ("short" } \mathbf{e}, \text { injective) }
\end{array}
$$

CRHF if SIS hard [Ajtai'96,...]
OWF if LWE hard [Regev'05,P'09]

- Lattice interpretation: $\Lambda^{\perp}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{Z}^{m}: f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=\mathbf{0} \bmod q\right\}$

Lattice-Based One-Way Functions

- Public key $[\cdots A \quad \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{array}{c|c}
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q \in \mathbb{Z}_{q}^{n} & g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short" } \mathbf{x}, \text { surjective) } & \text { ("short" } \mathbf{e}, \text { injective) }
\end{array}
$$

CRHF if SIS hard [Ajtai'96,...]
OWF if LWE hard [Regev'05,P'09]

- $f_{\mathrm{A}}, g_{\mathrm{A}}$ in forward direction yield CRHFs, CPA-secure encryption ... and not much else.

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q:$
find the unique preimage s
(equivalently, e)

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}\left(\mathbf{x}^{\prime}\right)=\mathbf{A x} \mathbf{x}^{\prime} \bmod q$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp \left(-\|\mathbf{x}\|^{2} / s^{2}\right)$.

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q$: find the unique preimage s
(equivalently, e)

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}\left(\mathbf{x}^{\prime}\right)=\mathbf{A x} \mathbf{x}^{\prime} \bmod q$: sample random $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp \left(-\|\mathbf{x}\|^{2} / s^{2}\right)$.

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q$:
find the unique preimage s
(equivalently, e)

- How? Use a "strong trapdoor" for \mathbf{A} : a short basis of $\Lambda^{\perp}(\mathbf{A})$
[Babai'86,GGH'97,Klein'01,GPV'08,P'10]

Applications of Strong Trapdoors

Canonical App: [GPV ${ }^{\circ}$ 08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$

Applications of Strong Trapdoors

Canonical App: [GPV ${ }^{\circ}$ 08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- $\operatorname{Verify}(m, \mathbf{x})$: check $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=H(m)$ and \mathbf{x} "short enough"

Applications of Strong Trapdoors

Canonical App: [GPV ${ }^{\circ}$ 08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- Verify (m, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_{A} must be hard

Applications of Strong Trapdoors

Canonical App: [GPV ${ }^{\circ}$ 08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$
- Verify (m, \mathbf{x}) : $\operatorname{check} f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in f_{A} must be hard

Other "Black-Box" Applications of f^{-1}, g^{-1}

- Standard model signatures [CHKP'10,R'10,B'10]
- CCA-secure encryption [PW'08,P'09]
- (Hierarchical) ID-based encryption [GPV'08,CHKP' $\left.10, A B B^{\prime} 10 a, A B B B^{\prime} 10 b\right]$
- Much more: [PVW'08,PV'08,GHV' $10, \mathrm{GKV}^{\prime} 10, \mathrm{BF}$ ' $10 \mathrm{aa}, \mathrm{BF}{ }^{\prime} 10 \mathrm{~b}, \mathrm{OPW}{ }^{\prime} 11, \mathrm{AFV}^{\prime} 11, \mathrm{ABVVW}{ }^{\prime} 11, \ldots$]

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$
- Verify (m, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in f_{A} must be hard

Some Drawbacks...

x Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$
- Verify (m, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_{A} must be hard

Some Drawbacks...

x Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
x Known algorithms trade quality for efficiency

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- Sign (m) : let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$
- Verify (m, \mathbf{x}) : $\operatorname{check} f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_{A} must be hard

Some Drawbacks...

x Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
x Known algorithms trade quality for efficiency
g_{A}^{-1} : [Babai'86] (tight,iterative,fp) vs [Babai'86] (looser,parallel,offline)
f_{A}^{-1} : [Klein'01,GPV'08] (ditto) vs [P'10] (ditto)

Taming the Parameters

$f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}$

Taming the Parameters

$f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}$

(1) Trapdoor construction yields some lattice $\operatorname{dim} m=\Omega(n \log q)$.

Taming the Parameters

(1) Trapdoor construction yields some lattice $\operatorname{dim} m=\Omega(n \log q)$.
(2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.

Taming the Parameters

(1) Trapdoor construction yields some lattice $\operatorname{dim} m=\Omega(n \log q)$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
(3) Dimension m, std dev $s \Longrightarrow$ preimage length $\beta=\|\mathbf{x}\| \approx s \sqrt{m}$.

