Session #6: Another Application of LWE: Pseudorandom Functions

Chris Peikert Georgia Institute of Technology

Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel 19 Feb 2012 – 22 Feb 2012

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012

1/12

Pseudorandom Functions [GGM'84]

▶ A family $\mathcal{F} = \{F_s : \{0,1\}^k \to D\}$ s.t. given adaptive query access,

(The "seed" or "secret key" for F_s is s.)

(Images courtesy xkcd.org)

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012

Pseudorandom Functions [GGM'84]

• A family
$$\mathcal{F} = \{F_s : \{0,1\}^k \to D\}$$
 s.t. given adaptive query access,

(The "seed" or "secret key" for F_s is s.)

 Countless applications in symmetric cryptography: (efficient) encryption, authentication, friend-or-foe

(Images courtesy xkcd.org)

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012

- 1 Heuristically: AES etc.
 - ✓ Fast!
 - ✔ Withstand known cryptanalytic techniques (linear, differential, ...)

- 1 Heuristically: AES etc.
 - ✓ Fast!
 - ✔ Withstand known cryptanalytic techniques (linear, differential, ...)
 - ✗ PRF security is subtle: want provable (reductionist) guarantees

- 1 Heuristically: AES etc.
 - ✓ Fast!
 - ✔ Withstand known cryptanalytic techniques (linear, differential, ...)
 - X PRF security is subtle: want provable (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$

- 1 Heuristically: AES etc.
 - ✓ Fast!
 - ✔ Withstand known cryptanalytic techniques (linear, differential, ...)
 - X PRF security is subtle: want provable (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - \checkmark Inherently sequential: $\geq k$ iterations (circuit depth)

- 1 Heuristically: AES etc.
 - ✓ Fast!
 - ✔ Withstand known cryptanalytic techniques (linear, differential, ...)
 - X PRF security is subtle: want provable (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - \checkmark Inherently sequential: $\geq k$ iterations (circuit depth)
- 8 Naor-Reingold(-Rosen) [NR'95,NR'97,NRR'00]
 - ✓ Based on "synthesizers" or number theory (DDH, factoring)
 - ✓ Low-depth: NC², NC¹ or even TC⁰ [O(1) depth w/ threshold gates]

- 1 Heuristically: AES etc.
 - ✓ Fast!
 - ✔ Withstand known cryptanalytic techniques (linear, differential, ...)
 - X PRF security is subtle: want provable (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - \checkmark Inherently sequential: $\geq k$ iterations (circuit depth)
- 8 Naor-Reingold(-Rosen) [NR'95,NR'97,NRR'00]
 - ✔ Based on "synthesizers" or number theory (DDH, factoring)
 - ✓ Low-depth: NC², NC¹ or even TC⁰ [O(1) depth w/ threshold gates]
 - **X** Huge circuits that need much preprocessing
 - X No "post-quantum" construction under standard assumptions

The Hope

• Lattices \Rightarrow simple, highly parallel, practically efficient ... PRFs?

The Hope

▶ Lattices ⇒ simple, highly parallel, practically efficient ... PRFs?

The Reality

X Only known PRF is generic GGM (not parallel or very efficient)

The Hope

▶ Lattices ⇒ simple, highly parallel, practically efficient ... PRFs?

The Reality

X Only known PRF is generic GGM (not parallel or very efficient)

XX We don't even have practical PRGs from lattices: biased errors

The Hope

▶ Lattices ⇒ simple, highly parallel, practically efficient ... PRFs?

The Reality

X Only known PRF is generic GGM (not parallel or very efficient)

XX We don't even have practical PRGs from lattices: biased errors

New Results [BPR'12]

1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE

The Hope

▶ Lattices ⇒ simple, highly parallel, practically efficient ... PRFs?

The Reality

X Only known PRF is generic GGM (not parallel or very efficient)

 $\ref{eq:linear}$ We don't even have practical PRGs from lattices: biased errors

New Results [BPR'12]

Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE

- ★ Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
- ★ Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]

The Hope

▶ Lattices ⇒ simple, highly parallel, practically efficient ... PRFs?

