Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Daniele Micciancio¹ Chris Peikert²

¹UC San Diego

²Georgia Tech

IBM Research 8 September 2011

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Why?

- Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajtai'96,...]
- Solve 'holy grail' problems like FHE [Gentry'09,...]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q)$.

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective)

CRHF if SIS hard [Ajtai'96,...]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" **x**, surjective)

CRHF if SIS hard [Ajtai'96,...]

 $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t} \mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("short" **e**, injective)

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q).$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" **x**, surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t} \mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("short" **e**, injective)

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

► Lattice interpretation: $\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{0} \mod q\}$

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q).$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" **x**, surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t} \mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("short" **e**, injective)

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Lattice interpretation: $\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{0} \mod q\}$

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t} \mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("short" **e**, injective)

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

► f_A , g_A in forward direction yield CRHFs, CPA-secure encryption ... and not much else.

• Many cryptographic applications need to invert f_A and/or g_A .

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q$: find the unique preimage \mathbf{s} (equivalently, \mathbf{e})

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}' \mod q$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/s^2)$. Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q$:

find the unique preimage s (equivalently, e)

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}' \mod q$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/s^2)$. Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q$:

find the unique preimage s (equivalently, e)

How? Use a "strong trapdoor" for A: a short basis of Λ[⊥](A) [Babai'86,GGH'97,Klein'01,GPV'08,P'10]

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H: \{0, 1\}^* \to \mathbb{Z}_q^n$.

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H: \{0, 1\}^* \to \mathbb{Z}_q^n$.
- Sign(m): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n$.
- Sign(m): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- ▶ Verify(m, \mathbf{x}): check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(m)$ and \mathbf{x} "short enough"

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n$.
- Sign(m): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- ▶ Verify(m, \mathbf{x}): check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_A must be hard

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n.$
- Sign(m): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- ▶ Verify(m, \mathbf{x}): check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_A must be hard

Other "Black-Box" Applications of f^{-1} , g^{-1}

- Standard model signatures [CHKP'10,R'10,B'10]
- CCA-secure encryption [PW'08,P'09]
- (Hierarchical) ID-based encryption [GPV'08,CHKP'10,ABB'10a,ABB'10b]

Much more: [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,...]

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n$.
- Sign(*m*): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- ▶ Verify(m, \mathbf{x}): check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_A must be hard

Some Drawbacks...

K Generating A w/ short basis is complicated and slow [Ajtai'99, AP'09]

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H: \{0, 1\}^* \to \mathbb{Z}_q^n$.
- Sign(*m*): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- ▶ Verify(m, \mathbf{x}): check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_A must be hard

Some Drawbacks...

- K Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
- X Known algorithms trade quality for efficiency

Canonical App: [GPV'08] Signatures

- ▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n.$
- Sign(*m*): let $\mathbf{u} = H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- ▶ Verify(m, \mathbf{x}): check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(m)$ and \mathbf{x} "short enough"
- Security: finding "short enough" preimages in f_A must be hard

Some Drawbacks...

- K Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
- X Known algorithms trade quality for efficiency
 - $g_{\rm A}^{-1}$: [Babai'86] (tight, iterative, fp) vs [Babai'86] (looser, parallel, offline)
 - $f_{\rm A}^{-1}$: [Klein'01,GPV'08] (ditto) vs [P'10] (ditto)

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev *s*.

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

- 2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
- **3** Dimension *m*, std dev $s \implies$ preimage length $\beta = ||\mathbf{x}|| \approx s\sqrt{m}$.

- **1** Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.
- 2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
- **3** Dimension *m*, std dev $s \implies$ preimage length $\beta = ||\mathbf{x}|| \approx s\sqrt{m}$.
- **4** Choose *n*, *q* so that finding β -bounded preimages is hard.

- **1** Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.
- **2** Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev *s*.
- **3** Dimension *m*, std dev $s \implies$ preimage length $\beta = ||\mathbf{x}|| \approx s\sqrt{m}$.
- **4** Choose *n*, *q* so that finding β -bounded preimages is hard.
- ✓ Better dimension m & quality s

 \implies "win-win-win" in security-keysize-runtime

New "strong" trapdoor generation and inversion algorithms:

New "strong" trapdoor generation and inversion algorithms:

- ✓ Very simple & fast
 - * Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
 - * Inversion: practical, parallel, & mostly offline
 - * No more efficiency-vs-quality tradeoff

New "strong" trapdoor generation and inversion algorithms:

