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Pseudorandom Functions [GGM’84]

I A family F = {Fs : {0, 1}k → D} s.t. given adaptive query access,

Fs ← F c
≈ random fct U

??

xi Fs(xi) xi U(xi)

(The “seed” or “secret key” for Fs is s.)

I Countless applications in symmetric cryptography:
(efficient) encryption, authentication, friend-or-foe . . .

(Images courtesy xkcd.org)
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How to Construct PRFs

1 Heuristically: AES etc.

4 Fast!

4 Withstand known cryptanalytic techniques (linear, differential, . . . )

7 PRF security is subtle: want provable (reductionist) guarantees

2 Goldreich-Goldwasser-Micali [GGM’84]

4 Based on any (doubling) PRG. Fs(x1 · · ·xk) = Gxk
(· · ·Gx1

(s) · · · )

7 Inherently sequential: ≥ k iterations (circuit depth)

3 Naor-Reingold(-Rosen) [NR’95,NR’97,NRR’00]

4 Based on “synthesizers” or number theory (DDH, factoring)

4 Low-depth: NC2, NC1 or even TC0 [O(1) depth w/ threshold gates]

7 Huge circuits that need much preprocessing

7 No “post-quantum” construction under standard assumptions
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PRFs from Lattices?

The Hope
I Lattices ⇒ simple, highly parallel, practically efficient . . . PRFs?

The Reality

7 Only known PRF is generic GGM (not parallel or very efficient)

77 We don’t even have practical PRGs from lattices: biased errors

New Results [BPR’12]

1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE

F Synthesizer-based PRF in TC1 ⊆ NC2 a la [NR’95]

F Direct construction in TC0 ⊆ NC1 analogous to [NR’97,NRR’00]

2 Main technique: “derandomization” of LWE: deterministic errors
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Synthesizers and PRFs [NaorReingold’95]

Synthesizer
I A deterministic function S : D ×D → D s.t. for any m = poly:

for uniform a1, . . . , am, b1, . . . , bm ← D,

{S(ai , bj) }
c
≈ Unif(Dm×m).

b1 b2 · · ·

a1 S(a1, b1) S(a1, b2) · · ·
a2 S(a2, b1) S(a2, b2) · · ·
...

. . .

vs.
U1,1 U1,2 · · ·
U2,1 U2,2 · · ·

. . .

I Alternative view: an (almost) length-squaring PRG with locality:

maps D2m → Dm2
, and each output depends on only 2 inputs.
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Synthesizers and PRFs [NaorReingold’95]

PRF from Synthesizer, Recursively

I Synthesizer S : D ×D → D, where {S(ai , bj) }
c
≈ Unif(Dm×m).

I Base case: “one-bit” PRF Fs0,s1(x) := sx ∈ D. 4

I Input doubling: given k-bit PRF family F = {F : {0, 1}k → D},
define a {0, 1}2k → D function with seed F`, Fr ← F :

F(F`,Fr)(x` , xr) = S
(
F`(x`) , Fr(xr)

)
.

S

S
s1,x1s1,0 , s1,1

s2,x2s2,0 , s2,1

S
s3,x3s3,0 , s3,1

s4,x4s4,0 , s4,1

F{si,b}(x1 · · ·x4)

I Security: the queries F`(x`) and Fr(xr) define (pseudo)random
inputs a1, a2, . . . ∈ D and b1, b2, . . . ∈ D to synthesizer S.
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LWE ⇒ Synthesizer?

I Hard to distinguish pairs (ai ∈ Zn
q , bi = 〈ai, s〉+ ei) from (ai , bi).

I By hybrid argument, can’t distinguish tuples

(Ai ∈ Zn×n
q , Ai · S1 +Ei,1 ∈ Zn×n

q , Ai · S2 +Ei,2 ∈ Zn×n
q , . . .)

An LWE-Based Synthesizer?

S1 S2 · · ·
A1 A1 · S1 +E1,1 A1 · S2 +E1,2 · · ·
A2 A2 · S1 +E2,1 A2 · S2 +E2,2 · · ·

...
. . .

4 {Ai · Sj +Ei,j}
c
≈

Uniform, but. . .

7 What about Ei,j?

Synthesizer must be
deterministic. . .
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“Learning With Rounding” (LWR) [BPR’12]

I IDEA: generate errors deterministically by rounding
Zq to a “sparse” subset (e.g. subgroup Zp).