Taming the Parameters

(1) Trapdoor construction yields some lattice $\operatorname{dim} m=\Omega(n \log q)$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
(3) Dimension m, std dev $s \Longrightarrow$ preimage length $\beta=\|\mathbf{x}\| \approx s \sqrt{m}$.
(4) Choose n, q so that finding β-bounded preimages is hard.

Taming the Parameters

$$
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

(1) Trapdoor construction yields some lattice $\operatorname{dim} m=\Omega(n \log q)$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
(3) Dimension m, std dev $s \Longrightarrow$ preimage length $\beta=\|\mathbf{x}\| \approx s \sqrt{m}$.
(4) Choose n, q so that finding β-bounded preimages is hard.
\checkmark Better dimension m \& quality s

$$
\Longrightarrow \text { "win-win-win" in security-keysize-runtime }
$$

Our Contributions

New "strong" trapdoor generation and inversion algorithms:

Our Contributions

New "strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline

* No more efficiency-vs-quality tradeoff

Our Contributions

New "strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])

* Inversion: practical, parallel, \& mostly offline
* No more efficiency-vs-quality tradeoff
\checkmark Tighter parameters m and s
* Asymptotically optimal with small constant factors
\star Ex improvement: $32 x$ in $\operatorname{dim} m, 25 x$ in quality $s \Rightarrow 67 x$ in keysize

Our Contributions

New "strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline

* No more efficiency-vs-quality tradeoff
\checkmark Tighter parameters m and s
* Asymptotically optimal with small constant factors
\star Ex improvement: 32 x in $\operatorname{dim} m, 25 \mathrm{x}$ in quality $s \Rightarrow 67 \mathrm{x}$ in keysize
\checkmark New kind of trapdoor — not a basis! (But just as powerful.)
\star Half the dimension of a basis $\Rightarrow 4 x$ size improvement
\star Delegation: size grows as $O(\mathrm{dim})$, versus $O\left(\mathrm{dim}^{2}\right)$ [CHKP'10]

Our Contributions

New "strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline

* No more efficiency-vs-quality tradeoff
\checkmark Tighter parameters m and s
* Asymptotically optimal with small constant factors
\star Ex improvement: 32 x in $\operatorname{dim} m, 25 \mathrm{x}$ in quality $s \Rightarrow 67 \mathrm{x}$ in keysize
\checkmark New kind of trapdoor — not a basis! (But just as powerful.)
\star Half the dimension of a basis $\Rightarrow 4 x$ size improvement
\star Delegation: size grows as $O(\mathrm{dim})$, versus $O\left(\mathrm{dim}^{2}\right)$ [CHKP'10]
\checkmark More efficient applications (beyond "black-box" improvements)

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement
$\operatorname{Dim} m$	slow $f^{-1}:>5 n \log q$	$2 n \log q(\stackrel{\{ }{\approx})$	$2.5-\log q$
	fast $f^{-1}:>n \log ^{2} q$	$n(1+\log q)(\stackrel{c}{\approx})$	

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement
$\operatorname{Dim} m$	slow $f^{-1}:>5 n \log q$	$2 n \log q(\stackrel{s}{\approx})$	$2.5-\log q$
fast $f^{-1}:>n \log ^{2} q$	$n(1+\log q)(\approx \underset{\approx}{c})$		
Quality s	slow $f^{-1}: 20 \sqrt{n \log q}$	$1.6 \sqrt{n \log q}$	$12.5-10 \sqrt{\log q}$
	fast $f^{-1}: 16 \sqrt{n \log ^{2} q}$		

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement
$\operatorname{Dim} m$	slow $f^{-1}:>5 n \log q$	$2 n \log q(\stackrel{s}{\approx})$	$2.5-\log q$
fast $f^{-1}:>n \log ^{2} q$	$n(1+\log q)(\approx \underset{\approx}{\approx})$		
Quality s	slow $f^{-1}: 20 \sqrt{n \log q}$	$1.6 \sqrt{n \log q}$	$12.5-10 \sqrt{\log q}$
	fast $f^{-1}: 16 \sqrt{n \log ^{2} q}$		

Example parameters for (ring-based) GPV signatures:

	n	q	δ to break	$p k$ size (bits)
Before (fast f^{-1})	436	2^{32}	1.007	$\approx 17 \times 10^{6}$
Now	284	2^{24}	1.007	$\approx 360 \times 10^{3}$

Bottom line: ≈ 45-fold improvement in key size.

