Pseudorandomness of Ring-LWE for Any Ring and Modulus

Chris Peikert
University of Michigan

Oded Regev Noah Stephens-Davidowitz

(to appear, STOC’17)

10 March 2017
Lattice-Based Cryptography

\[y = g^x \mod p \]

\[m^e \mod N \]

\[e(g^a, g^b) \]

\[N = p \cdot q \]

(Images courtesy xkcd.org)
Lattice-Based Cryptography

\[N = pq \]
\[y = g^x \mod p \]
\[m^e \mod N = e(g^a, g^b) \]

Main Attractions

▶ Efficient: linear, embarrassingly parallel operations
▶ Resists quantum attacks (so far)
▶ Security from worst-case assumptions
▶ Solutions to 'holy grail' problems in crypto: FHE and related

(Images courtesy xkcd.org)
Lattice-Based Cryptography

Main Attractions

▶ **Efficient**: linear, embarrassingly parallel operations

(Images courtesy xkcd.org)
Lattice-Based Cryptography

Main Attractions

▶ **Efficient**: linear, embarrassingly parallel operations
▶ **Resists quantum attacks** (so far)
Lattice-Based Cryptography

\[N = p \cdot q \]
\[y = g^x \mod p \]
\[m = e \mod N \]
\[e(g^a, g^b) = \Rightarrow \]

Main Attractions

▶ Efficient: linear, embarrassingly parallel operations
▶ Resists quantum attacks (so far)
▶ Security from worst-case assumptions

(Images courtesy xkcd.org)
Lattice-Based Cryptography

\[N = p \cdot q \]
\[y = g^x \mod p \]
\[m^e \mod N \]
\[e(g^a, g^b) \Rightarrow \]

Main Attractions

- **Efficient**: linear, embarrassingly parallel operations
- **Resists** quantum attacks (so far)
- **Security from** worst-case assumptions
- **Solutions to** ‘holy grail’ problems in crypto: FHE and related

(Images courtesy xkcd.org)
Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error ‘rate’ α
Learning With Errors \cite{Regev'05}

- **Parameters:** dimension n, integer modulus q, error ‘rate’ α

- **Search:** find secret $s \in \mathbb{Z}_q^n$ given many ‘noisy inner products’

\[
\begin{align*}
a_1 & \leftarrow \mathbb{Z}_q^n, & b_1 & \approx \langle a_1, s \rangle \in \mathbb{Z}_q \\
a_2 & \leftarrow \mathbb{Z}_q^n, & b_2 & \approx \langle a_2, s \rangle \in \mathbb{Z}_q \\
& \vdots
\end{align*}
\]
Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error ‘rate’ α

- **Search:** find secret $s \in \mathbb{Z}_q^n$ given many ‘noisy inner products’

\[
\begin{align*}
a_1 & \leftarrow \mathbb{Z}_q^n, \quad b_1 = \langle a_1, s \rangle + e_1 \in \mathbb{Z}_q \\
a_2 & \leftarrow \mathbb{Z}_q^n, \quad b_2 = \langle a_2, s \rangle + e_2 \in \mathbb{Z}_q \\
\vdots & \\
\end{align*}
\]

width αq
Learning With Errors [Regev'05]

- **Parameters:** dimension n, integer modulus q, error ‘rate’ α
- **Search:** find secret $s \in \mathbb{Z}_q^n$ given many ‘noisy inner products’

\[
\begin{align*}
\mathbf{a}_1 & \leftarrow \mathbb{Z}_q^n, \quad b_1 = \langle \mathbf{a}_1 , s \rangle + e_1 \in \mathbb{Z}_q \\
\mathbf{a}_2 & \leftarrow \mathbb{Z}_q^n, \quad b_2 = \langle \mathbf{a}_2 , s \rangle + e_2 \in \mathbb{Z}_q \\
\vdots
\end{align*}
\]

- **Decision:** distinguish (a_i, b_i) from uniform (a_i, b_i)

width αq
Learning With Errors \[\text{[Regev'05]}\]

- **Parameters**: dimension n, integer modulus q, error ‘rate’ α

- **Search**: find secret $s \in \mathbb{Z}_q^n$ given many ‘noisy inner products’

\[
\begin{align*}
 a_1 &\leftarrow \mathbb{Z}_q^n, \quad b_1 = \langle a_1, s \rangle + e_1 \in \mathbb{Z}_q \\
 a_2 &\leftarrow \mathbb{Z}_q^n, \quad b_2 = \langle a_2, s \rangle + e_2 \in \mathbb{Z}_q \\
 \vdots
\end{align*}
\]

