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Last Time. . .

I SIS: find “small” nontrivial z1, . . . , zm ∈ Z such that:
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Overview of LWE Hardness

GapSVP,
SIVP ≤

quantum
[R’05]

search-LWE ≤

[BFKL’94,R’05,
P’09,. . . ]

decision-LWE ≤

[R’05,PW’08,
GPV’08,. . . ]

crypto

≤

classical
(large q)
[P’09]

GapSVP
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History of LWE

Crypto papers with “something new” regarding LWE:
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Learning With Errors [Regev’05]

I Dimension n (security param), modulus q ≥ 2

, ‘error rate’ α� 1

I Search: find s ∈ Zn
q given ‘noisy random inner products’

Errors ei ← χ = Gaussian over Z, param αq

α · q >
√
n

I Decision: distinguish (ai, bi) from uniform (ai, bi) pairs

Generalizes LPN (q = 2, Bernoulli noise) [AL’88,BFKL’94,. . . ]

I Why error αq >
√
n?

F Required by worst-case hardness proofs [R’05,P’09]

F There’s an exp((αq)2)-time attack! [AG’11]
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SIS versus LWE

SIS

Az = 0, ‘short’ z 6= 0

I ‘Computational’ (search)
problem a la factoring, CDH

I Many valid solutions z

I LWE ≤ SIS: if Az = 0, then
bt z = et z is small, but
bt z is ‘well-spread’

I Applications: OWF / CRHF,
signatures, ID schemes

‘minicrypt’

LWE

(A,bt = stA + et) vs. (A,bt)

I ‘Decisional’ problem a la QR,
DCR, DDH

I Unique solution s (w/short e)

I SIS
??
≤ LWE (stay till Wed...)

I Applications: PKE, OT,
ID-based encryption, FHE

‘CRYPTOMANIA’
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SIS versus LWE

SIS

Az = 0, ‘short’ z 6= 0

Average-case SVP:

L⊥(A) = {z ∈ Zm : Az = 0}

O

(0, q)

(q, 0)

LWE

(A,bt = stA + et) vs. (A,bt)

Average-case BDD:

L(A) = {zt ≡ stA mod q}
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Warm-Up: Simple Properties of LWE

1 Check a candidate solution s′ ∈ Zn
q : test if all b− 〈s′,a〉 ‘small.’

If s′ 6= s, then b− 〈s′,a〉 = 〈s− s′,a〉+ e is ‘well-spread’ in Zq.

2 ‘Shift’ the secret by any t ∈ Zn
q : given (a, b = 〈s,a〉+ e), output

a , b′ = b+ 〈t,a〉
= 〈s + t,a〉+ e.

Random t’s (with fresh samples) ⇒ random self-reduction.

Lets us amplify success probabilities (both search & decision):

non-negl on uniform s← Zn
q =⇒ ≈ 1 on any s ∈ Zn

q

3 Multiple secrets: (a, b1 ≈ 〈s1,a〉, . . . , bt ≈ 〈st,a〉) vs. (a, b1, . . . , bt).

Simple hybrid argument, since a’s are public.
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Search/Decision Equivalence [BFKL’94,R’05]

I Suppose D solves decision-LWE: it ‘perfectly’ distinguishes between
pairs (a, b = 〈s,a〉+ e) and (a, b).

We want to solve search-LWE: given pairs (a, b), find s.

I If q = poly(n) , to find s1 ∈ Zq it suffices to test whether s1
?
= 0,

because we can shift s1 by 0, 1, . . . , q − 1. Same for s2, s3, . . . , sn.

The test: for each (a, b), choose fresh r ← Zq. Invoke D on pairs

(a′ = a− (r, 0, . . . , 0) , b).

I Notice: b = 〈s,a′〉+ s1 · r + e.

F If s1 = 0, then b = 〈s,a′〉+ e⇒ D accepts.

F If s1 6= 0 and q prime then b = uniform⇒ D rejects.

I Don’t really need prime q = poly(n) [P’09,ACPS’09,MM’11,MP’12]
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Decision-LWE with ‘Short’ Secrets

Theorem ([M’01,ACPS’09])

LWE is no easier if the secret is drawn from the error distribution χn.