✓ Very simple & fast

- * Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
- * Inversion: practical, parallel, & mostly offline
- No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters *m* and *s*
 - Asymptotically optimal with small constant factors
 - ★ Ex improvement: 32x in dim m, 25x in quality $s \Rightarrow 67x$ in keysize

New "strong" trapdoor generation and inversion algorithms:

✓ Very simple & fast

- * Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
- * Inversion: practical, parallel, & mostly offline
- No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters *m* and *s*
 - Asymptotically optimal with small constant factors
 - ★ Ex improvement: 32x in dim m, 25x in quality $s \Rightarrow 67x$ in keysize
- New kind of trapdoor not a basis! (But just as powerful.)
 - * Half the dimension of a basis \Rightarrow 4x size improvement
 - ★ Delegation: size grows as *O*(dim), versus *O*(dim²) [CHKP'10]

New "strong" trapdoor generation and inversion algorithms:

✓ Very simple & fast

- * Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
- * Inversion: practical, parallel, & mostly offline
- No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters *m* and *s*
 - Asymptotically optimal with small constant factors
 - ★ Ex improvement: 32x in dim m, 25x in quality $s \Rightarrow 67x$ in keysize
- New kind of trapdoor not a basis! (But just as powerful.)
 - * Half the dimension of a basis \Rightarrow 4x size improvement
 - ★ Delegation: size grows as *O*(dim), versus *O*(dim²) [CHKP'10]
- More efficient applications (beyond "black-box" improvements)

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement	
Dim m	$\operatorname{slow} f^{-1}: > 5n \log q$	$2n\log q \stackrel{s}{(\approx)}$	$2.5 - \log q$	
	fast f^{-1} : $> n \log^2 q$	$n(1 + \log q) \stackrel{c}{\approx}$		

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement	
Dim m	$\operatorname{slow} f^{-1}: > 5n \log q$	$2n\log q \stackrel{s}{(\approx)}$	$2.5 - \log q$	
	fast f^{-1} : $> n \log^2 q$	$n(1 + \log q) \stackrel{c}{pprox}$		
Quality s	slow f^{-1} : $20\sqrt{n\log q}$	$1.6./n\log a$	$12.5 - 10\sqrt{\log q}$	
	fast f^{-1} : $16\sqrt{n\log^2 q}$	$1.0\sqrt{n}\log q$		

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement	
Dim m	$\operatorname{slow} f^{-1}$: $> 5n \log q$	$2n\log q \ (\stackrel{s}{\approx})$	$2.5 - \log q$	
	fast f^{-1} : $> n \log^2 q$	$n(1 + \log q) \stackrel{c}{\approx}$		
Quality s	slow f^{-1} : $20\sqrt{n\log q}$	$1.6.\sqrt{n\log a}$	$12.5 - 10\sqrt{\log q}$	
	fast f^{-1} : $16\sqrt{n\log^2 q}$	$1.0\sqrt{n}\log q$		

Example parameters for (ring-based) GPV signatures:

	n	q	δ to break	pk size (bits)
Before (fast f^{-1})	436	2 ³²	1.007	$pprox 17 imes 10^{6}$
Now	284	224	1.007	$\approx 360 \times 10^3$

Bottom line: \approx 45-fold improvement in key size.
Overview of Methods

1 Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for f_{G}^{-1} , g_{G}^{-1} .

Overview of Methods

1 Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$.

Overview of Methods

1 Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for f_{G}^{-1} , g_{G}^{-1} .

2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

3 Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}$$

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

 $g_{\mathbf{g}}(s, \mathbf{e}) := s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e}_0 & 2s + \mathbf{e}_1 & \cdots & 2^{k-1}s + \mathbf{e}_{k-1} \end{bmatrix} \mod q.$

★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

- ★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.
- * <u>OR</u> round to $\frac{q}{8}$ -multiple and lookup in size- q^3 table.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

- ★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.
- * <u>OR</u> round to $\frac{q}{8}$ -multiple and lookup in size- q^3 table.
- ★ <u>OR</u> a hybrid of the two approaches.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

- ★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.
- * <u>OR</u> round to $\frac{q}{8}$ -multiple and lookup in size- q^3 table.
- ★ <u>OR</u> a hybrid of the two approaches.
- Sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle \mod q$.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

 $g_{\mathbf{g}}(s, \mathbf{e}) := s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e}_0 & 2s + \mathbf{e}_1 & \cdots & 2^{k-1}s + \mathbf{e}_{k-1} \end{bmatrix} \mod q.$

- ★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.
- * <u>OR</u> round to $\frac{q}{8}$ -multiple and lookup in size- q^3 table.
- ★ <u>OR</u> a hybrid of the two approaches.

Sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle \mod q$.

★ For $i \leftarrow 0, ..., k-1$: choose $x_i \leftarrow (2\mathbb{Z}+u)$, let $u \leftarrow (u-x_i)/2 \in \mathbb{Z}$.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

 $g_{\mathbf{g}}(s, \mathbf{e}) := s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e}_0 & 2s + \mathbf{e}_1 & \cdots & 2^{k-1}s + \mathbf{e}_{k-1} \end{bmatrix} \mod q.$

- ★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.
- * <u>OR</u> round to $\frac{q}{8}$ -multiple and lookup in size- q^3 table.
- \star <u>OR</u> a hybrid of the two approaches.

Sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle \mod q$.

- ★ For $i \leftarrow 0, ..., k-1$: choose $x_i \leftarrow (2\mathbb{Z}+u)$, let $u \leftarrow (u-x_i)/2 \in \mathbb{Z}$.
- * <u>OR</u> presample many $\mathbf{x} \leftarrow \mathbb{Z}^k$ and store in 'buckets' $f_g(\mathbf{x})$ for later.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 imes k}.$$

• Invert LWE function $g_{\mathbf{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

 $g_{\mathbf{g}}(s, \mathbf{e}) := s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e}_0 & 2s + \mathbf{e}_1 & \cdots & 2^{k-1}s + \mathbf{e}_{k-1} \end{bmatrix} \mod q.$

- ★ Get lsb(s), e_{k-1} from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when $\mathbf{e} \in [-\frac{q}{4}, \frac{q}{4})^k$.
- * <u>OR</u> round to $\frac{q}{8}$ -multiple and lookup in size- q^3 table.
- \star <u>OR</u> a hybrid of the two approaches.

Sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle \mod q$.

- ★ For $i \leftarrow 0, ..., k-1$: choose $x_i \leftarrow (2\mathbb{Z}+u)$, let $u \leftarrow (u-x_i)/2 \in \mathbb{Z}$.
- * <u>OR</u> presample many $\mathbf{x} \leftarrow \mathbb{Z}^k$ and store in 'buckets' $f_g(\mathbf{x})$ for later.
- ★ <u>OR</u> a hybrid of the two approaches.

• Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

$$\blacktriangleright \text{ Define } \mathbf{G} = \mathbf{I}_n \otimes \mathbf{g} = \begin{bmatrix} \cdots \mathbf{g} \cdots & & & \\ & \ddots \mathbf{g} \cdots & & \\ & & \ddots & & \\ & & & \ddots \mathbf{g} \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.$$

Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

• Define
$$\mathbf{G} = \mathbf{I}_n \otimes \mathbf{g} = \begin{bmatrix} \cdots \mathbf{g} \cdots & & \\ & \cdots \mathbf{g} \cdots & \\ & & \ddots & \\ & & \ddots & \\ & & & \ddots \mathbf{g} \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.$$

Now $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ reduce to *n* parallel (and offline) calls to $f_{\mathbf{g}}^{-1}$, $g_{\mathbf{g}}^{-1}$.

Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

Define semi-random [Ā | G] for uniform (universal) Ā ∈ Z^{n×m}_q.
(Computing f⁻¹, g⁻¹ easily reduce to f⁻¹_G, g⁻¹_G.)

- 1 Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

- 1 Define semi-random $[\bar{A} | G]$ for uniform (universal) $\bar{A} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to f_{G}^{-1} , g_{G}^{-1} .)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{\mathbf{A}} | \bar{\mathbf{A}}\mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

- 1 Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{A} | \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With G = 0, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).

- 1 Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{A} | \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With G = 0, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).

* $[\mathbf{I} | \bar{\mathbf{A}} | -(\bar{\mathbf{A}}\mathbf{R}_1 + \mathbf{R}_2)]$ is pseudorandom (under LWE) for $\bar{m} = n$.

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} | \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

Definition

R is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (invertible) if

 $\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} | \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

► The quality of **R** is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} | \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- ► The quality of **R** is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)
- <u>Fact</u>: $s_1(\mathbf{R}) \approx (\sqrt{\text{rows}} + \sqrt{\text{cols}}) \cdot r$ for Gaussian entries w/ std dev r.

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} | \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

Definition

R is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- ► The quality of **R** is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)
- **Fact:** $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev *r*.
- Note: **R** is a trapdoor for $\mathbf{A} [\mathbf{0} | \mathbf{H}' \cdot \mathbf{G}] \text{ w/ tag } (\mathbf{H} \mathbf{H}')$ [ABB'10].