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)

LWE is Hard and Versatile

- **worst case**
 - \((n/\alpha)\)-SIVP on \(n\)-dim lattices \[\leq\] search-LWE \[\leq\] decision-LWE \[\leq\] much crypto

- (quantum [R'05]) \[\uparrow\] [BFKL'93,R'05,...]
Learning With Errors [Regev'05]

- **Parameters:** dimension n, integer modulus q, error ‘rate’ α

- **Search:** find secret $s \in \mathbb{Z}_q^n$ given many ‘noisy inner products’

 $$a_1 \leftarrow \mathbb{Z}_q^n, \quad b_1 = \langle a_1, s \rangle + e_1 \in \mathbb{Z}_q$$
 $$a_2 \leftarrow \mathbb{Z}_q^n, \quad b_2 = \langle a_2, s \rangle + e_2 \in \mathbb{Z}_q$$
 $$\vdots$$

- **Decision:** distinguish (a_i, b_i) from uniform (a_i, b_i)

LWE is Hard and Versatile

- **worse case**
 - (n/α)-SIVP on \leq search-LWE \leq decision-LWE \leq much crypto
 - n-dim lattices \uparrow (quantum [R'05]) \uparrow [BFKL'93,R'05, …]

- **Classically,** GapSVP \leq search-LWE (worse params) [P’09,BLPRS’13]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$ [R’05]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE
- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$ [R’05]

Search-LWE \leq Decision-LWE
- Messy. Many incomparable reductions for different forms of q:

 - Any prime $q = \text{poly}(n)$ [R’05]
 - Any “somewhat smooth” $q = p_1 \cdots p_t$ (large enough primes p_i) [P’09]
 - Any $q = p^e$ for large enough prime p [ACPS’09]
 - Any $q = p^e$ with uniform error mod p^i [MM’11]
 - Any q via “mod-switching” — but increases α [P’09, BV’11, BLPRS’13]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$ [R'05]

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - Any prime $q = \text{poly}(n)$ [R'05]
LWE Hardness and Parameters

- Parameters: dimension \(n \), integer modulus \(q \), error ‘rate’ \(\alpha \)

Worst case SIVP \(\leq \) Search-LWE

- One reduction for best known parameters: any \(q \geq \sqrt{n}/\alpha \) [R’05]

Search-LWE \(\leq \) Decision-LWE

- Messy. Many incomparable reductions for different forms of \(q \):
 - Any prime \(q = \text{poly}(n) \) [R’05]
 - Any “somewhat smooth” \(q = p_1 \cdots p_t \) (large enough primes \(p_i \)) [P’09]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$
 [R'05]

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - Any prime $q = \text{poly}(n)$
 [R'05]
 - Any “somewhat smooth” $q = p_1 \cdots p_t$ (large enough primes p_i)
 [P'09]
 - Any $q = p^e$ for large enough prime p
 [ACPS'09]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$ [R’05]

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - Any prime $q = \text{poly}(n)$ [R’05]
 - Any “somewhat smooth” $q = p_1 \cdots p_t$ (large enough primes p_i) [P’09]
 - Any $q = p^e$ for large enough prime p [ACPS’09]
 - Any $q = p^e$ with uniform error mod p^i [MM’11]

Increasing q, α yields a weaker ultimate hardness guarantee.
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n}/\alpha$ [R’05]

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - Any prime $q = \text{poly}(n)$ [R’05]
 - Any “somewhat smooth” $q = p_1 \cdots p_t$ (large enough primes p_i) [P’09]
 - Any $q = p^e$ for large enough prime p [ACPS’09]
 - Any $q = p^e$ with uniform error mod p^i [MM’11]
 - Any $q = p^e$ — but increases α [MP’12]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$ [R’05]

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - Any prime $q = \text{poly}(n)$ [R’05]
 - Any “somewhat smooth” $q = p_1 \cdots p_t$ (large enough primes p_i) [P’09]
 - Any $q = p^e$ for large enough prime p [ACPS’09]
 - Any $q = p^e$ with uniform error mod p^i [MM’11]
 - Any $q = p^e$ — but increases α [MP’12]
 - Any q via “mod-switching” — but increases α [P’09,BV’11,BLPRS’13]
LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n/\alpha}$ [R’05]