(This is the ‘Hermite normal form’ of LWE.)

I Intuition: finding e ⇔ finding s: take bt − et = stA, solve for s.

Transformation from secret s ∈ Zn
q to secret ē← χn:

1 Draw samples to get (Ā, b̄
t

= stĀ + ēt) for square, invertible Ā.

2 Transform each additional sample (a, b = 〈s,a〉+ e) to

a′ = −Ā−1a , b′ = b+ 〈b̄,a′〉

= 〈ē,a′〉+ e.

I This maps (a, b) to (a′, b′), so it applies to decision-LWE too.
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2 Transform each additional sample (a, b = 〈s,a〉+ e) to
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1 Draw samples to get (Ā, b̄
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Public-Key Cryptosystem [R’05]

s← Zn
q A← Zn×m

q

x← {0, 1}m

bt = stA + et

(public key)

u = Ax
(ciphertext ‘preamble’)

u′ − st u ≈
bit · q

2

u′ = bt x + bit · q2
(‘payload’)

(A,bt), (u, u′)

by LWE and

by LHL when

m ≥ n log q

(Images courtesy xkcd.org)
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‘Dual’ Cryptosystem [GPV’08]

x← {0, 1}m A← Zn×m
q

s← Zn
q

u = Ax
(public key, uniform when m ≥ n log q)

bt = stA + et

(ciphertext ‘preamble’)

b′ − bt x ≈
bit · q

2

b′ = st u + e′ + bit · q2
(‘payload’)

(A,u), (b, b′)

by LWE
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Primal vs. Dual Systems

Primal

I pk = (A,bt = stA + et) is
pseudorandom with
unique sk = s

I c’text (u = Ax, u′ ≈ st u) is
a fresh LWE sample, with
many possible Enc coins x

I security: encrypting to
‘malformed’ pk = (A,bt)
induces uniform ciphertext

Dual

I pk = (A,u = Ax) is
statistically random with
many possible sk = x

I c’text (b, b′) ≈ st(A,u) is
many LWE RHS’s, with
unique Enc coins s, e

I security: switch ciphertext to
uniform using LWE

(shared) A size: n× (n log q) elements of Zq

(user) pk & ct size: n log q & n elements, or vice-versa
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‘malformed’ pk = (A,bt)
induces uniform ciphertext

Dual

I pk = (A,u = Ax) is
statistically random with
many possible sk = x

I c’text (b, b′) ≈ st(A,u) is
many LWE RHS’s, with
unique Enc coins s, e

I security: switch ciphertext to
uniform using LWE

(shared) A size: n× (n log q) elements of Zq

(user) pk & ct size: n log q & n elements, or vice-versa
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Most Efficient Cryptosystem [A’03,LPS’10,LP’11]

s← χn A← Zn×n
q

r← χn

ut = stA + et

(public key)

b = Ar + x
(ciphertext ‘preamble’)

b′−st b ≈ bit· q2
b′ = ut r + x′ + bit · q2

(‘payload’)

(A,u,b, b′)

by LWE (HNF)

by LWE (HNF)
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When We Come Back. . .

I A different kind of LWE application: Efficient pseudorandom functions

Selected bibliography for this talk:

R’05 O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” STOC’05 / JACM’09.

GPV’08 C. Gentry, C. Peikert, V. Vaikuntanathan, “Trapdoors for hard lattices
and new cryptographic constructions,” STOC’08.

ACPS’09 B. Applebaum, D. Cash, C. Peikert, A. Sahai, “Fast Cryptographic
Primitives and Circular-Secure Encryption Based on Hard Learning
Problems,” CRYPTO’09.

LPS’10 V. Lyubashevsky, A. Palacio, G. Segev, “Public-Key Cryptographic
Primitives Provably as Secure as Subset Sum,” TCC’10.

LP’11 R. Lindner, C. Peikert, “Better Key Sizes (and Attacks) for LWE-Based
Encryption,” CT-RSA’11.
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