Session \#5:
 Learning With Errors

Chris Peikert
Georgia Institute of Technology

Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel
19 Feb 2012 - 22 Feb 2012

Last Time. . .

- SIS: find "small" nontrivial $z_{1}, \ldots, z_{m} \in \mathbb{Z}$ such that:

$\in \mathbb{Z}_{q}^{n}$

Last Time. . .

- SIS: find "small" nontrivial $z_{1}, \ldots, z_{m} \in \mathbb{Z}$ such that:

$$
z_{1} \cdot\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right)+z_{2} \cdot\left(\begin{array}{c}
\mid \\
\mathbf{a}_{2} \\
\mid
\end{array}\right)+\cdots+z_{m} \cdot\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
0 \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

Last Time. . .

- SIS: find "short" nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

Last Time. . .

- SIS: find "short" nonzero $\mathbf{z} \in \mathbb{Z}^{m}$ such that:

- This talk: a complementary problem, Learning With Errors

Overview of LWE Hardness

History of LWE

Crypto papers with "something new" regarding LWE:

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$
- Search: find $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\begin{aligned}
& \mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n}, b_{1}=\left\langle\mathbf{s}, \mathbf{a}_{1}\right\rangle+e_{1} \\
& \mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n}, b_{2}=\left\langle\mathbf{s}, \mathbf{a}_{2}\right\rangle+e_{2}
\end{aligned}
$$

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- Search: find $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\begin{aligned}
& \mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n}, b_{1}=\left\langle\mathbf{s}, \mathbf{a}_{1}\right\rangle+e_{1} \\
& \mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n}, b_{2}=\left\langle\mathbf{s}, \mathbf{a}_{2}\right\rangle+e_{2}
\end{aligned}
$$

Errors $e_{i} \leftarrow \chi=$ Gaussian over \mathbb{Z}, param αq

$$
\alpha \cdot q>\sqrt{n}
$$

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- Search: find $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\begin{aligned}
& \mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n}, b_{1}=\left\langle\mathbf{s}, \mathbf{a}_{1}\right\rangle+e_{1} \\
& \mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n}, b_{2}=\left\langle\mathbf{s}, \mathbf{a}_{2}\right\rangle+e_{2}
\end{aligned}
$$

Errors $e_{i} \leftarrow \chi=$ Gaussian over \mathbb{Z}, param αq

$$
\alpha \cdot q>\sqrt{n}
$$

- Decision: distinguish $\left(\mathbf{a}_{i}, b_{i}\right)$ from uniform $\left(\mathbf{a}_{i}, b_{i}\right)$ pairs

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- Search: find $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\mathbf{A}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{m} \\
\mid & & \mid
\end{array}\right), \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}
$$

Errors $e_{i} \leftarrow \chi=$ Gaussian over \mathbb{Z}, param αq

$$
\alpha \cdot q>\sqrt{n}
$$

- Decision: distinguish $\left(\mathbf{a}_{i}, b_{i}\right)$ from uniform $\left(\mathbf{a}_{i}, b_{i}\right)$ pairs

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- Search: find $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\mathbf{A}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{m} \\
\mid & & \mid
\end{array}\right), \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}
$$

Errors $e_{i} \leftarrow \chi=$ Gaussian over \mathbb{Z}, param αq

$$
\alpha \cdot q>\sqrt{n}
$$

- Decision: distinguish $\left(\mathbf{a}_{i}, b_{i}\right)$ from uniform $\left(\mathbf{a}_{i}, b_{i}\right)$ pairs

Generalizes LPN ($q=2$, Bernoulli noise) [AL' 88, BFKL' $94, \ldots$]

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- Search: find $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\mathbf{A}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{m} \\
\mid & & \mid
\end{array}\right), \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}
$$

Errors $e_{i} \leftarrow \chi=$ Gaussian over \mathbb{Z}, param αq

$$
\alpha \cdot q>\sqrt{n}
$$

- Decision: distinguish $\left(\mathbf{a}_{i}, b_{i}\right)$ from uniform $\left(\mathbf{a}_{i}, b_{i}\right)$ pairs

Generalizes LPN ($q=2$, Bernoulli noise) [AL' 88, BFKL' $94, \ldots$]

- Why error $\alpha q>\sqrt{n}$?
\star Required by worst-case hardness proofs [R'05,P'09]

Learning With Errors [Regev'05]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- Search: find $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ given 'noisy random inner products'

$$
\mathbf{A}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{m} \\
\mid & & \mid
\end{array}\right), \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}
$$