The Reality

X Only known PRF is generic GGM (not parallel or very efficient)

 $\ref{eq:linear}$ We don't even have practical PRGs from lattices: biased errors

New Results [BPR'12]

Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE

- ★ Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
- ★ Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]
- 2 Main technique: "derandomization" of LWE: deterministic errors

Synthesizer

▶ A deterministic function $S: D \times D \to D$ s.t. for any m = poly: for uniform $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

 $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$

Synthesizer

▶ A deterministic function $S: D \times D \rightarrow D$ s.t. for any m = poly: for uniform $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

$$\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$$

Synthesizer

▶ A deterministic function $S: D \times D \rightarrow D$ s.t. for any m = poly: for uniform $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

$$\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$$

▶ <u>Alternative view</u>: an (almost) length-squaring PRG with locality: maps $D^{2m} \rightarrow D^{m^2}$, and each output depends on only 2 inputs.

PRF from Synthesizer, Recursively

• Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \approx Unif(D^{m \times m})$.

PRF from Synthesizer, Recursively

• Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \approx^c \text{Unif}(D^{m \times m})$.

• <u>Base case</u>: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$.

PRF from Synthesizer, Recursively

- Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \text{Unif}(D^{m \times m})$.
- Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$.
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0, 1\}^k \to D\}$, define a $\{0, 1\}^{2k} \to D$ function with seed $F_\ell, F_r \leftarrow \mathcal{F}$:

$$F_{(F_{\ell},F_{r})}(x_{\ell}, x_{r}) = S(F_{\ell}(x_{\ell}), F_{r}(x_{r})).$$

PRF from Synthesizer, Recursively

- Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \text{Unif}(D^{m \times m})$.
- <u>Base case</u>: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$.
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0, 1\}^k \to D\}$, define a $\{0, 1\}^{2k} \to D$ function with seed $F_\ell, F_r \leftarrow \mathcal{F}$:

$$F_{(F_{\ell},F_{r})}(x_{\ell}, x_{r}) = S(F_{\ell}(x_{\ell}), F_{r}(x_{r})).$$

PRF from Synthesizer, Recursively

- Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \text{Unif}(D^{m \times m})$.
- **•** <u>Base case</u>: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$.
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0, 1\}^k \to D\}$, define a $\{0, 1\}^{2k} \to D$ function with seed $F_\ell, F_r \leftarrow \mathcal{F}$:

$$F_{(F_{\ell},F_{r})}(x_{\ell}, x_{r}) = S(F_{\ell}(x_{\ell}), F_{r}(x_{r})).$$

• Security: the queries $F_{\ell}(x_{\ell})$ and $F_r(x_r)$ define (pseudo)random inputs $a_1, a_2, \ldots \in D$ and $b_1, b_2, \ldots \in D$ to synthesizer S.

• <u>Hard</u> to distinguish pairs $(\mathbf{a}_i \in \mathbb{Z}_q^n, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from $(\mathbf{a}_i, \mathbf{b}_i)$.

LWE \Rightarrow Synthesizer?

• <u>Hard</u> to distinguish pairs $(\mathbf{a}_i \in \mathbb{Z}_q^n, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from $(\mathbf{a}_i, \mathbf{b}_i)$.

By hybrid argument, can't distinguish tuples

 $(\mathbf{A}_i \in \mathbb{Z}_q^{n \times n}, \mathbf{A}_i \cdot \mathbf{S}_1 + \mathbf{E}_{i,1} \in \mathbb{Z}_q^{n \times n}, \mathbf{A}_i \cdot \mathbf{S}_2 + \mathbf{E}_{i,2} \in \mathbb{Z}_q^{n \times n}, \ldots)$

• <u>Hard</u> to distinguish pairs $(\mathbf{a}_i \in \mathbb{Z}_q^n, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from $(\mathbf{a}_i, \mathbf{b}_i)$.