Overview of Methods

(1) Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$.

Overview of Methods

(1) Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathrm{G}}^{-1}, g_{\mathbf{G}}^{-1}$.
(2) Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

Overview of Methods

(1) Design a fixed, public lattice defined by "gadget" G . Give fast, parallel, offline algorithms for $f_{\mathrm{G}}^{-1}, g_{\mathbf{G}}^{-1}$.
(2) Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
(3) Reduce $f_{\mathrm{A}}^{-1}, g_{\mathrm{A}}^{-1}$ to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$ plus pre-/post-processing.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathbf{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathbf{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathrm{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q
$$

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathbf{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathbf{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

\star Get $\operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathbf{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathbf{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

$\star \operatorname{Get} \operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathbf{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

$\star \operatorname{Get} \operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.
\star OR round to $\frac{q}{8}$-multiple and lookup in size- q^{3} table.

* OR a hybrid of the two approaches.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathbf{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

$\star \operatorname{Get} \operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.
\star OR round to $\frac{q}{8}$-multiple and lookup in size- q^{3} table.

* OR a hybrid of the two approaches.
- Sample Gaussian preimage for $u=f_{\mathrm{g}}(\mathbf{x}):=\langle\mathbf{g}, \mathbf{x}\rangle \bmod q$.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathbf{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

$\star \operatorname{Get} \operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.

* OR round to $\frac{q}{8}$-multiple and lookup in size- q^{3} table.
* OR a hybrid of the two approaches.
- Sample Gaussian preimage for $u=f_{\mathbf{g}}(\mathbf{x}):=\langle\mathbf{g}, \mathbf{x}\rangle \bmod q$.
\star For $i \leftarrow 0, \ldots, k-1$: choose $x_{i} \leftarrow(2 \mathbb{Z}+u)$, let $u \leftarrow\left(u-x_{i}\right) / 2 \in \mathbb{Z}$.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$
$g_{\mathbf{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}\end{array}\right] \bmod q$.
$\star \operatorname{Get} \operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.
* OR round to $\frac{q}{8}$-multiple and lookup in size- q^{3} table.
* OR a hybrid of the two approaches.
- Sample Gaussian preimage for $u=f_{\mathrm{g}}(\mathbf{x}):=\langle\mathbf{g}, \mathbf{x}\rangle \bmod q$.
\star For $i \leftarrow 0, \ldots, k-1$: choose $x_{i} \leftarrow(2 \mathbb{Z}+u)$, let $u \leftarrow\left(u-x_{i}\right) / 2 \in \mathbb{Z}$.
\star OR presample many $\mathbf{x} \leftarrow \mathbb{Z}^{k}$ and store in 'buckets' $f_{\mathrm{g}}(\mathbf{x})$ for later.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k}
$$

- Invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$

$$
g_{\mathrm{g}}(s, \mathbf{e}):=s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

\star Get $\operatorname{lsb}(s), e_{k-1}$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathrm{e} \in\left[-\frac{q}{4}, \frac{q}{4}\right)^{k}$.
\star OR round to $\frac{q}{8}$-multiple and lookup in size- q^{3} table.

* OR a hybrid of the two approaches.
- Sample Gaussian preimage for $u=f_{\mathbf{g}}(\mathbf{x}):=\langle\mathbf{g}, \mathbf{x}\rangle \bmod q$.
\star For $i \leftarrow 0, \ldots, k-1$: choose $x_{i} \leftarrow(2 \mathbb{Z}+u)$, let $u \leftarrow\left(u-x_{i}\right) / 2 \in \mathbb{Z}$.
\star OR presample many $\mathbf{x} \leftarrow \mathbb{Z}^{k}$ and store in 'buckets' $f_{\mathrm{g}}(\mathbf{x})$ for later.
* OR a hybrid of the two approaches.

Step 1: Gadget G and Inversion Algorithms

- Another view: for $g=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \widetilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \widetilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \widetilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k}
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

- Define $\mathbf{G}=\mathbf{I}_{n} \otimes \mathbf{g}=\left[\begin{array}{lllll}\cdots \mathrm{g} \cdots & & & \\ & \cdots \mathrm{g} \cdots & & \\ & & \ddots & \\ & & & \cdots \mathrm{g} \cdots\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}$.