Errors $e_{i} \leftarrow \chi=$ Gaussian over \mathbb{Z}, param αq

$$
\alpha \cdot q>\sqrt{n}
$$

- Decision: distinguish $\left(\mathbf{a}_{i}, b_{i}\right)$ from uniform $\left(\mathbf{a}_{i}, b_{i}\right)$ pairs

Generalizes LPN ($q=2$, Bernoulli noise) [AL' 88, BFKL' $94, \ldots$]

- Why error $\alpha q>\sqrt{n}$?
\star Required by worst-case hardness proofs [R'05,P'09]
* There's an $\exp \left((\alpha q)^{2}\right)$-time attack! [AG'11]

SIS versus LWE

SIS
 $\mathrm{Az}=0$, 'short' $\mathbf{z} \neq \mathbf{0}$

$\left(\mathbf{A}, \mathrm{b}^{t}=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathbf{A}, \mathrm{b}^{t}\right)$

SIS versus LWE

SIS
 $\mathbf{A z}=\mathbf{0}$, 'short' $\mathbf{z} \neq \mathbf{0}$

$\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ vs. $\left(\mathbf{A}, \mathrm{b}^{t}\right)$

- 'Computational' (search) problem a la factoring, CDH

SIS versus LWE

$$
\mathbf{A z}=\mathbf{0}, \frac{\text { SIS }}{} \text { 'short' } \mathbf{z} \neq \mathbf{0}
$$

- 'Computational' (search) problem a la factoring, CDH

LWE

$\left(\mathbf{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathbf{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH

SIS versus LWE

SIS
$\mathrm{Az}=\mathbf{0}$, 'short' $\mathrm{z} \neq \mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH

LWE

$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH
- Many valid solutions z

SIS versus LWE

SIS
$\mathrm{Az}=\mathbf{0}$, 'short' $\mathrm{z} \neq \mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z

LWE

$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional’ problem a la QR, DCR, DDH
- Unique solution s (w/short e)

SIS versus LWE

SIS

$\mathbf{A z}=\mathbf{0}$, 'short' $\mathbf{z} \neq \mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- LWE \leq SIS: if $\mathbf{A z}=\mathbf{0}$, then
$\mathbf{b}^{t} \mathbf{z}=\mathbf{e}^{t} \mathbf{z}$ is small, but $\mathbf{b}^{t} \mathbf{z}$ is 'well-spread'

SIS versus LWE

SIS

$\mathbf{A z}=\mathbf{0}$, 'short' $\mathbf{z} \neq \mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- LWE \leq SIS: if $\mathbf{A z}=\mathbf{0}$, then
$\mathbf{b}^{t} \mathbf{z}=\mathbf{e}^{t} \mathbf{z}$ is small, but $\mathbf{b}^{t} \mathbf{z}$ is 'well-spread'

LWE

$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH
- Unique solution s (w/short e)
- SIS $\stackrel{? ?}{\leq}$ LWE (stay till Wed...)

SIS versus LWE

SIS

$$
\mathbf{A z}=\mathbf{0}, \text { 'short' } \mathbf{z} \neq \mathbf{0}
$$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- LWE \leq SIS: if $\mathbf{A z}=\mathbf{0}$, then $\mathbf{b}^{t} \mathbf{z}=\mathbf{e}^{t} \mathbf{z}$ is small, but $\mathbf{b}^{t} \mathbf{z}$ is 'well-spread'
- Applications: OWF / CRHF, signatures, ID schemes

LWE

$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH
- Unique solution s (w/short e)
- SIS $\stackrel{? ?}{\leq}$ LWE (stay till Wed...)

SIS versus LWE

SIS

$$
\mathbf{A z}=\mathbf{0}, \text { 'short' } \mathbf{z} \neq \mathbf{0}
$$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- LWE \leq SIS: if $\mathbf{A z}=\mathbf{0}$, then $\mathbf{b}^{t} \mathbf{z}=\mathbf{e}^{t} \mathbf{z}$ is small, but $\mathbf{b}^{t} \mathbf{z}$ is 'well-spread'
- Applications: OWF / CRHF, signatures, ID schemes
‘minicrypt'
LWE
$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$
- 'Decisional’ problem a la QR, DCR, DDH
- Unique solution s (w/short e)
- SIS $\stackrel{? ?}{\leq}$ LWE (stay till Wed...)