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} | \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- The quality of **R** is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)
- <u>Fact</u>: $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev r.
- ▶ Note: **R** is a trapdoor for $\mathbf{A} [\mathbf{0} | \mathbf{H'} \cdot \mathbf{G}]$ w/ tag $(\mathbf{H} \mathbf{H'})$ [ABB'10].

Relating New and Old Trapdoors

Given a basis S for $\Lambda^{\perp}(G)$ and a trapdoor R for A, we can efficiently construct a basis S_A for $\Lambda^{\perp}(A)$ where $\|\widetilde{S_A}\| \le (s_1(R) + 1) \cdot \|\widetilde{S}\|$.

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} | \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- The quality of **R** is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)
- <u>Fact</u>: $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev *r*.
- ▶ Note: **R** is a trapdoor for $\mathbf{A} [\mathbf{0} | \mathbf{H'} \cdot \mathbf{G}]$ w/ tag $(\mathbf{H} \mathbf{H'})$ [ABB'10].

Relating New and Old Trapdoors

Given a basis S for $\Lambda^{\perp}(G)$ and a trapdoor R for A, we can efficiently construct a basis S_A for $\Lambda^{\perp}(A)$ where $\|\widetilde{S_A}\| \le (s_1(R) + 1) \cdot \|\widetilde{S}\|$.

(But we'll never need to.)

Step 3: Reduce $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$

Suppose **R** is a trapdoor for **A** (w/ tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Suppose **R** is a trapdoor for **A** (w/ tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover \mathbf{s} from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $\begin{bmatrix} -\frac{q}{4}, \frac{q}{4} \end{bmatrix}$, e.g. if $\|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Suppose **R** is a trapdoor for **A** (w/ tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover s from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $\begin{bmatrix} -\frac{q}{4}, \frac{q}{4} \end{bmatrix}$, e.g. if $\|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Sampling Gaussian Preimages

Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}'$, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$?

• We have Ax = Gz = u as desired.

Suppose **R** is a trapdoor for **A** (w/ tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover \mathbf{s} from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $\begin{bmatrix} -\frac{q}{4}, \frac{q}{4} \end{bmatrix}$, e.g. if $\|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Sampling Gaussian Preimages

Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}'$, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$?

- We have Ax = Gz = u as desired.
- <u>Problem</u>: $\begin{bmatrix} R \\ I \end{bmatrix} z$ is non-spherical Gaussian, leaks R !

Suppose **R** is a trapdoor for **A** (w/ tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover s from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $\left[-\frac{q}{4}, \frac{q}{4}\right]$, e.g. if $\|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Sampling Gaussian Preimages

Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}'$, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$?

- We have Ax = Gz = u as desired.
- <u>Problem</u>: $\begin{bmatrix} R \\ I \end{bmatrix} z$ is non-spherical Gaussian, leaks R !
- Solution: use offline 'perturbation' [P'10] to get spherical Gaussian w/ std dev $\approx s_1(\mathbf{R})$: output $\mathbf{x} = \mathbf{p} + \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$.

Trapdoor Delegation [CHKP'10]

Suppose **R** is a trapdoor for **A**, i.e. $A\begin{bmatrix} R \\ I \end{bmatrix} = H \cdot G$.

Trapdoor Delegation [CHKP'10]

- Suppose **R** is a trapdoor for **A**, i.e. $A\begin{bmatrix} R \\ I \end{bmatrix} = H \cdot G$.
- To delegate a trapdoor for an extension [A | A'] with tag H', just sample Gaussian R' s.t.

$$[\mathbf{A} \mid \mathbf{A}']\begin{bmatrix} \mathbf{R}' \\ \mathbf{I} \end{bmatrix} = \mathbf{H}' \cdot \mathbf{G} \iff \mathbf{A}\mathbf{R}' = \mathbf{H}' \cdot \mathbf{G} - \mathbf{A}'.$$
Trapdoor Delegation [CHKP'10]

- Suppose **R** is a trapdoor for **A**, i.e. $A\begin{bmatrix} R \\ I \end{bmatrix} = H \cdot G$.
- To delegate a trapdoor for an extension [A | A'] with tag H', just sample Gaussian R' s.t.

$$[\mathbf{A} \mid \mathbf{A}']\begin{bmatrix} \mathbf{R}' \\ \mathbf{I} \end{bmatrix} = \mathbf{H}' \cdot \mathbf{G} \iff \mathbf{A}\mathbf{R}' = \mathbf{H}' \cdot \mathbf{G} - \mathbf{A}'.$$

Note: R' is only width(A) × width(G) = m × n log q.
So size of R' grows only as O(m), not Ω(m²) [CHKP'10].
Also computationally efficient: n log q samples, no HNF or ToBasis.