By hybrid argument, can't distinguish tuples

 $\left(\mathbf{A}_{i} \in \mathbb{Z}_{q}^{n \times n}, \; \mathbf{A}_{i} \cdot \mathbf{S}_{1} + \mathbf{E}_{i,1} \in \mathbb{Z}_{q}^{n \times n}, \; \mathbf{A}_{i} \cdot \mathbf{S}_{2} + \mathbf{E}_{i,2} \in \mathbb{Z}_{q}^{n \times n}, \; \ldots\right)$

An LWE-Based Synthesizer?

	$ $ \mathbf{S}_1	\mathbf{S}_2	
\mathbf{A}_1	$\mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1}$	$\mathbf{A}_1\cdot\mathbf{S}_2+\mathbf{E}_{1,2}$	•••
\mathbf{A}_2	$\mathbf{A}_2 \cdot \mathbf{S}_1 + \mathbf{E}_{2,1}$	$\mathbf{A}_2\cdot\mathbf{S}_2+\mathbf{E}_{2,2}$	
÷		·	

- <u>Hard</u> to distinguish pairs $(\mathbf{a}_i \in \mathbb{Z}_q^n, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from $(\mathbf{a}_i, \mathbf{b}_i)$.
- By hybrid argument, can't distinguish tuples

 $\left(\mathbf{A}_{i} \in \mathbb{Z}_{q}^{n \times n}, \; \mathbf{A}_{i} \cdot \mathbf{S}_{1} + \mathbf{E}_{i,1} \in \mathbb{Z}_{q}^{n \times n}, \; \mathbf{A}_{i} \cdot \mathbf{S}_{2} + \mathbf{E}_{i,2} \in \mathbb{Z}_{q}^{n \times n}, \; \ldots\right)$

- <u>Hard</u> to distinguish pairs $(\mathbf{a}_i \in \mathbb{Z}_q^n, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from $(\mathbf{a}_i, \mathbf{b}_i)$.
- By hybrid argument, can't distinguish tuples

 $\left(\mathbf{A}_{i} \in \mathbb{Z}_{q}^{n \times n}, \; \mathbf{A}_{i} \cdot \mathbf{S}_{1} + \mathbf{E}_{i,1} \in \mathbb{Z}_{q}^{n \times n}, \; \mathbf{A}_{i} \cdot \mathbf{S}_{2} + \mathbf{E}_{i,2} \in \mathbb{Z}_{q}^{n \times n}, \; \ldots\right)$

An LWE-Based Synthesizer?

	\mathbf{S}_1	\mathbf{S}_2	 $\checkmark \ \{\mathbf{A}_i \cdot \mathbf{S}_j + \mathbf{E}_{i,j}\} \stackrel{c}{\approx}$
\mathbf{A}_1	$\mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1}$	$\mathbf{A}_1 \cdot \mathbf{S}_2 + \mathbf{E}_{1,2}$	 Uniform, but
\mathbf{A}_2	$\mathbf{A}_2 \cdot \mathbf{S}_1 + \mathbf{E}_{2,1}$	$\mathbf{A}_2\cdot\mathbf{S}_2+\mathbf{E}_{2,2}$	 $oldsymbol{ imes}$ What about $\mathbf{E}_{i,j}$?
:			Synthesizer must be
.			deterministic

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. subgroup \mathbb{Z}_p).

(Common in decryption to remove error.)