SIS versus LWE

SIS

$$
\mathbf{A z}=\mathbf{0}, \text { 'short' } \mathbf{z} \neq \mathbf{0}
$$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- LWE \leq SIS: if $\mathbf{A z}=\mathbf{0}$, then
$\mathbf{b}^{t} \mathbf{z}=\mathbf{e}^{t} \mathbf{z}$ is small, but $\mathbf{b}^{t} \mathbf{z}$ is 'well-spread'
- Applications: OWF / CRHF, signatures, ID schemes
‘minicrypt'
LWE
$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$
- 'Decisional' problem a la QR, DCR, DDH
- Unique solution s (w/short e)
- SIS $\stackrel{? ?}{\leq}$ LWE (stay till Wed...)

SIS versus LWE

SIS

$$
\mathbf{A z}=\mathbf{0}, \text { 'short' } \mathbf{z} \neq \mathbf{0}
$$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- LWE \leq SIS: if $\mathbf{A z}=\mathbf{0}$, then $\mathbf{b}^{t} \mathbf{z}=\mathbf{e}^{t} \mathbf{z}$ is small, but $\mathbf{b}^{t} \mathbf{z}$ is 'well-spread'
- Applications: OWF / CRHF, signatures, ID schemes
‘minicrypt'
LWE
$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$
- 'Decisional' problem a la QR, DCR, DDH
- Unique solution s (w/short e)
- SIS $\stackrel{? ?}{\leq}$ LWE (stay till Wed...)

SIS versus LWE

SIS

$$
\mathbf{A z}=\mathbf{0}, \text { 'short' } \mathbf{z} \neq \mathbf{0}
$$

Average-case SVP:
$\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A z}=\mathbf{0}\right\}$

LWE

$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$
Average-case BDD:
$\mathcal{L}(\mathbf{A})=\left\{\mathbf{z}^{t} \equiv \mathbf{s}^{t} \mathbf{A} \bmod q\right\}$

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathbf{s}^{\prime} \in \mathbb{Z}_{q}^{n}$:

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathbf{s}^{\prime} \in \mathbb{Z}_{q}^{n}$: test if all $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle$ 'small.'

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathbf{s}^{\prime} \in \mathbb{Z}_{q}^{n}$: test if all $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle$ 'small.' If $\mathbf{s}^{\prime} \neq \mathbf{s}$, then $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle=\left\langle\mathbf{s}-\mathbf{s}^{\prime}, \mathbf{a}\right\rangle+e$ is 'well-spread' in \mathbb{Z}_{q}.

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathrm{s}^{\prime} \in \mathbb{Z}_{q}^{n}$: test if all $b-\left\langle\mathrm{s}^{\prime}, \mathrm{a}\right\rangle$ 'small.' If $\mathbf{s}^{\prime} \neq \mathbf{s}$, then $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle=\left\langle\mathbf{s}-\mathbf{s}^{\prime}, \mathbf{a}\right\rangle+e$ is 'well-spread' in \mathbb{Z}_{q}.
(2) 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_{q}^{n}$:

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathrm{s}^{\prime} \in \mathbb{Z}_{q}^{n}$: test if all $b-\left\langle\mathbf{s}^{\prime}, \mathrm{a}\right\rangle$ 'small.' If $\mathbf{s}^{\prime} \neq \mathbf{s}$, then $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle=\left\langle\mathbf{s}-\mathbf{s}^{\prime}, \mathbf{a}\right\rangle+e$ is 'well-spread' in \mathbb{Z}_{q}.
(2) 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_{q}^{n}$: given $(\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e)$, output

$$
\begin{aligned}
\mathbf{a}, b^{\prime} & =b+\langle\mathbf{t}, \mathbf{a}\rangle \\
& =\langle\mathbf{s}+\mathbf{t}, \mathbf{a}\rangle+e
\end{aligned}
$$

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathrm{s}^{\prime} \in \mathbb{Z}_{q}^{n}$: test if all $b-\left\langle\mathrm{s}^{\prime}, \mathrm{a}\right\rangle$ 'small.' If $\mathbf{s}^{\prime} \neq \mathbf{s}$, then $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle=\left\langle\mathbf{s}-\mathbf{s}^{\prime}, \mathbf{a}\right\rangle+e$ is 'well-spread' in \mathbb{Z}_{q}.
(2) 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_{q}^{n}$: given $(\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e)$, output

$$
\mathbf{a}, \begin{aligned}
b^{\prime} & =b+\langle\mathbf{t}, \mathbf{a}\rangle \\
& =\langle\mathbf{s}+\mathbf{t}, \mathbf{a}\rangle+e
\end{aligned}
$$

