Session \#10:
 (More) Trapdoors and Applications

Chris Peikert
Georgia Institute of Technology

Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel
19 Feb 2012 - 22 Feb 2012

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

Lattice-Based One-Way Functions

- Public key $[\cdots A \cdot A] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{gathered}
f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n} \\
\text { ("short" } \mathrm{x} \text {, surjective) }
\end{gathered}
$$

CRHF if SIS hard [Ajtai'96,...]

Lattice-Based One-Way Functions

- Public key $[\cdots$ A $\cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{gathered}
f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n} \\
\text { ("short" x, surjective) }
\end{gathered}
$$

CRHF if SIS hard [Ajtai'96,...]

Lattice-Based One-Way Functions

- Public key $[\cdots A \cdot A] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{gathered}
f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n} \\
\text { ("short" x, surjective) }
\end{gathered}
$$

CRHF if SIS hard [Ajtai'96,...]

$$
\begin{gathered}
g_{\mathrm{A}}(\mathrm{~s}, \mathrm{e})=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short"" e, injective) } \\
\text { OWF if LWE hard [Regev'05,P'09] }
\end{gathered}
$$

- Lattice interpretation: $\Lambda^{\perp}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{Z}^{m}: f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}=\mathbf{0} \bmod q\right\}$

Lattice-Based One-Way Functions

- Public key $[\cdots A \cdot A] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{gathered}
f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n} \\
\text { ("short" x, surjective) }
\end{gathered}
$$

CRHF if SIS hard [Ajtai'96,...]

$$
\begin{gathered}
g_{\mathrm{A}}(\mathrm{~s}, \mathrm{e})=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short"" e, injective) } \\
\text { OWF if LWE hard [Regev'05, P'09] }
\end{gathered}
$$

- Lattice interpretation: $\Lambda_{\mathbf{u}}^{\perp}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{Z}^{m}: f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}=\mathbf{u} \bmod q\right\}$

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \in \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=\Omega(n \log q)$.

$$
\begin{array}{c|c}
f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax} \bmod q \in \mathbb{Z}_{q}^{n} & g_{\mathrm{A}}(\mathrm{~s}, \mathrm{e})=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t} \bmod q \in \mathbb{Z}_{q}^{m} \\
\text { ("short" x, surjective) } & \text { (short" e, injective) } \\
\text { CRHF if SIS hard [Ajtai'96,...] } & \text { OWF if LWE hard [Regev'05,P'09] }
\end{array}
$$

- $f_{\mathrm{A}}, g_{\mathrm{A}}$ in forward direction yield CRHFs, CPA security (w/FHE!) ... but not much else.

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $g_{\mathrm{A}}(\mathrm{s}, \mathrm{e})=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t}$:
find the unique preimage s
(equivalently, e)

Trapdoor Inversion

- Many cryptographic applications need to invert $f_{\mathbf{A}}$ and/or $g_{\mathbf{A}}$.

Invert $\mathbf{u}=f_{\mathbf{A}}\left(\mathrm{x}^{\prime}\right)=\mathbf{A} \mathrm{x}^{\prime}$:
sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp \left(-\|\mathrm{x}\|^{2} / s^{2}\right)$.

Invert $g_{\mathrm{A}}(\mathrm{s}, \mathrm{e})=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t}$:
find the unique preimage s
(equivalently, e)

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}\left(\mathrm{x}^{\prime}\right)=\mathbf{A} \mathrm{x}^{\prime}$:
sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
with prob $\propto \exp \left(-\|\mathrm{x}\|^{2} / s^{2}\right)$.

Invert $g_{\mathrm{A}}(\mathrm{s}, \mathrm{e})=\mathrm{s}^{t} \mathbf{A}+\mathrm{e}^{t}$:
find the unique preimage s
(equivalently, e)

- How? Use a "strong trapdoor" for \mathbf{A} : a short basis of $\Lambda^{\perp}(\mathbf{A})$ [Babai'86,GGH'97,Klein'01,GPV'08,P'10]

$3 / 16$

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.

Applications of Strong Trapdoors

Canonical App: [GPV ${ }^{0} 0$] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- Verify (m, x) : check $f_{\mathbf{A}}(\mathrm{x})=\mathbf{A x}=H(m)$ and x "short enough"

Applications of Strong Trapdoors

Canonical App: [GPV ${ }^{0} 0$] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- Verify (m, x) : check $f_{\mathbf{A}}(\mathrm{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in $f_{\text {A }}$ must be hard

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- $\operatorname{Verify}(m, \mathrm{x})$: check $f_{\mathbf{A}}(\mathrm{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in $f_{\text {A }}$ must be hard

Other "Black-Box" Applications of f^{-1}, g^{-1}

- Standard Model (no RO) signatures [CHKP'10,R'10,B'10]
- SM CCA-secure encryption [PW'08,P'09]
- SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB'10b]
- Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ... [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,...]