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \widetilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

- Define $\mathbf{G}=\mathbf{I}_{n} \otimes \mathbf{g}=\left[\begin{array}{lllll}\cdots \mathrm{g} \cdots & & & & \\ & \cdots \mathrm{g} \cdots & & \\ & & \ddots & \\ & & & \cdots \mathrm{g} \cdots\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}$.

Now $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$ reduce to n parallel (and offline) calls to $f_{\mathrm{g}}^{-1}, g_{\mathrm{g}}^{-1}$.

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \widetilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

- Define $\mathbf{G}=\mathbf{I}_{n} \otimes \mathbf{g}=\left[\begin{array}{lllll}\cdots \mathrm{g} \cdots & & & \\ & \cdots \mathrm{g} \cdots & & \\ & & \ddots & \\ & & & \ldots \mathrm{g} \cdots\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}$.

Now $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$ reduce to n parallel (and offline) calls to $f_{\mathrm{g}}^{-1}, g_{\mathrm{g}}^{-1}$.
Also applies to $\mathbf{H} \cdot \mathbf{G}$ for any invertible $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$.

Step 2: Randomize G $\leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform (universal) $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$. (Computing f^{-1}, g^{-1} easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$.)

Step 2: Randomize G $\leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform (universal) $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$. (Computing f^{-1}, g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$.)
(2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

Step 2: Randomize G $\leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform (universal) $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$. (Computing f^{-1}, g^{-1} easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$.)
(2) Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

$\star \mathbf{A}$ is uniform if $[\overline{\mathbf{A}} \mid \overline{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

Step 2: Randomize G $\leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform (universal) $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$.
(Computing f^{-1}, g^{-1} easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$.)
(2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

$\star \mathbf{A}$ is uniform if $[\overline{\mathbf{A}} \mid \overline{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.
With $\mathbf{G}=\mathbf{0}$, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).

Step 2: Randomize G $\leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform (universal) $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$.
(Computing f^{-1}, g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$.)
(2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

* \mathbf{A} is uniform if $[\overline{\mathbf{A}} \mid \overline{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With $\mathbf{G}=\mathbf{0}$, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).
$\star\left[\mathbf{I}|\overline{\mathbf{A}}|-\left(\overline{\mathbf{A}} \mathbf{R}_{1}+\mathbf{R}_{2}\right)\right]$ is pseudorandom (under LWE) for $\bar{m}=n$.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for A with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G}
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R} \mathbf{u}\| . \quad$ (smaller is better.)

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G}
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\| . \quad$ (smaller is better.)
- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries w/std dev r.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for A with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\| . \quad$ (smaller is better.)
- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries w/std dev r.
- Note: \mathbf{R} is a trapdoor for $\mathbf{A}-\left[\mathbf{0} \mid \mathbf{H}^{\prime} \cdot \mathbf{G}\right] \mathbf{w} / \operatorname{tag}\left(\mathbf{H}-\mathbf{H}^{\prime}\right) \quad[A B B ' 10]$.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\| . \quad$ (smaller is better.)
- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries w/std dev r.
- Note: \mathbf{R} is a trapdoor for $\mathbf{A}-\left[\mathbf{0} \mid \mathbf{H}^{\prime} \cdot \mathbf{G}\right] \mathbf{w} / \operatorname{tag}\left(\mathbf{H}-\mathbf{H}^{\prime}\right) \quad[A B B ' 10]$.

Relating New and Old Trapdoors

Given a basis \mathbf{S} for $\Lambda^{\perp}(\mathbf{G})$ and a trapdoor \mathbf{R} for \mathbf{A}, we can efficiently construct a basis $\mathbf{S}_{\mathbf{A}}$ for $\Lambda^{\perp}(\mathbf{A})$

$$
\text { where }\left\|\widetilde{\mathbf{S}_{\mathrm{A}}}\right\| \leq\left(s_{1}(\mathbf{R})+1\right) \cdot\|\widetilde{\mathbf{S}}\| .
$$

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\| . \quad$ (smaller is better.)
- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries w/std dev r.
- Note: \mathbf{R} is a trapdoor for $\mathbf{A}-\left[\mathbf{0} \mid \mathbf{H}^{\prime} \cdot \mathbf{G}\right] \mathbf{w} / \operatorname{tag}\left(\mathbf{H}-\mathbf{H}^{\prime}\right) \quad[A B B ' 10]$.