Random t's (with fresh samples) \Rightarrow random self-reduction.
Lets us amplify success probabilities (both search \& decision):

$$
\text { non-negl on uniform } \mathrm{s} \leftarrow \mathbb{Z}_{q}^{n} \quad \Longrightarrow \quad \approx 1 \text { on any } \mathrm{s} \in \mathbb{Z}_{q}^{n}
$$

Warm-Up: Simple Properties of LWE

(1) Check a candidate solution $\mathrm{s}^{\prime} \in \mathbb{Z}_{q}^{n}$: test if all $b-\left\langle\mathbf{s}^{\prime}, \mathrm{a}\right\rangle$ 'small.' If $\mathbf{s}^{\prime} \neq \mathbf{s}$, then $b-\left\langle\mathbf{s}^{\prime}, \mathbf{a}\right\rangle=\left\langle\mathbf{s}-\mathbf{s}^{\prime}, \mathbf{a}\right\rangle+e$ is 'well-spread' in \mathbb{Z}_{q}.
(2) 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_{q}^{n}$: given $(\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e)$, output

$$
\begin{aligned}
\mathrm{a}, b^{\prime} & =b+\langle\mathbf{t}, \mathrm{a}\rangle \\
& =\langle\mathbf{s}+\mathbf{t}, \mathrm{a}\rangle+e
\end{aligned}
$$

Random t's (with fresh samples) \Rightarrow random self-reduction.
Lets us amplify success probabilities (both search \& decision):

$$
\text { non-negl on uniform } \mathrm{s} \leftarrow \mathbb{Z}_{q}^{n} \Longrightarrow \quad \approx 1 \text { on any } \mathrm{s} \in \mathbb{Z}_{q}^{n}
$$

(3) Multiple secrets: $\left(\mathbf{a}, b_{1} \approx\left\langle\mathbf{s}_{1}, \mathbf{a}\right\rangle, \ldots, b_{t} \approx\left\langle\mathbf{s}_{t}, \mathbf{a}\right\rangle\right)$ vs. $\left(\mathbf{a}, b_{1}, \ldots, b_{t}\right)$. Simple hybrid argument, since a's are public.

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and ($\mathbf{a}, b)$.

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

- If $q=\operatorname{poly}(n)$, to find $s_{1} \in \mathbb{Z}_{q}$ it suffices to test whether $s_{1} \stackrel{?}{=} 0$, because we can shift s_{1} by $0,1, \ldots, q-1$. Same for $s_{2}, s_{3}, \ldots, s_{n}$.

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

- If $q=\operatorname{poly}(n)$, to find $s_{1} \in \mathbb{Z}_{q}$ it suffices to test whether $s_{1} \stackrel{?}{=} 0$, because we can shift s_{1} by $0,1, \ldots, q-1$. Same for $s_{2}, s_{3}, \ldots, s_{n}$.

The test: for each (\mathbf{a}, b), choose fresh $r \leftarrow \mathbb{Z}_{q}$. Invoke \mathcal{D} on pairs

$$
\left(\mathbf{a}^{\prime}=\mathbf{a}-(r, 0, \ldots, 0), b\right)
$$

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

- If $q=\operatorname{poly}(n)$, to find $s_{1} \in \mathbb{Z}_{q}$ it suffices to test whether $s_{1} \stackrel{?}{=} 0$, because we can shift s_{1} by $0,1, \ldots, q-1$. Same for $s_{2}, s_{3}, \ldots, s_{n}$.

The test: for each (\mathbf{a}, b), choose fresh $r \leftarrow \mathbb{Z}_{q}$. Invoke \mathcal{D} on pairs

$$
\left(\mathbf{a}^{\prime}=\mathbf{a}-(r, 0, \ldots, 0), b\right)
$$

- Notice: $b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+s_{1} \cdot r+e$.

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

- If $q=\operatorname{poly}(n)$, to find $s_{1} \in \mathbb{Z}_{q}$ it suffices to test whether $s_{1} \stackrel{?}{=} 0$, because we can shift s_{1} by $0,1, \ldots, q-1$. Same for $s_{2}, s_{3}, \ldots, s_{n}$.

The test: for each (\mathbf{a}, b), choose fresh $r \leftarrow \mathbb{Z}_{q}$. Invoke \mathcal{D} on pairs

$$
\left(\mathbf{a}^{\prime}=\mathbf{a}-(r, 0, \ldots, 0), b\right)
$$

- Notice: $b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+s_{1} \cdot r+e$.
\star If $s_{1}=0$, then $b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+e \Rightarrow \mathcal{D}$ accepts.