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - Any prime $q = \text{poly}(n)$ [R’05]
 - Any “somewhat smooth” $q = p_1 \cdots p_t$ (large enough primes p_i) [P’09]
 - Any $q = p^e$ for large enough prime p [ACPS’09]
 - Any $q = p^e$ with uniform error mod p^i [MM’11]
 - Any $q = p^e$ — but increases α [MP’12]
 - Any q via “mod-switching” — but increases α [P’09,BV’11,BLPRS’13]

- Increasing q, α yields a weaker ultimate hardness guarantee.
LWE is Efficient (Sort Of)

Getting one pseudorandom scalar requires an n-dim inner product mod q

$$(\cdots a_i \cdots) \begin{pmatrix} s \\ \vdots \end{pmatrix} + e = b \in \mathbb{Z}_q$$
LWE is Efficient (Sort Of)

\[
\begin{pmatrix}
\cdots a_i \cdots
\end{pmatrix}
\begin{pmatrix}
s \\
\vdots
\end{pmatrix} + e = b \in \mathbb{Z}_q
\]

- Getting one pseudorandom scalar requires an \(n \)-dim inner product mod \(q \)

- Can amortize each \(a_i \) over many secrets \(s_j \), but still \(\tilde{O}(n) \) work per scalar output.
LWE is Efficient (Sort Of)

\[(\cdots a_i \cdots) \begin{pmatrix} \vdots \\ s \\ \vdots \end{pmatrix} + e = b \in \mathbb{Z}_q\]

- Getting one pseudorandom scalar requires an \(n\)-dim inner product mod \(q\)
- Can amortize each \(a_i\) over many secrets \(s_j\), but still \(\tilde{O}(n)\) work per scalar output.

- Cryptosystems have rather large keys: \(\Omega(n^2 \log^2 q)\) bits:

\[pk = \begin{pmatrix} \vdots \\ A \\ \vdots \end{pmatrix}, \quad \begin{pmatrix} \vdots \\ b \\ \vdots \end{pmatrix} \Omega(n)\]
Wishful Thinking...

\[
\begin{pmatrix}
\vdots \\
a_i \\
\vdots
\end{pmatrix} \ast \begin{pmatrix}
\vdots \\
s \\
\vdots
\end{pmatrix} + \begin{pmatrix}
\vdots \\
e_i \\
\vdots
\end{pmatrix} = \begin{pmatrix}
\vdots \\
b_i \\
\vdots
\end{pmatrix} \in \mathbb{Z}_q^n
\]

- Get \(n \) pseudorandom scalars from just one cheap product operation?
Wishful Thinking...

Get \(n \) pseudorandom scalars from just one cheap product operation?

Question

How to define the product ‘\(\star \)’ so that \((a_i, b_i)\) is pseudorandom?
Wishful Thinking...

\[
\begin{pmatrix} \vdots \\ a_i \end{pmatrix} \ast \begin{pmatrix} \vdots \\ s \end{pmatrix} + \begin{pmatrix} \vdots \\ e_i \end{pmatrix} = \begin{pmatrix} \vdots \\ b_i \end{pmatrix} \in \mathbb{Z}_q^n
\]

Get \(n \) pseudorandom scalars from just one cheap product operation?

Question

▶ How to define the product ‘\(\ast \)’ so that \((a_i, b_i)\) is pseudorandom?

▶ Careful! With small error, coordinate-wise multiplication is insecure!
Get \(n \) pseudorandom scalars from just one cheap product operation?

Question

- How to define the product ‘\(\star \)’ so that \((a_i, b_i)\) is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ‘\(\star \)’ = multiplication in a polynomial ring: e.g., \(\mathbb{Z}_q[X]/(X^n + 1) \).
 - Fast and practical with FFT: \(n \log n \) operations mod \(q \).
Wishful Thinking...

\[
\begin{pmatrix}
\vdots \\
a_i \\
\vdots \\
\end{pmatrix} \star \begin{pmatrix}
\vdots \\
s \\
\vdots \\
\end{pmatrix} + \begin{pmatrix}
\vdots \\
e_i \\
\vdots \\
\end{pmatrix} = \begin{pmatrix}
\vdots \\
b_i \\
\vdots \\
\end{pmatrix} \in \mathbb{Z}_q^n
\]

▶ Get \(n \) pseudorandom scalars from just one cheap product operation?