(Common in decryption to remove error.)

Let p < q and define bxep = b(p/q) · xe mod p.
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I LWR problem: distinguish any m = poly pairs(
ai , b〈ai, s〉ep

)
∈ Zq × Zp from uniform

Interpretation: LWE conceals low-order bits by adding small random
error. LWR just discards those bits instead.

I We prove LWE ≤ LWR for q ≥ p · nω(1) [but it seems 2n-hard for q ≥ p
√
n]

Proof idea: w.h.p., (a , b〈a, s〉+ eep ) = (a , b〈a, s〉ep )
and (a , bUnif(Zq)ep ) = (a , Unif(Zp) )
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I LWR problem: distinguish any m = poly pairs(
ai , b〈ai, s〉ep

)
∈ Zq × Zp from uniform

Interpretation: LWE conceals low-order bits by adding small random
error. LWR just discards those bits instead.

I We prove LWE ≤ LWR for q ≥ p · nω(1) [but it seems 2n-hard for q ≥ p
√
n]

Proof idea: w.h.p., (a , b〈a, s〉+ eep ) = (a , b〈a, s〉ep )
and (a , bUnif(Zq)ep ) = (a , Unif(Zp) )
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LWR-Based Synthesizer & PRF

I Synthesizer S : Zn×n
q × Zn×n

q → Zn×n
p is S(A,S) = bA · Sep.

(Note: range Zp is slightly smaller than domain Zq. Only limits composition.)

PRF on Domain {0, 1}k=2d

I “Tower” of public moduli qd > qd−1 > · · · > q0.

I Secret key is 2k square matrices Si,b over Zqd for i ∈ [k], b ∈ {0, 1}.

I Depth d = lg k tree of LWR synthesizers:

F{Si,b}(x1 · · ·x8) =⌊⌊
bS1,x1· S2,x2eq2· bS3,x3· S4,x4eq2

⌉
q1
·
⌊
bS5,x5· S6,x6eq2· bS7,x7· S8,x8eq2

⌉
q1

⌉
q0
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Shallower? More Efficient?

I Synth-based PRF is log k levels of NC1 synthesizers ⇒ NC2.

I [NR’97,NRR’00]: direct PRFs from DDH / factoring, in TC0 ⊆ NC1.

Fg,s1,...,sk(x1 · · ·xk) = g
∏

s
xi
i

(Computing this in TC0 needs huge circuits, though. . . )

Direct LWE-Based Construction
I Public moduli q > p.

I Secret key is uniform A and short S1, . . . ,Sk over Zq.

I “Rounded subset-product” function:

FA,S1,...,Sk
(x1 · · ·xk) =

⌊
A ·

k∏
i=1

Sxi
i mod q

⌉
p

Ring variant has small(ish) TC0 circuit, practical implementation
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Proof Sketch

I Seed is uniform A over Zq and short S1, . . . ,Sk.

FA,S1,...,Sk
(x1 · · ·xk) =

⌊
ASx1

1 · · ·S
xk
k mod q

⌉
p

I Like the LWE ≤ LWR proof, but “souped up” to handle queries.

Thought experiment: answer queries with

F̃ (x) :=
⌊
(ASx1

1 + x1E)Sx2
2 · · ·S

xk
k

⌉
p
=

⌊
A

k∏
i=1

Sxi
i + x1E

k∏
i=2

Sxi
i

⌉
p

W.h.p., F̃ (x) = F (x) on all queries due to “small” error & rounding.

I Using LWE, replace (A,AS1 +E) with uniform (A0,A1)

⇒ New function F ′(x) = bAx1S
x2
2 · · ·S

xk
k ep.

I Repeat for S2,S3, . . . to get F ′′′′′′′(x) = bAxep = U(x). �

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012 11/12



Proof Sketch

I Seed is uniform A over Zq and short S1, . . . ,Sk.

FA,S1,...,Sk
(x1 · · ·xk) =

⌊
ASx1

1 · · ·S
xk
k mod q

⌉
p

I Like the LWE ≤ LWR proof, but “souped up” to handle queries.

Thought experiment: answer queries with

F̃ (x) :=
⌊
(ASx1

1 + x1E)Sx2
2 · · ·S

xk
k

⌉
p
=

⌊
A

k∏
i=1

Sxi
i + x1E

k∏
i=2

Sxi
i

⌉
p

W.h.p., F̃ (x) = F (x) on all queries due to “small” error & rounding.