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- $\operatorname{Verify}(m, \mathrm{x})$: check $f_{\mathbf{A}}(\mathrm{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in $f_{\text {A }}$ must be hard

Some Drawbacks. . .

X Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- $\operatorname{Verify}(m, \mathrm{x})$: check $f_{\mathbf{A}}(\mathrm{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in $f_{\text {A }}$ must be hard

Some Drawbacks. . .

X Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
X Known inversion algorithms trade quality for efficiency

Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

- $p k=\mathbf{A}, s k=$ short basis for \mathbf{A}, random oracle $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$.
- $\operatorname{Sign}(m)$: let $\mathbf{u}=H(m)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$
- $\operatorname{Verify}(m, \mathrm{x})$: check $f_{\mathbf{A}}(\mathrm{x})=\mathbf{A x}=H(m)$ and x "short enough"
- Security: finding "short enough" preimages in $f_{\text {A }}$ must be hard

Some Drawbacks. . .

X Generating A w/ short basis is complicated and slow [Ajtai'09,AP'09]
X Known inversion algorithms trade quality for efficiency

$$
\text { tight, iterative, fp } \mid \text { looser, parallel, offline }
$$

$g_{\mathbf{A}}^{-1}$	$[$ Babai'86]	$[$ Babai'86]
$f_{\mathbf{A}}^{-1}$	$[$ Klein'01,GPV'08]	$\left[\mathrm{P}^{\prime} 10\right]$

Taming the Parameters

$$
f_{\mathrm{A}}(\mathrm{x})=\mathbf{A x}
$$

Taming the Parameters

$$
f_{\mathrm{A}}(\mathrm{x})=\mathrm{A} \mathrm{x}
$$

(1) Trapdoor generator yields some lattice $\operatorname{dim} m \geq C n \log q$.

Taming the Parameters

$$
f_{\mathrm{A}}(\mathrm{x})=\mathbf{A x}
$$

(1) Trapdoor generator yields some lattice $\operatorname{dim} m \geq C n \log q$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.

Taming the Parameters

$f_{\mathrm{A}}(\mathrm{x})=\mathrm{Ax}$

(1) Trapdoor generator yields some lattice $\operatorname{dim} m \geq C n \log q$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
(3) Dimension m, std dev $s \Longrightarrow$ preimage length $\beta=\|\mathrm{x}\| \approx s \sqrt{m}$.

Taming the Parameters

$f_{\mathrm{A}}(\mathrm{x})=\mathrm{A} \mathrm{x}$

(1) Trapdoor generator yields some lattice $\operatorname{dim} m \geq C n \log q$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
(3) Dimension m, std dev $s \Longrightarrow$ preimage length $\beta=\|\mathrm{x}\| \approx s \sqrt{m}$.
(4) Security: choose n, q so that finding β-bounded preimages is hard.

Taming the Parameters

$f_{\mathbf{A}}(\mathrm{x})=\mathbf{A} \mathrm{x}$

(1) Trapdoor generator yields some lattice $\operatorname{dim} m \geq C n \log q$.
(2) Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev s.
(3) Dimension m, std dev $s \Longrightarrow$ preimage length $\beta=\|\mathrm{x}\| \approx s \sqrt{m}$.
(4) Security: choose n, q so that finding β-bounded preimages is hard.
\checkmark Better dimension m \& quality s
\Longrightarrow "win-win-win" in security-keysize-runtime

This Talk [MP'12]

"Strong" trapdoor generation and inversion algorithms:

This Talk [MP'12]

"Strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline
^ No more efficiency-vs-quality tradeoff

This Talk [MP'12]

"Strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast

* Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline
\star No more efficiency-vs-quality tradeoff
\checkmark Tighter parameters m and s
* Asymptotically optimal with small constant factors
* Ex improvement: $32 x$ in $\operatorname{dim} m, 25 x$ in quality $s \Rightarrow 67 \times$ in keysize

This Talk [MP'12]

"Strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline
\star No more efficiency-vs-quality tradeoff
\checkmark Tighter parameters m and s

* Asymptotically optimal with small constant factors
* Ex improvement: $32 x$ in $\operatorname{dim} m, 25 x$ in quality $s \Rightarrow 67 \times$ in keysize
\checkmark New kind of trapdoor — not a basis! (But just as powerful.)