Question
▶ How to define the product ‘\(\star \)’ so that \((a_i, b_i)\) is pseudorandom?
▶ Careful! With small error, coordinate-wise multiplication is insecure!

Answer
▶ ‘\(\star \)’ = multiplication in a polynomial ring: e.g., \(\mathbb{Z}_q[X]/(X^n + 1) \).

Fast and practical with FFT: \(n \log n \) operations mod \(q \).

▶ Same ring structures used in NTRU cryptosystem [HPS’98],
& in compact one-way / CR hash functions [Mic’02,PR’06,LM’06,...]
Wishful Thinking...

\[
\begin{pmatrix}
\vdots \\
a_i \\
\vdots
\end{pmatrix} \star \begin{pmatrix}
\vdots \\
s \\
\vdots
\end{pmatrix} + \begin{pmatrix}
\vdots \\
e_i \\
\vdots
\end{pmatrix} = \begin{pmatrix}
\vdots \\
b_i \\
\vdots
\end{pmatrix} \in \mathbb{Z}_q^n
\]

Get \(n \) pseudorandom scalars from just one cheap product operation?

IF YOU LWE IT

THEN YOU SHOULD PUT A RING ON IT

meme-generator.net
Learning With Errors over Rings (Ring-LWE) \[\text{[LPR'10]}\]

- **Ring** R, often $R = \mathbb{Z}[X]/(f(X))$ for irred. f of degree n (or $R = \mathcal{O}_K$)
Learning With Errors over Rings (Ring-LWE) [LPR’10]

- Ring R, often $R = \mathbb{Z}[X]/(f(X))$ for irred. f of degree n (or $R = \mathcal{O}_K$)
- Has a ‘dual ideal’ R^\vee (w.r.t. ‘canonical’ geometry)
Learning With Errors over Rings (Ring-LWE) [LPR’10]

- Ring R, often $R = \mathbb{Z}[X]/(f(X))$ for irred. f of degree n (or $R = \mathcal{O}_K$)
 Has a ‘dual ideal’ R^\vee (w.r.t. ‘canonical’ geometry)
- Integer modulus q defining $R_q := R/qR$ and $R_q^\vee := R^\vee/qR^\vee$
Learning With Errors over Rings (Ring-LWE) [LPR’10]

- Ring R, often $R = \mathbb{Z}[X]/(f(X))$ for irred. f of degree n (or $R = \mathcal{O}_K$)
- Has a ‘dual ideal’ R^\vee (w.r.t. ‘canonical’ geometry)
- Integer modulus q defining $R_q := R/qR$ and $R_q^\vee := R^\vee/qR^\vee$
- Gaussian error of width $\approx \alpha q$ over R^\vee
Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R = \mathbb{Z}[X]/(f(X))$ for irred. f of degree n (or $R = \mathcal{O}_K$)
- Has a ‘dual ideal’ R^\vee (w.r.t. ‘canonical’ geometry)
- Integer modulus q defining $R_q := R/qR$ and $R_q^\vee := R^\vee/qR^\vee$
- Gaussian error of width $\approx \alpha q$ over R^\vee

Search: find secret ring element $s \in R_q^\vee$, given independent samples

\[
\begin{align*}
 a_1 & \leftarrow R_q, \quad b_1 = a_1 \cdot s + e_1 \in R_q^\vee \\
 a_2 & \leftarrow R_q, \quad b_2 = a_2 \cdot s + e_2 \in R_q^\vee \\
 \vdots
\end{align*}
\]
Learning With Errors over Rings (Ring-LWE) [LPR’10]

- Ring R, often $R = \mathbb{Z}[X]/(f(X))$ for irred. f of degree n (or $R = \mathcal{O}_K$)
 Has a ‘dual ideal’ R^\vee (w.r.t. ‘canonical’ geometry)
- Integer modulus q defining $R_q := R/qR$ and $R_q^\vee := R^\vee / qR^\vee$
- Gaussian error of width $\approx \alpha q$ over R^\vee

Search: find secret ring element $s \in R_q^\vee$, given independent samples

\[
\begin{align*}
a_1 &\leftarrow R_q, \quad b_1 = a_1 \cdot s + e_1 \in R_q^\vee \\
a_2 &\leftarrow R_q, \quad b_2 = a_2 \cdot s + e_2 \in R_q^\vee \\
\vdots
\end{align*}
\]