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. subgroup \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. subgroup \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

• <u>LWR problem</u>: distinguish any m = poly pairs

$$(\mathbf{a}_i \ , \ \lfloor \langle \mathbf{a}_i , \mathbf{s} \rangle
ceil_p) \in \mathbb{Z}_q imes \mathbb{Z}_p$$
 from uniform

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. subgroup \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

• LWR problem: distinguish any m = poly pairs

$$(\mathbf{a}_i \ , \ \lfloor \langle \mathbf{a}_i , \mathbf{s}
angle
ceil_p) \in \mathbb{Z}_q imes \mathbb{Z}_p$$
 from uniform

Interpretation: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. subgroup \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

• LWR problem: distinguish any m = poly pairs

$$\left(\mathbf{a}_{i} \ , \ \lfloor \langle \mathbf{a}_{i}, \mathbf{s}
angle
ceil_{p}
ight) \in \mathbb{Z}_{q} imes \mathbb{Z}_{p}$$
 from uniform

Interpretation: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

• We prove LWE \leq LWR for $q \geq p \cdot n^{\omega(1)}$ [but it seems 2^n -hard for $q \geq p\sqrt{n}$]

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. subgroup \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

• LWR problem: distinguish any m = poly pairs

$$(\mathbf{a}_i \ , \ \lfloor \langle \mathbf{a}_i, \mathbf{s}
angle
ceil_p) \in \mathbb{Z}_q imes \mathbb{Z}_p$$
 from uniform

Interpretation: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

▶ We prove LWE ≤ LWR for $q \ge p \cdot n^{\omega(1)}$ [but it seems 2^n -hard for $q \ge p\sqrt{n}$] Proof idea: w.h.p., $(\mathbf{a}, \lfloor \langle \mathbf{a}, \mathbf{s} \rangle + e \rceil_p) = (\mathbf{a}, \lfloor \langle \mathbf{a}, \mathbf{s} \rangle \rceil_p)$ and $(\mathbf{a}, \lfloor \mathsf{Unif}(\mathbb{Z}_q) \rceil_p) = (\mathbf{a}, \mathsf{Unif}(\mathbb{Z}_p))$

LWR-Based Synthesizer & PRF

 $\blacktriangleright \text{ Synthesizer } S \colon \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n} \text{ is } S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p.$

(Note: range \mathbb{Z}_p is slightly smaller than domain \mathbb{Z}_q . Only limits composition.)

LWR-Based Synthesizer & PRF

 $\blacktriangleright \text{ Synthesizer } S \colon \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n} \text{ is } S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p.$

(Note: range \mathbb{Z}_p is slightly smaller than domain \mathbb{Z}_q . Only limits composition.)

PRF on $\mathsf{Domain}\ \{0,1\}^{k=2^d}$

- "Tower" of public moduli $q_d > q_{d-1} > \cdots > q_0$.
- Secret key is 2k square matrices $\mathbf{S}_{i,b}$ over \mathbb{Z}_{q_d} for $i \in [k]$, $b \in \{0,1\}$.

LWR-Based Synthesizer & PRF

▶ Synthesizer $S: \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n}$ is $S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p$.

(Note: range \mathbb{Z}_p is slightly smaller than domain \mathbb{Z}_q . Only limits composition.)

PRF on Domain $\{0,1\}^{k=2^d}$

- "Tower" of public moduli $q_d > q_{d-1} > \cdots > q_0$.
- Secret key is 2k square matrices $\mathbf{S}_{i,b}$ over \mathbb{Z}_{q_d} for $i \in [k]$, $b \in \{0,1\}$.

$$F_{\{\mathbf{S}_{i,b}\}}(x_1 \cdots x_8) = \left[\left[\left[\mathbf{S}_{1,x_1} \cdot \mathbf{S}_{2,x_2} \right]_{q_2} \cdot \left[\mathbf{S}_{3,x_3} \cdot \mathbf{S}_{4,x_4} \right]_{q_2} \right]_{q_1} \left[\left[\mathbf{S}_{5,x_5} \cdot \mathbf{S}_{6,x_6} \right]_{q_2} \cdot \left[\mathbf{S}_{7,x_7} \cdot \mathbf{S}_{8,x_8} \right]_{q_2} \right]_{q_1} \right]_{q_0} \right]_{q_0}$$

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012

Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².

- Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs huge circuits, though...)

- Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs huge circuits, though...)