This Talk [MP'12]

"Strong" trapdoor generation and inversion algorithms:
\checkmark Very simple \& fast
\star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
^ Inversion: practical, parallel, \& mostly offline
\star No more efficiency-vs-quality tradeoff
\checkmark Tighter parameters m and s

* Asymptotically optimal with small constant factors
* Ex improvement: $32 x$ in $\operatorname{dim} m, 25 x$ in quality $s \Rightarrow 67 \times$ in keysize
\checkmark New kind of trapdoor - not a basis! (But just as powerful.)
\checkmark More efficient applications: CCA, (H)IBE in standard model

Overview of Methods

(1) Design a fixed, public lattice defined by "gadget" matrix G. Give fast, parallel, offline algorithms for $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$.

Overview of Methods

(1) Design a fixed, public lattice defined by "gadget" matrix G. Give fast, parallel, offline algorithms for $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$.
(2) Randomize $\mathrm{G} \leftrightarrow \mathbf{A}$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

Overview of Methods

(1) Design a fixed, public lattice defined by "gadget" matrix G.

Give fast, parallel, offline algorithms for $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$.
(2) Randomize $\mathrm{G} \leftrightarrow \mathbf{A}$ via a "nice" unimodular transformation.
(The transformation is the trapdoor!)
(3) Reduce $f_{\mathrm{A}}^{-1}, g_{\mathrm{A}}^{-1}$ to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$ plus pre-/post-processing.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- To invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$:

$$
s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- To invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$:

$$
s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

* Get $\operatorname{lsb}(s)$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right)$.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- To invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$:

$$
s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

* Get $\operatorname{lsb}(s)$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right)$.
* OR round entries and look up in table.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- To invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$:

$$
s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

* Get $\operatorname{lsb}(s)$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right)$.
* OR round entries and look up in table.
- To sample Gaussian preimage for $u=f_{\mathrm{g}}(\mathbf{x}):=\langle\mathbf{g}, \mathbf{x}\rangle$:

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- To invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$:

$$
s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

* Get $\operatorname{lsb}(s)$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right)$.
* OR round entries and look up in table.
- To sample Gaussian preimage for $u=f_{\mathrm{g}}(\mathbf{x}):=\langle\mathrm{g}, \mathbf{x}\rangle$:
\star For $i \leftarrow 0, \ldots, k-1$: choose $x_{i} \leftarrow(2 \mathbb{Z}+u)$, let $u \leftarrow\left(u-x_{i}\right) / 2 \in \mathbb{Z}$.

Step 1: Gadget G and Inversion Algorithms

- Let $q=2^{k}$. Define 1-by- k "parity check" vector

$$
\mathrm{g}:=\left[\begin{array}{lllll}
1 & 2 & 4 & \cdots & 2^{k-1}
\end{array}\right] \in \mathbb{Z}_{q}^{1 \times k} .
$$

- To invert LWE function $g_{\mathrm{g}}: \mathbb{Z}_{q} \times \mathbb{Z}^{k} \rightarrow \mathbb{Z}_{q}^{k}$:

$$
s \cdot \mathbf{g}+\mathbf{e}=\left[\begin{array}{llll}
s+e_{0} & 2 s+e_{1} & \cdots & 2^{k-1} s+e_{k-1}
\end{array}\right] \bmod q .
$$

$\star \operatorname{Get} \operatorname{lsb}(s)$ from $2^{k-1} s+e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right)$.

* OR round entries and look up in table.
- To sample Gaussian preimage for $u=f_{\mathrm{g}}(\mathbf{x}):=\langle\mathrm{g}, \mathbf{x}\rangle$:
\star For $i \leftarrow 0, \ldots, k-1$: choose $x_{i} \leftarrow(2 \mathbb{Z}+u)$, let $u \leftarrow\left(u-x_{i}\right) / 2 \in \mathbb{Z}$.
\star OR presample many $\mathbf{x} \leftarrow \mathbb{Z}^{k}$ and store in q 'buckets' $f_{\mathrm{g}}(\mathbf{x})$ for later.

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \tilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \tilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k}
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \tilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

- Define $\mathrm{G}=\mathbf{I}_{n} \otimes \mathrm{~g}=\left[\begin{array}{cccc}\cdots \mathrm{g} \cdots & & & \\ & \cdots \mathrm{g} \cdots & & \\ & & \ddots & \\ & & & \cdots \mathrm{g} \cdots\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}$.