Decision: distinguish (a_i, b_i) from uniform $(a_i, b_i) \in R_q \times R_q^\vee$
Hardness of Ring-LWE [LPR’10]

\[
\text{worst-case } (n^c / \alpha)\text{-SIVP on ideal lattices in } R \leq \text{search } R\text{-LWE}_{q,\alpha} \leq \text{decision } R\text{-LWE}_{q,\alpha}
\]

(quantum, any \(R = \mathcal{O}_K \))
(classical, any Galois \(R \))
Hardness of Ring-LWE [LPR’10]

worst-case \((n^c/\alpha)\)-SIVP on \textit{ideal} lattices in \(R\) \(\leq\) search \(R\)-LWE\(_{q,\alpha}\) \(\leq\) decision \(R\)-LWE\(_{q,\alpha}\)

(quantum, any \(R = \mathcal{O}_K\)) (classical, any Galois \(R\))

(Ideal \(\mathcal{I} \subseteq R\): additive subgroup, \(x \cdot r \in \mathcal{I}\) for all \(x \in \mathcal{I}, r \in R\).)

\(R = \mathbb{Z}[X]/(1 + X + X^2)\)

ideal \(\mathcal{I} = 3R + (1 - X)R \subset R\)
Hardness of Ring-LWE [LPR’10]

Large disparity in known hardness of search versus decision:

\[
\text{worst-case } (n^c/\alpha)\text{-SIVP on ideal lattices in } R
\leq \text{search } R\text{-LWE}_{q,\alpha}
\leq \text{decision } R\text{-LWE}_{q,\alpha}
\]

(quantum, any } R = \mathcal{O}_K\)
(classical, any Galois } R\)
Hardness of Ring-LWE [LPR’10]

<table>
<thead>
<tr>
<th>worst-case (n^c/α)-SIVP</th>
<th>(\leq)</th>
<th>search</th>
<th>(R\text{-LWE}_{q,\alpha})</th>
<th>(\leq)</th>
<th>decision</th>
<th>(R\text{-LWE}_{q,\alpha})</th>
</tr>
</thead>
<tbody>
<tr>
<td>on \textit{ideal} lattices in (R)</td>
<td>(\gamma)</td>
<td>(\gamma)</td>
<td>((\text{quantum, any } R = \mathcal{O}_K))</td>
<td>((\text{classical, any Galois } R))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Large disparity in known hardness of search versus decision:

Search: any number ring, any \(q \geq n^c/\alpha \).
Hardness of Ring-LWE [LPR’10]

\[
\text{worst-case } \left(\frac{n^c}{\alpha}\right)\text{-SIVP on ideal lattices in } R \leq \text{search } R\text{-LWE}_{q,\alpha} \leq \text{decision } R\text{-LWE}_{q,\alpha}
\]

(quantum, any \(R = \mathcal{O}_K \))

(classical, any Galois \(R \))

Large disparity in known hardness of search versus decision:

Search: any number ring, any \(q \geq \frac{n^c}{\alpha} \).

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime \(q = \text{poly}(n) \).
Hardness of Ring-LWE [LPR’10]

Large disparity in known hardness of search versus decision:

Search: any number ring, any $q \geq n^c/\alpha$.

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime $q = \text{poly}(n)$.

Can then get any q by mod-switching, but increases α [LS’15]
Hardness of Ring-LWE [LPR’10]

Large disparity in known hardness of search versus decision:

Search: any number ring, any \(q \geq n^c/\alpha \).

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime \(q = \text{poly}(n) \).

Can then get any \(q \) by mod-switching, but increases \(\alpha \) [LS’15]

- Decision has no known worst-case hardness in non-Galois rings.
Hardness of Ring-LWE [LPR’10]

\[
\text{worst-case } \left(\frac{n^c}{\alpha}\right)\text{-SIVP} \leq \begin{array}{c}
\text{search } R\text{-LWE}_{q,\alpha} \\
\text{decision } R\text{-LWE}_{q,\alpha}
\end{array}
\]
\[
\leq \begin{array}{c}
\text{on } \text{ideal lattices in } R \\
\text{on } \text{ideal lattices in } R
\end{array}
\]
\[
\leq \begin{array}{c}
\text{on } \text{ideal lattices in } R \\
\text{on } \text{ideal lattices in } R
\end{array}
\]

\[
(\text{quantum, any } R = \mathcal{O}_K) \\
(\text{classical, any Galois } R)
\]

Large disparity in known hardness of search versus decision:

Search: any number ring, any \(q \geq \frac{n^c}{\alpha} \).