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

- If $q=\operatorname{poly}(n)$, to find $s_{1} \in \mathbb{Z}_{q}$ it suffices to test whether $s_{1} \stackrel{?}{=} 0$, because we can shift s_{1} by $0,1, \ldots, q-1$. Same for $s_{2}, s_{3}, \ldots, s_{n}$.

The test: for each (\mathbf{a}, b), choose fresh $r \leftarrow \mathbb{Z}_{q}$. Invoke \mathcal{D} on pairs

$$
\left(\mathbf{a}^{\prime}=\mathbf{a}-(r, 0, \ldots, 0), b\right)
$$

- Notice: $b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+s_{1} \cdot r+e$.
\star If $s_{1}=0$, then $b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+e \Rightarrow \mathcal{D}$ accepts.
\star If $s_{1} \neq 0$ and q prime then $b=$ uniform $\Rightarrow \mathcal{D}$ rejects.

Search/Decision Equivalence [BFKL'94,R'05]

- Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) and (\mathbf{a}, b).

We want to solve search-LWE: given pairs (\mathbf{a}, b), find \mathbf{s}.

- If $q=\operatorname{poly}(n)$, to find $s_{1} \in \mathbb{Z}_{q}$ it suffices to test whether $s_{1} \stackrel{?}{=} 0$, because we can shift s_{1} by $0,1, \ldots, q-1$. Same for $s_{2}, s_{3}, \ldots, s_{n}$.

The test: for each (\mathbf{a}, b), choose fresh $r \leftarrow \mathbb{Z}_{q}$. Invoke \mathcal{D} on pairs

$$
\left(\mathbf{a}^{\prime}=\mathbf{a}-(r, 0, \ldots, 0), b\right)
$$

- Notice: $b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+s_{1} \cdot r+e$.

$$
\begin{aligned}
& \star \text { If } s_{1}=0 \text {, then } b=\left\langle\mathbf{s}, \mathbf{a}^{\prime}\right\rangle+e \Rightarrow \mathcal{D} \text { accepts. } \\
& \star \text { If } s_{1} \neq 0 \text { and } q \text { prime then } b=\text { uniform } \Rightarrow \mathcal{D} \text { rejects. }
\end{aligned}
$$

- Don't really need prime $q=\operatorname{poly}(n) \quad$ [P'09,ACPS'09,MM'11,MP'12]

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])
LWE is no easier if the secret is drawn from the error distribution χ^{n}.

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])
LWE is no easier if the secret is drawn from the error distribution χ^{n}.
(This is the 'Hermite normal form' of LWE.)

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])
LWE is no easier if the secret is drawn from the error distribution χ^{n}. (This is the 'Hermite normal form' of LWE.)

- Intuition: finding $\mathbf{e} \Leftrightarrow$ finding \mathbf{s} : take $\mathbf{b}^{t}-\mathbf{e}^{t}=\mathbf{s}^{t} \mathbf{A}$, solve for \mathbf{s}.

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])
LWE is no easier if the secret is drawn from the error distribution χ^{n}.

> (This is the 'Hermite normal form' of LWE.)

- Intuition: finding $\mathbf{e} \Leftrightarrow$ finding \mathbf{s} : take $\mathbf{b}^{t}-\mathbf{e}^{t}=\mathbf{s}^{t} \mathbf{A}$, solve for \mathbf{s}.

Transformation from secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ to secret $\overline{\mathbf{e}} \leftarrow \chi^{n}$:

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])

LWE is no easier if the secret is drawn from the error distribution χ^{n}. (This is the 'Hermite normal form' of LWE.)

- Intuition: finding $\mathbf{e} \Leftrightarrow$ finding \mathbf{s} : take $\mathbf{b}^{t}-\mathbf{e}^{t}=\mathbf{s}^{t} \mathbf{A}$, solve for \mathbf{s}.

Transformation from secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ to secret $\overline{\mathbf{e}} \leftarrow \chi^{n}$:
(1) Draw samples to get $\left(\overline{\mathbf{A}}, \overline{\mathbf{b}}^{t}=\mathbf{s}^{t} \overline{\mathbf{A}}+\overline{\mathbf{e}}^{t}\right)$ for square, invertible $\overline{\mathbf{A}}$.

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])

LWE is no easier if the secret is drawn from the error distribution χ^{n}.
(This is the 'Hermite normal form' of LWE.)

- Intuition: finding $\mathbf{e} \Leftrightarrow$ finding \mathbf{s} : take $\mathbf{b}^{t}-\mathbf{e}^{t}=\mathbf{s}^{t} \mathbf{A}$, solve for \mathbf{s}.