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& & & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \tilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k}
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

- Define $\mathbf{G}=\mathbf{I}_{n} \otimes \mathrm{~g}=\left[\begin{array}{ccccc}\cdots \mathrm{g} \cdots & & & \\ & \cdots \mathrm{g} \cdots & & \\ & & \ddots & \\ & & & \cdots \mathrm{g} \cdots\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}$.

Now $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$ reduce to n parallel (and offline) calls to $f_{\mathrm{g}}^{-1}, g_{\mathrm{g}}^{-1}$.

Step 1: Gadget G and Inversion Algorithms

- Another view: for $\mathrm{g}=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{k-1}\end{array}\right]$ the lattice $\Lambda^{\perp}(\mathrm{g})$ has basis

$$
\mathbf{S}=\left[\begin{array}{ccccc}
2 & & & & \\
-1 & 2 & & & \\
& -1 & \ddots & & \\
& & & 2 & \\
& -1 & 2
\end{array}\right] \in \mathbb{Z}^{k \times k}, \quad \text { with } \tilde{\mathbf{S}}=2 \cdot \mathbf{I}_{k} .
$$

The iterative inversion algorithms for $f_{\mathrm{g}}, g_{\mathrm{g}}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

- Define $\mathrm{G}=\mathbf{I}_{n} \otimes \mathrm{~g}=$

$$
\left[\begin{array}{cccc}
\cdots \mathrm{g} \cdots & & & \\
& \cdots \mathrm{~g} \cdots & & \\
& & \ddots & \\
& & & \cdots \mathrm{~g} \cdots
\end{array}\right] \in \mathbb{Z}_{q}^{n \times n k}
$$

Now $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$ reduce to n parallel (and offline) calls to $f_{\mathrm{g}}^{-1}, g_{\mathrm{g}}^{-1}$.
Also applies to $\mathbf{H} \cdot \mathbf{G}$ for any invertible $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$.

Step 2: Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$. (Note: $f_{[\overline{\mathbf{A}} \mid \mathrm{G}]}^{-1}, g_{[\overline{\mathbf{A}} \mid \mathrm{G}]}^{-1}$ easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$ [CHKP'10].)

Step 2: Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$.
(Note: $f_{[\overline{\mathbf{A}} \mid \mathrm{G}]}^{-1}, g_{[\overline{\mathbf{A}} \mid \mathrm{G}]}^{-1}$ easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}$ [CHKP'10].)

2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

Step 2: Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$.
(Note: $f_{[\bar{A} \mid \mathrm{G}]}^{-1}, g_{[\bar{A} \mid \mathrm{G}]}^{-1}$ easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}[$ [CHKP'10]].)
(2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

$\star \mathbf{A}$ is uniform if $[\overline{\mathbf{A}} \mid \overline{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

Step 2: Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$.
(Note: $f_{[\overline{\mathrm{A}} \mid \mathrm{G}]}^{-1}, g_{[\mathrm{A} \mid \mathrm{G}]}^{-1}$ easily reduce to $f_{\mathrm{G}}^{-1}, g_{\mathrm{G}}^{-1}[$ [CHKP'10]].)
(2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

$\star \mathbf{A}$ is uniform if $[\overline{\mathbf{A}} \mid \overline{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.
With $\mathbf{G}=\mathbf{0}$, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).

Step 2: Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$

(1) Define semi-random $[\overline{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\overline{\mathbf{A}} \in \mathbb{Z}_{q}^{n \times \bar{m}}$.
(Note: $f_{[\overline{\mathbf{A}} \mid \mathrm{G}]}^{-1}, g_{[\overline{\mathbf{A}} \mid \mathbf{G}]}^{-1}$ easily reduce to $f_{\mathbf{G}}^{-1}, g_{\mathrm{G}}^{-1}$ [CHKP'10].)
(2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$
\mathbf{A}:=[\overline{\mathbf{A}} \mid \mathbf{G}] \underbrace{\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R} \\
\mathbf{I}
\end{array}\right]}_{\text {unimodular }}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}] .
$$

$\star \mathbf{A}$ is uniform if $[\overline{\mathbf{A}} \mid \overline{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.
With $\mathbf{G}=\mathbf{0}$, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).
$\star\left[\mathbf{I}|\overline{\mathbf{A}}|-\left(\overline{\mathbf{A}} \mathbf{R}_{1}+\mathbf{R}_{2}\right)\right]$ is pseudorandom (under LWE) for $\bar{m}=n$.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (\mathbf{H} invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (\mathbf{H} invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\| . \quad$ (smaller is better.)