Relating New and Old Trapdoors

Given a basis \mathbf{S} for $\Lambda^{\perp}(\mathbf{G})$ and a trapdoor \mathbf{R} for \mathbf{A}, we can efficiently construct a basis $\mathbf{S}_{\mathbf{A}}$ for $\Lambda^{\perp}(\mathbf{A})$

$$
\text { where }\left\|\widetilde{\mathbf{S}_{\mathrm{A}}}\right\| \leq\left(s_{1}(\mathbf{R})+1\right) \cdot\|\widetilde{\mathbf{S}}\| .
$$

(But we'll never need to.)

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathbf{e}^{t}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right)$, e.g. if $\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{R}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathbf{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right)$, e.g. if $\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Sampling Gaussian Preimages

Given $\mathbf{u}=f_{\mathbf{A}}\left(\mathbf{x}^{\prime}\right)=\mathbf{A} \mathbf{x}^{\prime}$, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x}=\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$?

- We have $\mathbf{A x}=\mathbf{G z}=\mathbf{u}$ as desired.

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathbf{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right)$, e.g. if $\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Sampling Gaussian Preimages

Given $\mathbf{u}=f_{\mathbf{A}}\left(\mathbf{x}^{\prime}\right)=\mathbf{A} \mathbf{x}^{\prime}$, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x}=\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$?

- We have $\mathbf{A x}=\mathbf{G z}=\mathbf{u}$ as desired.
- Problem: $\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$ is non-spherical Gaussian, leaks \mathbf{R} !

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathbf{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right)$, e.g. if $\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Sampling Gaussian Preimages

Given $\mathbf{u}=f_{\mathbf{A}}\left(\mathbf{x}^{\prime}\right)=\mathbf{A} \mathbf{x}^{\prime}$, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x}=\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$?

- We have $\mathbf{A x}=\mathbf{G z}=\mathbf{u}$ as desired.
- Problem: $\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$ is non-spherical Gaussian, leaks \mathbf{R} !
- Solution: use offline 'perturbation' [P'10] to get spherical Gaussian $\mathrm{w} /$ std $\operatorname{dev} \approx s_{1}(\mathbf{R})$: output $\mathbf{x}=\mathbf{p}+\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$.

Trapdoor Delegation [снкР'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.

Trapdoor Delegation [снкР'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.
- To delegate a trapdoor for an extension $\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]$ with tag \mathbf{H}^{\prime}, just sample Gaussian \mathbf{R}^{\prime} s.t.

$$
\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]\left[\begin{array}{c}
\mathbf{R}^{\prime} \\
\mathbf{I}
\end{array}\right]=\mathbf{H}^{\prime} \cdot \mathbf{G} \Longleftrightarrow \mathbf{A} \mathbf{R}^{\prime}=\mathbf{H}^{\prime} \cdot \mathbf{G}-\mathbf{A}^{\prime}
$$

Trapdoor Delegation [снкР'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.
- To delegate a trapdoor for an extension $\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]$ with tag \mathbf{H}^{\prime}, just sample Gaussian \mathbf{R}^{\prime} s.t.

$$
\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]\left[\begin{array}{l}
\mathbf{R}^{\prime} \\
\mathbf{I}
\end{array}\right]=\mathbf{H}^{\prime} \cdot \mathbf{G} \Longleftrightarrow \mathbf{A} \mathbf{R}^{\prime}=\mathbf{H}^{\prime} \cdot \mathbf{G}-\mathbf{A}^{\prime}
$$

- Note: \mathbf{R}^{\prime} is only width $(\mathbf{A}) \times \operatorname{width}(\mathbf{G})=m \times n \log q$.

So size of \mathbf{R}^{\prime} grows only as $O(m)$, not $\Omega\left(m^{2}\right)$ [CHKP'10].
Also computationally efficient: $n \log q$ samples, no HNF or ToBasis.