Transformation from secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ to secret $\overline{\mathbf{e}} \leftarrow \chi^{n}$:
(1) Draw samples to get $\left(\overline{\mathbf{A}}, \overline{\mathrm{b}}^{t}=\mathbf{s}^{t} \overline{\mathbf{A}}+\overline{\mathbf{e}}^{t}\right)$ for square, invertible $\overline{\mathbf{A}}$.
(2) Transform each additional sample ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) to

$$
\mathbf{a}^{\prime}=-\overline{\mathbf{A}}^{-1} \mathbf{a} \quad, \quad b^{\prime}=b+\left\langle\overline{\mathbf{b}}, \mathbf{a}^{\prime}\right\rangle
$$

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])

LWE is no easier if the secret is drawn from the error distribution χ^{n}.
(This is the 'Hermite normal form' of LWE.)

- Intuition: finding $\mathbf{e} \Leftrightarrow$ finding \mathbf{s} : take $\mathbf{b}^{t}-\mathbf{e}^{t}=\mathbf{s}^{t} \mathbf{A}$, solve for \mathbf{s}.

Transformation from secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ to secret $\overline{\mathbf{e}} \leftarrow \chi^{n}$:
(1) Draw samples to get $\left(\overline{\mathbf{A}}, \overline{\mathrm{b}}^{t}=\mathbf{s}^{t} \overline{\mathbf{A}}+\overline{\mathbf{e}}^{t}\right)$ for square, invertible $\overline{\mathbf{A}}$.
(2) Transform each additional sample ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) to

$$
\begin{aligned}
\mathbf{a}^{\prime}=-\overline{\mathbf{A}}^{-1} \mathbf{a} \quad, \quad b^{\prime} & =b+\left\langle\overline{\mathbf{b}}, \mathbf{a}^{\prime}\right\rangle \\
& =\left\langle\overline{\mathbf{e}}, \mathbf{a}^{\prime}\right\rangle+e .
\end{aligned}
$$

Decision-LWE with 'Short' Secrets

Theorem ([M'01,ACPS'09])

LWE is no easier if the secret is drawn from the error distribution χ^{n}.
(This is the 'Hermite normal form' of LWE.)

- Intuition: finding $\mathbf{e} \Leftrightarrow$ finding \mathbf{s} : take $\mathbf{b}^{t}-\mathbf{e}^{t}=\mathbf{s}^{t} \mathbf{A}$, solve for \mathbf{s}.

Transformation from secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ to secret $\overline{\mathbf{e}} \leftarrow \chi^{n}$:
(1) Draw samples to get $\left(\overline{\mathbf{A}}, \overline{\mathrm{b}}^{t}=\mathbf{s}^{t} \overline{\mathbf{A}}+\overline{\mathbf{e}}^{t}\right)$ for square, invertible $\overline{\mathbf{A}}$.
(2) Transform each additional sample ($\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e$) to

$$
\begin{aligned}
\mathbf{a}^{\prime}=-\overline{\mathbf{A}}^{-1} \mathbf{a} \quad, \quad b^{\prime} & =b+\left\langle\overline{\mathbf{b}}, \mathbf{a}^{\prime}\right\rangle \\
& =\left\langle\overline{\mathbf{e}}, \mathbf{a}^{\prime}\right\rangle+e .
\end{aligned}
$$

- This maps (a, b) to $\left(\mathrm{a}^{\prime}, b^{\prime}\right)$, so it applies to decision-LWE too.

Public-Key Cryptosystem [R'05]

$$
\bigwedge_{\mathrm{S}} \leftarrow \mathbb{Z}_{q}^{n}
$$

Public-Key Cryptosystem [R'05]

$\bigcap_{\mathrm{S} \leftarrow \mathbb{Z}_{q}^{n}}$

Public-Key Cryptosystem [R'05]

Public-Key Cryptosystem [R'05]

Public-Key Cryptosystem [R'05]

Public-Key Cryptosystem [R'05]

$\overbrace{}^{\left(\mathbf{A}, \mathbf{b}^{t}\right),\left(\mathbf{u}, u^{\prime}\right)}$

Public-Key Cryptosystem [R'05]

Public-Key Cryptosystem [R'05]

$\left(\mathbf{A}, \mathbf{b}^{t}\right),\left(\mathbf{u}, u^{\prime}\right)$
by LWE and by LHL when
$m \geq n \log q$

‘Dual’ Cryptosystem [GPV'08]

$$
\hat{X}^{\mathrm{X}} \leftarrow\{0,1\}^{m}
$$

\uparrow

‘Dual’ Cryptosystem [GPV’08]

$$
\text { (pubtic key, uniform when } m \geq n \log q \text {) }
$$

‘Dual’ Cryptosystem [GPV’08]