Direct LWE-Based Construction

- ▶ Public moduli q > p.
- Secret key is uniform A and short S_1, \ldots, S_k over \mathbb{Z}_q .

- Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs huge circuits, though...)

Direct LWE-Based Construction

- ▶ Public moduli q > p.
- Secret key is uniform A and short S_1, \ldots, S_k over \mathbb{Z}_q .
- "Rounded subset-product" function:

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left\lfloor \mathbf{A} \cdot \prod_{i=1}^k \mathbf{S}_i^{x_i} \mod q \right\rceil_p$$

- Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs huge circuits, though...)

Direct LWE-Based Construction

- Public moduli q > p.
- Secret key is uniform A and short S_1, \ldots, S_k over \mathbb{Z}_q .
- "Rounded subset-product" function:

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left[\mathbf{A}\cdot\prod_{i=1}^k \mathbf{S}_i^{x_i} \mod q\right]_{\mu}$$

Ring variant has small(ish) TC⁰ circuit, practical implementation

Seed is uniform A over \mathbb{Z}_q and short $\mathbf{S}_1, \ldots, \mathbf{S}_k$.

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left\lfloor \mathbf{A}\mathbf{S}_1^{x_1}\cdots\mathbf{S}_k^{x_k} \bmod q \right\rceil_p$$

Seed is uniform A over \mathbb{Z}_q and short $\mathbf{S}_1, \ldots, \mathbf{S}_k$.

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left\lfloor \mathbf{A}\mathbf{S}_1^{x_1}\cdots\mathbf{S}_k^{x_k} \bmod q \right\rceil_p$$

Like the LWE ≤ LWR proof, but "souped up" to handle queries.

Seed is uniform A over \mathbb{Z}_q and short $\mathbf{S}_1, \ldots, \mathbf{S}_k$.

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left\lfloor \mathbf{A}\mathbf{S}_1^{x_1}\cdots \mathbf{S}_k^{x_k} \mod q \right\rceil_p$$

Like the LWE ≤ LWR proof, but "souped up" to handle queries. Thought experiment: answer queries with

$$\tilde{F}(x) := \left\lfloor (\mathbf{A}\mathbf{S}_1^{x_1} + x_1\mathbf{E})\mathbf{S}_2^{x_2} \cdots \mathbf{S}_k^{x_k} \right\rceil_p = \left\lfloor \mathbf{A}\prod_{i=1}^k \mathbf{S}_i^{x_i} + x_1\mathbf{E}\prod_{i=2}^k \mathbf{S}_i^{x_i} \right\rceil_p$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

Seed is uniform A over \mathbb{Z}_q and short $\mathbf{S}_1, \ldots, \mathbf{S}_k$.

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left\lfloor \mathbf{A}\mathbf{S}_1^{x_1}\cdots \mathbf{S}_k^{x_k} \mod q \right\rfloor_p$$

Like the LWE ≤ LWR proof, but "souped up" to handle queries. Thought experiment: answer queries with

$$\tilde{F}(x) := \left\lfloor (\mathbf{A}\mathbf{S}_1^{x_1} + x_1\mathbf{E})\mathbf{S}_2^{x_2} \cdots \mathbf{S}_k^{x_k} \right\rceil_p = \left\lfloor \mathbf{A}\prod_{i=1}^k \mathbf{S}_i^{x_i} + x_1\mathbf{E}\prod_{i=2}^k \mathbf{S}_i^{x_i} \right\rceil_p$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

▶ Using LWE, replace $(\mathbf{A}, \mathbf{AS}_1 + \mathbf{E})$ with uniform $(\mathbf{A}_0, \mathbf{A}_1)$

$$\Rightarrow \text{New function } F'(x) = \lfloor \mathbf{A}_{x_1} \mathbf{S}_2^{x_2} \cdots \mathbf{S}_k^{x_k} \rceil_p.$$

Seed is uniform A over \mathbb{Z}_q and short $\mathbf{S}_1, \ldots, \mathbf{S}_k$.