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (\mathbf{H} invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\|$. (smaller is better.)
- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries $\mathrm{w} /$ std $\operatorname{dev} r$.

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with tag $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (\mathbf{H} invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

- The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\|$.
(smaller is better.)
- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries $w /$ std $\operatorname{dev} r$.
- Note: \mathbf{R} is a trapdoor for $\mathbf{A}-\left[\mathbf{0} \mid \mathbf{H}^{\prime} \cdot \mathbf{G}\right] \mathbf{w} / \operatorname{tag}\left(\mathbf{H}-\mathbf{H}^{\prime}\right)$ [ABB'10].

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with $\operatorname{tag} \mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (\mathbf{H} invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\|$. (smaller is better.)

- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries $\mathrm{w} /$ std dev r.
- Note: \mathbf{R} is a trapdoor for $\mathbf{A}-\left[\mathbf{0} \mid \mathbf{H}^{\prime} \cdot \mathbf{G}\right] \mathbf{w} / \operatorname{tag}\left(\mathbf{H}-\mathbf{H}^{\prime}\right)$ [ABB'10].

Relating New and Old Trapdoors

Given a basis \mathbf{S} for $\Lambda^{\perp}(\mathbf{G})$ and a trapdoor \mathbf{R} for \mathbf{A}, we can efficiently construct a basis $\mathbf{S}_{\mathbf{A}}$ for $\Lambda^{\perp}(\mathbf{A})$

$$
\text { where }\left\|\tilde{\mathbf{S}}_{\mathbf{A}}\right\| \leq\left(s_{1}(\mathbf{R})+1\right) \cdot\|\tilde{\mathbf{S}}\| .
$$

A New Trapdoor Notion

- We constructed $\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}]$.

Definition

- \mathbf{R} is a trapdoor for \mathbf{A} with $\operatorname{tag} \mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$ (\mathbf{H} invertible) if

$$
\mathbf{A} \cdot\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{H} \cdot \mathbf{G} .
$$

The quality of \mathbf{R} is $s_{1}(\mathbf{R}):=\max _{\|\mathbf{u}\|=1}\|\mathbf{R u}\|$. (smaller is better.)

- Fact: $s_{1}(\mathbf{R}) \approx(\sqrt{\text { rows }}+\sqrt{\text { cols }}) \cdot r$ for Gaussian entries $\mathrm{w} /$ std dev r.
- Note: \mathbf{R} is a trapdoor for $\mathbf{A}-\left[\mathbf{0} \mid \mathbf{H}^{\prime} \cdot \mathbf{G}\right] \mathbf{w} / \operatorname{tag}\left(\mathbf{H}-\mathbf{H}^{\prime}\right)$ [ABB'10].

Relating New and Old Trapdoors

Given a basis \mathbf{S} for $\Lambda^{\perp}(\mathbf{G})$ and a trapdoor \mathbf{R} for \mathbf{A}, we can efficiently construct a basis $\mathbf{S}_{\mathbf{A}}$ for $\Lambda^{\perp}(\mathbf{A})$

$$
\text { where }\left\|\tilde{\mathbf{S}}_{\mathbf{A}}\right\| \leq\left(s_{1}(\mathbf{R})+1\right) \cdot\|\tilde{\mathbf{S}}\|
$$

(But we'll never need to.)

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(w / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathrm{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right) \Leftarrow\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathrm{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right) \Leftarrow\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Sampling Gaussian Preimages

Given \mathbf{u}, sample $\mathbf{z} \leftarrow f_{\mathrm{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x}=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

- We have $\mathbf{A x}=\mathbf{G z}=\mathbf{u}$ as desired.

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathrm{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right) \Leftarrow\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Sampling Gaussian Preimages

Given \mathbf{u}, sample $\mathbf{z} \leftarrow f_{\mathrm{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x}=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

- We have $\mathbf{A x}=\mathbf{G z}=\mathbf{u}$ as desired.
- Problem: $\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$ is non-spherical Gaussian, leaks \mathbf{R} !

Step 3: Reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

- Suppose \mathbf{R} is a trapdoor for $\mathbf{A}(\mathbf{w} / \operatorname{tag} \mathbf{H}=\mathbf{I}): \mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$, recover \mathbf{s} from

$$
\mathbf{b}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right]=\mathbf{s}^{t} \mathbf{G}+\mathrm{e}^{t}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{I}
\end{array}\right] .
$$

Works if each entry of $\mathbf{e}^{t}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]$ in $\left[-\frac{q}{4}, \frac{q}{4}\right) \Leftarrow\|\mathbf{e}\|<q /\left(4 s_{1}\left(\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right]\right)\right)$.