I Using LWE, replace (A,AS1 +E) with uniform (A0,A1)

⇒ New function F ′(x) = bAx1S
x2
2 · · ·S

xk
k ep.

I Repeat for S2,S3, . . . to get F ′′′′′′′(x) = bAxep = U(x). �

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012 11/12



Proof Sketch

I Seed is uniform A over Zq and short S1, . . . ,Sk.

FA,S1,...,Sk
(x1 · · ·xk) =

⌊
ASx1

1 · · ·S
xk
k mod q

⌉
p

I Like the LWE ≤ LWR proof, but “souped up” to handle queries.

Thought experiment: answer queries with

F̃ (x) :=
⌊
(ASx1

1 + x1E)Sx2
2 · · ·S

xk
k

⌉
p
=

⌊
A

k∏
i=1

Sxi
i + x1E

k∏
i=2

Sxi
i

⌉
p

W.h.p., F̃ (x) = F (x) on all queries due to “small” error & rounding.

I Using LWE, replace (A,AS1 +E) with uniform (A0,A1)

⇒ New function F ′(x) = bAx1S
x2
2 · · ·S

xk
k ep.

I Repeat for S2,S3, . . . to get F ′′′′′′′(x) = bAxep = U(x). �

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012 11/12



Proof Sketch

I Seed is uniform A over Zq and short S1, . . . ,Sk.

FA,S1,...,Sk
(x1 · · ·xk) =

⌊
ASx1

1 · · ·S
xk
k mod q

⌉
p

I Like the LWE ≤ LWR proof, but “souped up” to handle queries.

Thought experiment: answer queries with

F̃ (x) :=
⌊
(ASx1

1 + x1E)Sx2
2 · · ·S

xk
k

⌉
p
=

⌊
A

k∏
i=1

Sxi
i + x1E

k∏
i=2

Sxi
i

⌉
p

W.h.p., F̃ (x) = F (x) on all queries due to “small” error & rounding.

I Using LWE, replace (A,AS1 +E) with uniform (A0,A1)

⇒ New function F ′(x) = bAx1S
x2
2 · · ·S

xk
k ep.

I Repeat for S2,S3, . . . to get F ′′′′′′′(x) = bAxep = U(x). �

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012 11/12



Proof Sketch

I Seed is uniform A over Zq and short S1, . . . ,Sk.

FA,S1,...,Sk
(x1 · · ·xk) =

⌊
ASx1

1 · · ·S
xk
k mod q

⌉
p

I Like the LWE ≤ LWR proof, but “souped up” to handle queries.

Thought experiment: answer queries with

F̃ (x) :=
⌊
(ASx1

1 + x1E)Sx2
2 · · ·S

xk
k

⌉
p
=

⌊
A

k∏
i=1

Sxi
i + x1E

k∏
i=2

Sxi
i

⌉
p

W.h.p., F̃ (x) = F (x) on all queries due to “small” error & rounding.

I Using LWE, replace (A,AS1 +E) with uniform (A0,A1)

⇒ New function F ′(x) = bAx1S
x2
2 · · ·S

xk
k ep.

I Repeat for S2,S3, . . . to get F ′′′′′′′(x) = bAxep = U(x). �

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012 11/12



Open Questions

I Better hardness for LWR, e.g. for q/p =
√
n?

(The proof from LWE relies on approx factor and modulus = nω(1).)

I Synth-based PRF relies on approx factor and modulus nΘ(log k).

Direct construction relies on approx factor and modulus nΘ(k).

Conjecture (?): direct PRF is secure for integral q/p = poly(n).

I Efficient PRFs from subset-sum/LPN?

Selected bibliography for this talk:
NR’95 M. Naor, O. Reingold, “Synthesizers and Their Applications to the

Parallel Construction of Pseudorandom Functions,” FOCS’95 / JCSS’99.

NR’97 M. Naor, O. Reingold, “Number-theoretic constructions of efficient
pseudorandom functions,” FOCS’97 / JACM’04.

NRR’00 M. Naor, O. Reingold, A. Rosen, “Pseudorandom functions and
factoring,” STOC’00 / SICOMP’02.

BPR’12 A. Banerjee, C. Peikert, A. Rosen, “Pseudorandom Functions and
Lattices,” Eurocrypt’12.
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