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime \(q = \text{poly}(n) \).

Can then get any \(q \) by mod-switching, but increases \(\alpha \) [LS’15]

- Decision has no known worst-case hardness in non-Galois rings.
- But no examples of easy(er) decision when search is worst-case hard!
Our Results

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

worst-case (n^c/α)-SIVP on ideal lattices in R \(\leq \) decision R-LWE$_{q,\alpha}$

quantum,
any $R = \mathcal{O}_K$, any $q \geq n^{c-1/2}/\alpha$
Our Results

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

worst-case \((n^c/\alpha)\)-SIVP on ideal lattices in \(R\) \(\leq\) decision \(R\text{-LWE}_{q,\alpha}\)

quantum, any \(R = \mathcal{O}_K\), any \(q \geq n^{c-1/2}/\alpha\)

Bonus Theorem: LWE is Pseudorandom for Any Modulus

worst case \((n/\alpha)\)-SIVP on \(n\)-dim lattices \(\leq\) decision-LWE\(_{q,\alpha}\)

quantum, any \(q \geq \sqrt{n}/\alpha\)
Our Results

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

\[
\text{worst-case } \left(\frac{n^c}{\alpha} \right) - \text{SIVP} \leq \text{decision } R\text{-LWE}_{q,\alpha} \\
\text{on ideal lattices in } R \\
\text{quantum, } R = O_K, \text{ any } q \geq n^{c-1/2}/\alpha
\]

Bonus Theorem: LWE is Pseudorandom for Any Modulus

\[
\text{worst case } \left(\frac{n}{\alpha} \right) - \text{SIVP on } n\text{-dim lattices} \leq \text{decision-LWE}_{q,\alpha} \\
\text{quantum, any } q \geq \sqrt{n}/\alpha
\]

- Both theorems match or improve the previous best params:
Our Results

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

\[
\text{worst-case } (n^c/\alpha)\text{-SIVP on ideal lattices in } R \leq \text{decision } R\text{-LWE}_{q,\alpha}
\]

quantum, any \(R = \mathcal{O}_K \), any \(q \geq n^{c-1/2}/\alpha \)

Bonus Theorem: LWE is Pseudorandom for Any Modulus

\[
\text{worst case } (n/\alpha)\text{-SIVP on } n\text{-dim lattices} \leq \text{decision-LWE}_{q,\alpha}
\]

quantum, any \(q \geq \sqrt{n}/\alpha \)

- Both theorems match or improve the previous best params:

 One reduction to rule them all.
Our Results

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

\[\text{worst-case } (n^c/\alpha)\text{-SIVP on ideal lattices in } R \leq \text{ decision } R\text{-LWE}_{q,\alpha} \]

quantum, any \(R = \mathcal{O}_K \), any \(q \geq n^{c-1/2}/\alpha \)

Bonus Theorem: LWE is Pseudorandom for Any Modulus

\[\text{worst case } (n/\alpha)\text{-SIVP on } n\text{-dim lattices} \leq \text{ decision-LWE}_{q,\alpha} \]

quantum, any \(q \geq \sqrt{n}/\alpha \)

- Both theorems match or improve the previous best params:

 One reduction to rule them all.

- Seems to adapt to ‘module’ lattices/LWE w/techniques from [LS’15]
Which Rings To Use?

Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP.

Progress on Ideal-SIVP
- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics modulo heuristics [CGS’14,BS’16,CDPR’16,CDW’17]
- Quite far from the (quasi-)poly (n) factors typically used for crypto
- Doesn’t apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)

Options
- Keep using R-LWE over cyclotomics
- Use R-LWE over (slower) rings like $\mathbb{Z}[X] / (X^p - X - 1)$ [BCLvV’16]
- Use ‘higher rank’ problem Module-LWE over cyclotomics/others
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP.