Sampling Gaussian Preimages

Given \mathbf{u}, sample $\mathbf{z} \leftarrow f_{\mathrm{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x}=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

- We have $A \mathbf{x}=\mathbf{G z}=\mathbf{u}$ as desired.
- Problem: $\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$ is non-spherical Gaussian, leaks \mathbf{R} !
- Solution: use offline 'perturbation' [P'10] to get spherical Gaussian w/ std dev $\approx s_{1}(\mathbf{R})$: output $\mathbf{x}=\mathbf{p}+\left[\begin{array}{c}\mathbf{R} \\ \mathbf{I}\end{array}\right] \mathbf{z}$.

Application: Efficient IBE a la [ABB'10]

- Setup: choose $\mathbf{A}=[\overline{\mathbf{A}} \mid-\overline{\mathbf{A}} \mathbf{R}]$. Let $m p k=(\mathbf{A}, \mathbf{u}), m s k=\mathbf{R}$. (\mathbf{A} has trapdoor \mathbf{R} with tag $\mathbf{0}$.)

Application: Efficient IBE a la [ABB' 10]

- Setup: choose $\mathbf{A}=[\overline{\mathbf{A}} \mid-\overline{\mathbf{A}} \mathbf{R}]$. Let $m p k=(\mathbf{A}, \mathbf{u}), m s k=\mathbf{R}$. (\mathbf{A} has trapdoor \mathbf{R} with tag $\mathbf{0}$.)
- Extract $(\mathbf{R}, i d):$ map $i d \mapsto$ invertible $\mathbf{H}_{i d} \in \mathbb{Z}_{q}^{n \times n}$. [DF'94,...,ABB'10] Using \mathbf{R}, choose $s k_{i d}=\mathbf{x} \leftarrow f_{\mathbf{A}_{i d}}^{-1}(\mathbf{u})$, where

$$
\mathbf{A}_{i d}=\mathbf{A}+\left[\mathbf{0} \mid \mathbf{H}_{i d} \cdot \mathbf{G}\right]=\left[\overline{\mathbf{A}} \mid \mathbf{H}_{i d} \cdot \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}\right] .
$$

Application: Efficient IBE a la [ABB' 10]

- Setup: choose $\mathbf{A}=[\overline{\mathbf{A}} \mid-\overline{\mathbf{A}} \mathbf{R}]$. Let $m p k=(\mathbf{A}, \mathbf{u}), m s k=\mathbf{R}$. (\mathbf{A} has trapdoor \mathbf{R} with tag $\mathbf{0}$.)
- Extract $(\mathbf{R}, i d):$ map $i d \mapsto$ invertible $\mathbf{H}_{i d} \in \mathbb{Z}_{q}^{n \times n}$. [DF'94,...,ABB'10] Using \mathbf{R}, choose $s k_{i d}=\mathbf{x} \leftarrow f_{\mathbf{A}_{i d}}^{-1}(\mathbf{u})$, where

$$
\mathbf{A}_{i d}=\mathbf{A}+\left[\mathbf{0} \mid \mathbf{H}_{i d} \cdot \mathbf{G}\right]=\left[\overline{\mathbf{A}} \mid \mathbf{H}_{i d} \cdot \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}\right] .
$$

- Encrypt to $\mathbf{A}_{i d}$, decrypt using $s k_{i d}$ as in 'dual' system [GPV'08].

Application: Efficient IBE a la [ABB' 10]

- Setup: choose $\mathbf{A}=[\overline{\mathbf{A}} \mid-\overline{\mathbf{A}} \mathbf{R}]$. Let $m p k=(\mathbf{A}, \mathbf{u}), m s k=\mathbf{R}$. (\mathbf{A} has trapdoor \mathbf{R} with tag $\mathbf{0}$.)
- Extract($\mathbf{R}, i d):$ map $i d \mapsto$ invertible $\mathbf{H}_{i d} \in \mathbb{Z}_{q}^{n \times n}$. [DF'94,...,ABB'10] Using \mathbf{R}, choose $s k_{i d}=\mathbf{x} \leftarrow f_{\mathbf{A}_{i d}}^{-1}(\mathbf{u})$, where

$$
\mathbf{A}_{i d}=\mathbf{A}+\left[\mathbf{0} \mid \mathbf{H}_{i d} \cdot \mathbf{G}\right]=\left[\overline{\mathbf{A}} \mid \mathbf{H}_{i d} \cdot \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}\right] .
$$