‘Dual’ Cryptosystem [GPV’08]

‘Dual’ Cryptosystem [GPV’08]

‘Dual’ Cryptosystem [GPV’08]

$\bigwedge^{0} \mathbf{x} \leftarrow\{0,1\}^{m}$

$$
\xrightarrow[\text { (public key, uniform when } m \geq n \log q \text {) }]{\mathbf{u}=\mathbf{A x}}
$$

$\mathrm{S} \leftarrow \mathbb{Z}_{q}^{n}$

$$
\stackrel{\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}{(\text { ciphertext 'preamble') }}
$$

$$
\begin{array}{r}
b^{\prime}-\mathbf{b}^{t} \mathbf{x} \approx \\
\quad \text { bit } \cdot \frac{q}{2}
\end{array}
$$

$$
b^{\prime}=\mathrm{s}^{t} \mathbf{u}+e^{\prime}+\text { bit } \cdot \frac{q}{2}
$$

$$
\Re^{(\mathbf{A}, \mathbf{u}),\left(\mathbf{b}, b^{\prime}\right)}
$$

‘Dual’ Cryptosystem［GPV’08］

(public key, uniform when mın⿱亠乂⿰丿㇄心.

Primal vs. Dual Systems

Primal

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is
pseudorandom with
unique $s k=\mathrm{s}$

Primal vs. Dual Systems

Primal

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is pseudorandom with unique $s k=\mathrm{s}$
- $p k=(\mathbf{A}, \mathbf{u}=\mathbf{A} \mathbf{x})$ is statistically random with many possible $s k=\mathbf{x}$

Primal vs. Dual Systems

Primal

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is pseudorandom with unique $s k=\mathrm{s}$
- c^{\prime} text $\left(\mathbf{u}=\mathbf{A} \mathbf{x}, u^{\prime} \approx \mathbf{s}^{t} \mathbf{u}\right)$ is a fresh LWE sample, with many possible Enc coins \mathbf{x}
- $p k=(\mathbf{A}, \mathbf{u}=\mathbf{A} \mathbf{x})$ is statistically random with many possible $s k=\mathbf{x}$

Primal vs. Dual Systems

Primal

Dual

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is pseudorandom with unique $s k=\mathrm{s}$
- c'text $\left(\mathbf{u}=\mathbf{A} \mathbf{x}, u^{\prime} \approx \mathbf{s}^{t} \mathbf{u}\right)$ is a fresh LWE sample, with many possible Enc coins \mathbf{x}
- $p k=(\mathbf{A}, \mathbf{u}=\mathbf{A} \mathbf{x})$ is statistically random with many possible $s k=\mathbf{x}$
- c'text $\left(\mathbf{b}, b^{\prime}\right) \approx \mathrm{s}^{t}(\mathbf{A}, \mathbf{u})$ is many LWE RHS's, with unique Enc coins s, e

Primal vs. Dual Systems

Primal

Dual

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is pseudorandom with unique $s k=\mathrm{s}$
- c'text $\left(\mathbf{u}=\mathbf{A x}, u^{\prime} \approx \mathbf{s}^{t} \mathbf{u}\right)$ is a fresh LWE sample, with many possible Enc coins x
- security: encrypting to 'malformed' $p k=\left(\mathbf{A}, \mathbf{b}^{t}\right)$ induces uniform ciphertext
- $p k=(\mathbf{A}, \mathbf{u}=\mathbf{A} \mathbf{x})$ is statistically random with many possible $s k=\mathbf{x}$
- c'text $\left(\mathrm{b}, b^{\prime}\right) \approx \mathrm{s}^{t}(\mathbf{A}, \mathbf{u})$ is many LWE RHS's, with unique Enc coins s, e

Primal vs. Dual Systems

Primal

Dual

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is pseudorandom with unique $s k=\mathrm{s}$
- c'text $\left(\mathbf{u}=\mathbf{A x}, u^{\prime} \approx \mathbf{s}^{t} \mathbf{u}\right)$ is a fresh LWE sample, with many possible Enc coins \mathbf{x}
- security: encrypting to 'malformed' $p k=\left(\mathbf{A}, \mathbf{b}^{t}\right)$ induces uniform ciphertext
- $p k=(\mathbf{A}, \mathbf{u}=\mathbf{A} \mathbf{x})$ is statistically random with many possible $s k=\mathbf{x}$
- c'text $\left(\mathbf{b}, b^{\prime}\right) \approx \mathrm{s}^{t}(\mathbf{A}, \mathbf{u})$ is many LWE RHS's, with unique Enc coins s, e
- security: switch ciphertext to uniform using LWE