$$F_{\mathbf{A},\mathbf{S}_1,\ldots,\mathbf{S}_k}(x_1\cdots x_k) = \left\lfloor \mathbf{A}\mathbf{S}_1^{x_1}\cdots \mathbf{S}_k^{x_k} \mod q \right\rceil_p$$

Like the LWE ≤ LWR proof, but "souped up" to handle queries. <u>Thought experiment</u>: answer queries with

$$\tilde{F}(x) := \left\lfloor (\mathbf{A}\mathbf{S}_1^{x_1} + x_1\mathbf{E})\mathbf{S}_2^{x_2} \cdots \mathbf{S}_k^{x_k} \right\rceil_p = \left\lfloor \mathbf{A}\prod_{i=1}^k \mathbf{S}_i^{x_i} + x_1\mathbf{E}\prod_{i=2}^k \mathbf{S}_i^{x_i} \right\rceil_p$$

W.h.p., $\tilde{F}(x)=F(x)$ on all queries due to "small" error & rounding.

- ► Using LWE, replace $(\mathbf{A}, \mathbf{AS}_1 + \mathbf{E})$ with uniform $(\mathbf{A}_0, \mathbf{A}_1)$ ⇒ New function $F'(x) = [\mathbf{A}_{x_1} \mathbf{S}_2^{x_2} \cdots \mathbf{S}_{\nu}^{x_k}]_{\nu}$.
- ▶ Repeat for $\mathbf{S}_2, \mathbf{S}_3, \ldots$ to get $F''''''(x) = \lfloor \mathbf{A}_x \rceil_p = U(x)$. □

• Better hardness for LWR, e.g. for $q/p = \sqrt{n}$?

(The proof from LWE relies on approx factor and modulus $= n^{\omega(1)}$.)

- ▶ Better hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus $= n^{\omega(1)}$.)
- Synth-based PRF relies on approx factor and modulus n^{⊖(log k)}. Direct construction relies on approx factor and modulus n^{⊖(k)}.

- ▶ Better hardness for LWR, e.g. for q/p = √n? (The proof from LWE relies on approx factor and modulus = n^{ω(1)}.)
- Synth-based PRF relies on approx factor and modulus n^{Θ(log k)}. Direct construction relies on approx factor and modulus n^{Θ(k)}.
 Conjecture (?): direct PRF is secure for integral q/p = poly(n).

- ▶ Better hardness for LWR, e.g. for q/p = √n? (The proof from LWE relies on approx factor and modulus = n^{ω(1)}.)
- Synth-based PRF relies on approx factor and modulus n^{Θ(log k)}. Direct construction relies on approx factor and modulus n^{Θ(k)}.
 Conjecture (?): direct PRF is secure for integral q/p = poly(n).
- Efficient PRFs from subset-sum/LPN?

- ▶ Better hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus $= n^{\omega(1)}$.)
- Synth-based PRF relies on approx factor and modulus n^{Θ(log k)}. Direct construction relies on approx factor and modulus n^{Θ(k)}.
 Conjecture (?): direct PRF is secure for integral q/p = poly(n).
- Efficient PRFs from subset-sum/LPN?

Selected bibliography for this talk:

- NR'95 M. Naor, O. Reingold, "Synthesizers and Their Applications to the Parallel Construction of Pseudorandom Functions," FOCS'95 / JCSS'99.
- NR'97 M. Naor, O. Reingold, "Number-theoretic constructions of efficient pseudorandom functions," FOCS'97 / JACM'04.
- NRR'00 M. Naor, O. Reingold, A. Rosen, "Pseudorandom functions and factoring," STOC'00 / SICOMP'02.
- BPR'12 A. Banerjee, C. Peikert, A. Rosen, "Pseudorandom Functions and Lattices," Eurocrypt'12.

Lattice-Based Crypto & Applications, Bar-Ilan University, Israel 2012