- Encrypt to $\mathbf{A}_{i d}$, decrypt using $s k_{i d}$ as in 'dual' system [GPV'08].
- Security ("puncturing"): Given target $i d^{*}$ (selective security), set up

$$
\mathbf{A}=\left[\overline{\mathbf{A}} \mid-\mathbf{H}_{i d^{*}} \cdot \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}\right] \Longrightarrow \mathbf{A}_{i d}=\left[\overline{\mathbf{A}} \mid\left(\mathbf{H}_{i d}-\mathbf{H}_{i d^{*}}\right) \mathbf{G}-\overline{\mathbf{A}} \mathbf{R}\right] .
$$

$\star \mathbf{H}_{i d}-\mathbf{H}_{i d^{*}}$ is invertible for all $i d \neq i d^{*}$, so can extract $s k_{i d}$ using \mathbf{R}.
$\star \mathbf{A}_{i d^{*}}=[\overline{\mathbf{A}} \mid-\overline{\mathbf{A}} \mathbf{R}]$, so can embed an LWE challenge at $i d^{*}$.

Trapdoor Delegation [CHKP'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.

Trapdoor Delegation [CHKP'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.
- To delegate a trapdoor for an extension $\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]$ with tag \mathbf{H}^{\prime}, just sample Gaussian \mathbf{R}^{\prime} s.t.

$$
\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]\left[\begin{array}{c}
\mathbf{R}^{\prime} \\
\mathbf{I}
\end{array}\right]=\mathbf{H}^{\prime} \cdot \mathbf{G} \Longleftrightarrow \mathbf{A} \mathbf{R}^{\prime}=\mathbf{H}^{\prime} \cdot \mathbf{G}-\mathbf{A}^{\prime}
$$

Trapdoor Delegation [CHKP'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.
- To delegate a trapdoor for an extension $\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]$ with tag \mathbf{H}^{\prime}, just sample Gaussian \mathbf{R}^{\prime} s.t.

$$
\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]\left[\begin{array}{c}
\mathbf{R}^{\prime} \\
\mathbf{I}
\end{array}\right]=\mathbf{H}^{\prime} \cdot \mathbf{G} \Longleftrightarrow \mathbf{A} \mathbf{R}^{\prime}=\mathbf{H}^{\prime} \cdot \mathbf{G}-\mathbf{A}^{\prime}
$$

- One-way: \mathbf{R}^{\prime} reveals nothing about \mathbf{R}.

Useful for HIBE \& IB-TDFs [CHKP'10,ABB'10,BKPW'12].

Trapdoor Delegation [CHKP'10]

- Suppose \mathbf{R} is a trapdoor for \mathbf{A}, i.e. $\mathbf{A}\left[\begin{array}{l}\mathbf{R} \\ \mathbf{I}\end{array}\right]=\mathbf{H} \cdot \mathbf{G}$.
- To delegate a trapdoor for an extension $\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]$ with tag \mathbf{H}^{\prime}, just sample Gaussian \mathbf{R}^{\prime} s.t.

$$
\left[\mathbf{A} \mid \mathbf{A}^{\prime}\right]\left[\begin{array}{c}
\mathbf{R}^{\prime} \\
\mathbf{I}
\end{array}\right]=\mathbf{H}^{\prime} \cdot \mathbf{G} \Longleftrightarrow \mathbf{A} \mathbf{R}^{\prime}=\mathbf{H}^{\prime} \cdot \mathbf{G}-\mathbf{A}^{\prime}
$$

- One-way: \mathbf{R}^{\prime} reveals nothing about \mathbf{R}.

Useful for HIBE \& IB-TDFs [CHKP'10,ABB'10,BKPW'12].

- Note: \mathbf{R}^{\prime} is only width $(\mathbf{A}) \times \operatorname{width}(\mathbf{G})=m \times n \log q$.

So size of \mathbf{R}^{\prime} grows only as $O(m)$, not $\Omega\left(m^{2}\right)$ like a basis does
Also computationally efficient: $n \log q$ samples, no HNF or ToBasis.

Hierarchical IBE [СнкР' $10, \mathrm{ABB}^{\prime} 10$]

$-\underline{\text { Setup }}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ where $\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$. Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$.

Hierarchical IBE [СНКР'10,ABB'10]

$-\underline{\text { Setup }}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ where $\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$. Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$.