Primal vs. Dual Systems

Primal

Dual

- $p k=\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ is pseudorandom with $\underline{\text { unique }} s k=\mathrm{s}$
- c^{\prime} text $\left(\mathbf{u}=\mathbf{A} \mathbf{x}, u^{\prime} \approx \mathbf{s}^{t} \mathbf{u}\right)$ is a fresh LWE sample, with many possible Enc coins \mathbf{x}
- security: encrypting to 'malformed' $p k=\left(\mathbf{A}, \mathbf{b}^{t}\right)$ induces uniform ciphertext
- $p k=(\mathbf{A}, \mathbf{u}=\mathbf{A} \mathbf{x})$ is statistically random with many possible $s k=\mathbf{x}$
- c'text $\left(\mathrm{b}, b^{\prime}\right) \approx \mathrm{s}^{t}(\mathbf{A}, \mathbf{u})$ is many LWE RHS's, with unique Enc coins s, e
- security: switch ciphertext to uniform using LWE

$$
\begin{array}{rl}
\text { (shared) A size: } & n \times(n \log q) \text { elements of } \mathbb{Z}_{q} \\
\text { (user) } p k \& ~ c t ~ s i z e: ~ & n \log q \& n \text { elements, or vice-versa }
\end{array}
$$

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

$\prod_{1} \mathrm{~s} \leftarrow x^{n}$

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

i
 $\mathbf{s} \leftarrow \chi^{n}$

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

i
 $\mathbf{s} \leftarrow \chi^{n}$

Most Efficient Cryptosystem [A'03,LPs'10,LP'11]

$$
\begin{aligned}
& \bigcap^{0} \leftarrow x^{n} \\
& b^{\prime}-\mathbf{s}^{t} \mathbf{b} \approx \mathrm{bit} \cdot \frac{q}{2} \\
& b^{\prime}=\mathbf{u}^{t} \mathbf{r}+x^{\prime}+\text { bit } \cdot \frac{q}{2} \\
& \text { ('payload') }
\end{aligned}
$$

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

$\bigcap^{0} s \leftarrow \chi^{n}$

$b^{\prime}-\mathbf{s}^{t} \mathbf{b} \approx \mathrm{bit} \cdot \frac{q}{2}$

$$
b^{\prime}=\mathbf{u}^{t} \mathbf{r}+x^{\prime}+\text { bit } \cdot \frac{q}{2}
$$

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

$$
\begin{aligned}
& \bigcap^{0} \leftarrow x^{n} \\
& b^{\prime}-\mathbf{s}^{t} \mathbf{b} \approx \mathrm{bit} \cdot \frac{q}{2} \\
& b^{\prime} \underset{\text { ('payload') }}{=\mathbf{u}^{t} \mathbf{r}+x^{\prime}+\text { bit } \cdot \frac{q}{2}}
\end{aligned}
$$

(A, u, b, b') by LWE (HNF)

Most Efficient Cryptosystem [A'03,LPS'10,LP'11]

$$
\begin{aligned}
& \bigcap^{0} \leftarrow x^{n} \\
& b^{\prime}-\mathbf{s}^{t} \mathbf{b} \approx \mathrm{bit} \cdot \frac{q}{2} \\
& b^{\prime}=\mathbf{u}^{t} \mathbf{r}+x^{\prime}+\text { bit } \cdot \frac{q}{2}
\end{aligned}
$$

When We Come Back. . .

- A different kind of LWE application: Efficient pseudorandom functions

When We Come Back. . .

- A different kind of LWE application: Efficient pseudorandom functions

Selected bibliography for this talk:
R'05 O. Regev, "On lattices, learning with errors, random linear codes, and cryptography," STOC'05 / JACM'09.

GPV'08 C. Gentry, C. Peikert, V. Vaikuntanathan, "Trapdoors for hard lattices and new cryptographic constructions," STOC'08.

ACPS'09 B. Applebaum, D. Cash, C. Peikert, A. Sahai, "Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems," CRYPTO'09.

LPS'10 V. Lyubashevsky, A. Palacio, G. Segev, "Public-Key Cryptographic Primitives Provably as Secure as Subset Sum," TCC'10.

LP'11 R. Lindner, C. Peikert, "Better Key Sizes (and Attacks) for LWE-Based Encryption," CT-RSA'11.