Improved "Bonsai" Applications

Hierarchical IBE [CHKP'10,ABB'10]

$-\operatorname{Setup}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ (each $\operatorname{dim} n \log q$) where
$\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$.
Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$

$$
(d+1 \text { vs } \geq 4 d+2)
$$

Improved "Bonsai" Applications

Hierarchical IBE [CHKP'10,ABB'10]

$-\operatorname{Setup}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ (each $\operatorname{dim} n \log q$) where $\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$.
Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$

$$
(d+1 \text { vs } \geq 4 d+2)
$$

- For id $=\left(\mathbf{H}_{1}, \ldots, \mathbf{H}_{t}\right)$ of nonzero (invertible) $\mathbf{H}_{i} \in \mathcal{H}$, let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}-\mathbf{H}_{1} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}-\mathbf{H}_{t} \mathbf{G}\right| \mathbf{A}_{t+1}\right] .
$$

Improved "Bonsai" Applications

Hierarchical IBE [CHKP'10,ABB'10]

$-\operatorname{Setup}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ (each $\operatorname{dim} n \log q$) where
$\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$.
Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$

$$
(d+1 \mathrm{vs} \geq 4 d+2)
$$

- For id $=\left(\mathbf{H}_{1}, \ldots, \mathbf{H}_{t}\right)$ of nonzero (invertible) $\mathbf{H}_{i} \in \mathcal{H}$, let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}-\mathbf{H}_{1} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}-\mathbf{H}_{t} \mathbf{G}\right| \mathbf{A}_{t+1}\right]
$$

and $s k_{i d}$ is a trapdoor $\mathbf{R}_{i d}$ for $\mathbf{A}_{i d}$ with tag $\mathbf{0}$.
Using $s k_{i d}$, can delegate any $s k_{i d^{\prime}}$ for any nontrivial extension $i d^{\prime}$.

Improved "Bonsai" Applications

Hierarchical IBE [CHKP'10,ABB'10]

- Setup (d) : choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ (each $\operatorname{dim} n \log q$) where
$\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$.
Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$

$$
(d+1 \mathrm{vs} \geq 4 d+2)
$$

- For id $=\left(\mathbf{H}_{1}, \ldots, \mathbf{H}_{t}\right)$ of nonzero (invertible) $\mathbf{H}_{i} \in \mathcal{H}$, let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}-\mathbf{H}_{1} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}-\mathbf{H}_{t} \mathbf{G}\right| \mathbf{A}_{t+1}\right] .
$$

and $s k_{i d}$ is a trapdoor $\mathbf{R}_{i d}$ for $\mathbf{A}_{i d}$ with tag $\mathbf{0}$.
Using $s k_{i d}$, can delegate any $s k_{i d^{\prime}}$ for any nontrivial extension $i d^{\prime}$.

- Encrypt (up to $n \log q$ bits) to $\mathbf{A}_{i d}$, decrypt using $\mathbf{R}_{i d}$ as in [GPV'08].

Improved "Bonsai" Applications

Hierarchical IBE [CHKP'10,ABB'10]

- Setup (d) : choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ (each $\operatorname{dim} n \log q$) where
$\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$.
Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\} \quad(d+1 \mathrm{vs} \geq 4 d+2)$
- For id $=\left(\mathbf{H}_{1}, \ldots, \mathbf{H}_{t}\right)$ of nonzero (invertible) $\mathbf{H}_{i} \in \mathcal{H}$, let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}-\mathbf{H}_{1} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}-\mathbf{H}_{t} \mathbf{G}\right| \mathbf{A}_{t+1}\right]
$$

and $s k_{i d}$ is a trapdoor $\mathbf{R}_{i d}$ for $\mathbf{A}_{i d}$ with tag $\mathbf{0}$.
Using $s k_{i d}$, can delegate any $s k_{i d^{\prime}}$ for any nontrivial extension $i d^{\prime}$.

- Encrypt (up to $n \log q$ bits) to $\mathbf{A}_{i d}$, decrypt using $\mathbf{R}_{i d}$ as in [GPV'08].
- Security ("puncturing"): Set up $m p k$, trapdoor \mathbf{R} with tags $=i d^{*}$.

Family \mathcal{H} with "invertible differences" from extension ring of \mathbb{Z}_{q} [DF'94,Fehr'98,ABB'10]

Conclusions

- A new, simpler, more efficient trapdoor notion and construction

Conclusions

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements

Conclusions

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements
- Key sizes and algorithms for "strong" trapdoors are now practical

Conclusions

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements
- Key sizes and algorithms for "strong" trapdoors are now practical

Questions?