- Extract $(i d):$ map $i d=\left(i d_{1}, \ldots, i d_{t}\right) \mapsto\left(\mathbf{H}_{i d_{1}}, \ldots \mathbf{H}_{i d_{t}}\right)$ (invertible). Let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}+\mathbf{H}_{i d_{1}} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}+\mathbf{H}_{i d_{t}} \mathbf{G}\right| \mathbf{A}_{t+1}\right] .
$$

Hierarchical IBE [CHKP'10,ABB'10]

$-\underline{\text { Setup }}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ where $\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$. Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$.

- Extract $(i d):$ map $i d=\left(i d_{1}, \ldots, i d_{t}\right) \mapsto\left(\mathbf{H}_{i d_{1}}, \ldots \mathbf{H}_{i d_{t}}\right)$ (invertible). Let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}+\mathbf{H}_{i d_{1}} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}+\mathbf{H}_{i d_{t}} \mathbf{G}\right| \mathbf{A}_{t+1}\right] .
$$

Delegate $s k_{i d}=$ trapdoor $\mathbf{R}_{i d}$ for $\mathbf{A}_{i d}$ with tag $\mathbf{0}$.
Using $s k_{i d}$, can delegate any $s k_{i d^{\prime}}$ for any nontrivial extension $i d^{\prime}$.

Hierarchical IBE [СНКР'10,ABB'10]

$-\underline{\text { Setup }}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ where $\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$. Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$.

- Extract $(i d):$ map $i d=\left(i d_{1}, \ldots, i d_{t}\right) \mapsto\left(\mathbf{H}_{i d_{1}}, \ldots \mathbf{H}_{i d_{t}}\right)$ (invertible). Let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}+\mathbf{H}_{i d_{1}} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}+\mathbf{H}_{i d_{t}} \mathbf{G}\right| \mathbf{A}_{t+1}\right] .
$$

Delegate $s k_{i d}=$ trapdoor $\mathbf{R}_{i d}$ for $\mathbf{A}_{i d}$ with tag $\mathbf{0}$.
Using $s k_{i d}$, can delegate any $s k_{i d^{\prime}}$ for any nontrivial extension $i d^{\prime}$.

- Encrypt to $\mathbf{A}_{i d}$, decrypt using $\mathbf{R}_{i d}$ as in [GPV'08].

Hierarchical IBE [CHKP'10,ABB'10]

$-\underline{\text { Setup }}(d)$: choose $\mathbf{A}_{0}, \ldots, \mathbf{A}_{d}$ where $\mathbf{A}_{\varepsilon}=\left[\mathbf{A}_{0} \mid \mathbf{A}_{1}\right]$ has trapdoor \mathbf{R}_{ε} for tag $\mathbf{0}$. Let $m s k=s k_{\varepsilon}=\mathbf{R}_{\varepsilon}$ and $m p k=\left\{\mathbf{A}_{i}\right\}$.

- Extract $(i d):$ map $i d=\left(i d_{1}, \ldots, i d_{t}\right) \mapsto\left(\mathbf{H}_{i d_{1}}, \ldots \mathbf{H}_{i d_{t}}\right)$ (invertible). Let

$$
\mathbf{A}_{i d}=\left[\mathbf{A}_{0}\left|\mathbf{A}_{1}+\mathbf{H}_{i d_{1}} \mathbf{G}\right| \cdots\left|\mathbf{A}_{t}+\mathbf{H}_{i d_{t}} \mathbf{G}\right| \mathbf{A}_{t+1}\right] .
$$

Delegate $s k_{i d}=$ trapdoor $\mathbf{R}_{i d}$ for $\mathbf{A}_{i d}$ with tag $\mathbf{0}$. Using $s k_{i d}$, can delegate any $s k_{i d^{\prime}}$ for any nontrivial extension $i d^{\prime}$.

- Encrypt to $\mathbf{A}_{i d}$, decrypt using $\mathbf{R}_{i d}$ as in [GPV'08].
- Security ("puncturing"): Set up $m p k$, trapdoor \mathbf{R} with tags $=-i d^{*}$.

Conclusions

- A simple trapdoor that's easy to generate, use, and understand: Applications made easy, end-to-end!
- Key sizes and algorithms for "strong" trapdoors are now realistic

Selected bibliography for this talk:
CHKP'10 D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, "Bonsai Trees, or How to Delegate a Lattice Basis," Eurocrypt'10 / J. Crypt'11.
ABB'10 S. Agrawal, D. Boneh, X. Boyen, "Efficient Lattice (H)IBE in the Standard Model," Eurocrypt'10.
MP'12 D. Micciancio, C. Peikert, "Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller," Eurocrypt'12.