Hierarchical IBE [CHKP'10,ABB'10]

Setup(d): choose A_0, \ldots, A_d (each dim $n \log q$) where

 $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**.

Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = \{\mathbf{A}_i\}$ $(d+1 \text{ vs} \ge 4d+2)$

Hierarchical IBE [CHKP'10,ABB'10]

Setup(*d*): choose $\mathbf{A}_0, \dots, \mathbf{A}_d$ (each dim $n \log q$) where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = \{\mathbf{A}_i\}$ $(d + 1 \text{ vs} \ge 4d + 2)$

For $id = (\mathbf{H}_1, \dots, \mathbf{H}_t)$ of nonzero (invertible) $\mathbf{H}_i \in \mathcal{H}$, let

 $\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 - \mathbf{H}_1 \mathbf{G} \mid \cdots \mid \mathbf{A}_t - \mathbf{H}_t \mathbf{G} \mid \mathbf{A}_{t+1}].$

Hierarchical IBE [CHKP'10,ABB'10]

• Setup(*d*): choose $\mathbf{A}_0, \dots, \mathbf{A}_d$ (each dim $n \log q$) where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = \{\mathbf{A}_i\}$ $(d + 1 \text{ vs} \ge 4d + 2)$

► For $id = (\mathbf{H}_1, \dots, \mathbf{H}_t)$ of nonzero (invertible) $\mathbf{H}_i \in \mathcal{H}$, let $\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 - \mathbf{H}_1 \mathbf{G} \mid \dots \mid \mathbf{A}_t - \mathbf{H}_t \mathbf{G} \mid \mathbf{A}_{t+1}].$

and sk_{id} is a trapdoor \mathbf{R}_{id} for \mathbf{A}_{id} with tag **0**.

Using sk_{id} , can delegate any $sk_{id'}$ for any nontrivial extension id'.

Hierarchical IBE [CHKP'10,ABB'10]

• Setup(*d*): choose $\mathbf{A}_0, \dots, \mathbf{A}_d$ (each dim $n \log q$) where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = \{\mathbf{A}_i\}$ $(d + 1 \text{ vs} \ge 4d + 2)$

For $id = (\mathbf{H}_1, \dots, \mathbf{H}_t)$ of nonzero (invertible) $\mathbf{H}_i \in \mathcal{H}$, let $\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 - \mathbf{H}_1 \mathbf{G} \mid \dots \mid \mathbf{A}_t - \mathbf{H}_t \mathbf{G} \mid \mathbf{A}_{t+1}].$

and sk_{id} is a trapdoor \mathbf{R}_{id} for \mathbf{A}_{id} with tag **0**.

Using sk_{id} , can delegate any $sk_{id'}$ for any nontrivial extension id'.

Encrypt (up to $n \log q$ bits) to A_{id} , decrypt using \mathbf{R}_{id} as in [GPV'08].

Hierarchical IBE [CHKP'10,ABB'10]

• Setup(*d*): choose $\mathbf{A}_0, \dots, \mathbf{A}_d$ (each dim $n \log q$) where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = \{\mathbf{A}_i\}$ $(d + 1 \text{ vs} \ge 4d + 2)$

For $id = (\mathbf{H}_1, \dots, \mathbf{H}_t)$ of nonzero (invertible) $\mathbf{H}_i \in \mathcal{H}$, let $\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 - \mathbf{H}_1 \mathbf{G} \mid \dots \mid \mathbf{A}_t - \mathbf{H}_t \mathbf{G} \mid \mathbf{A}_{t+1}].$

and sk_{id} is a trapdoor \mathbf{R}_{id} for \mathbf{A}_{id} with tag **0**.

Using sk_{id} , can delegate any $sk_{id'}$ for any nontrivial extension id'.

- Encrypt (up to $n \log q$ bits) to A_{id} , decrypt using \mathbf{R}_{id} as in [GPV'08].
- Security ("puncturing"): Set up mpk, trapdoor **R** with tags = id^* . Family \mathcal{H} with "invertible differences" from extension ring of \mathbb{Z}_q [DF'94,Fehr'98,ABB'10]

A new, simpler, more efficient trapdoor notion and construction

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements
- Key sizes and algorithms for "strong" trapdoors are now practical

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements
- Key sizes and algorithms for "strong" trapdoors are now practical

Questions?