- We have no nontrivial relations between lattice problems over different rings. (Great open question!)
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS’14,BS’16,CDPR’16,CDW’17]
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP.
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS’14, BS’16, CDPR’16, CDW’17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto.
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomies (modulo heuristics) [CGS’14, BS’16, CDPR’16, CDW’17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- Doesn’t apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP.
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS’14,BS’16,CDPR’16,CDW’17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- Doesn’t apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP.
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS’14, BS’16, CDPR’16, CDW’17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- Doesn’t apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
- Use R-LWE over (slower) rings like $\mathbb{Z}[X]/(X^p - X - 1)$ [BCLvV’16]
Which Rings To Use?

- Our results don’t give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP.
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp(\tilde{O}(\sqrt{n}))-\text{Ideal-SIVP}$ in prime-power cyclotomics (modulo heuristics) [CGS’14, BS’16, CDPR’16, CDW’17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- Doesn’t apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
- Use R-LWE over (slower) rings like $\mathbb{Z}[X]/(X^p - X - 1)$ [BCLvV’16]
- Use ‘higher rank’ problem Module-LWE over cyclotomics/others
Overview of LWE Reduction

Theorem: quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \quad \forall \, q \geq \sqrt{n/\alpha}\)
Overview of LWE Reduction

- **Theorem:** quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-}LWE_{q,\alpha} \quad \forall q \geq \sqrt{n/\alpha}

- **Reduction strategy:** ‘play with’ \(\alpha\), detect when it decreases.
Overview of LWE Reduction

▶ **Theorem:** quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \quad \forall q \geq \sqrt{n/\alpha}\)

▶ **Reduction strategy:** ‘play with’ \(\alpha\), detect when it decreases.

Suppose \(\mathcal{O}\) solves \(\text{decision-LWE}_{q,\alpha}\) with non-negligible advantage. Define

\[
p(\beta) = \Pr[\mathcal{O} \text{ accepts on } \text{LWE}_{q,\exp(\beta)} \text{ samples}].
\]
Overview of LWE Reduction

- **Theorem:** quantumly, \((n/\alpha)\)-SIVP \(\leq\) decision-LWE\(_{q,\alpha}\) \(\forall q \geq \sqrt{n/\alpha}\)

- **Reduction strategy:** ‘play with’ \(\alpha\), detect when it decreases.

Suppose \(\mathcal{O}\) solves decision-LWE\(_{q,\alpha}\) with non-negl advantage. Define

\[p(\beta) = \Pr[\mathcal{O} \text{ accepts on } \text{LWE}_{q,\exp(\beta)} \text{ samples}].\]
Overview of LWE Reduction

Theorem: quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \quad \forall q \geq \sqrt{n}/\alpha\)

Reduction strategy: ‘play with’ \(\alpha\), detect when it decreases.

Suppose \(\mathcal{O}\) solves decision-LWE\(_{q,\alpha}\) with non-negl advantage. Define

\[
p(\beta) = \Pr[\mathcal{O} \text{ accepts on } \text{LWE}_{q,\exp(\beta)} \text{ samples}].
\]

Key Properties

1. \(p(\beta)\) is ‘smooth’ (Lipschitz) because \(D_{\sigma}, D_{\tau}\) are \((\frac{\tau}{\sigma} - 1)\)-close.
Overview of LWE Reduction

▶ **Theorem:** quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \quad \forall q \geq \sqrt{n/\alpha}

▶ **Reduction strategy:** ‘play with’ \(\alpha\), detect when it decreases.

Suppose \(O\) solves decision-LWE\(_{q,\alpha}\) with non-negl advantage. Define

\[
p(\beta) = \Pr[O \text{ accepts on LWE}_{q,\exp(\beta)} \text{ samples}].
\]

Key Properties

1. \(p(\beta)\) is ‘smooth’ (Lipschitz) because \(D_\sigma, D_\tau\) are \((\frac{\tau}{\sigma} - 1)\)-close.

2. For all \(\beta \geq \log n\), \(p(\beta) \approx p(\infty) = \Pr[O \text{ accepts on uniform samples}],\) because huge Gaussian error is near-uniform mod \(q\mathbb{Z}\).
Overview of LWE Reduction

- **Theorem:** quantumly, (n/α)-SIVP \leq decision-LWE$_{q,\alpha}$ $\forall q \geq \sqrt{n/\alpha}$

- **Reduction strategy:** ‘play with’ α, detect when it decreases.

Suppose \mathcal{O} solves decision-LWE$_{q,\alpha}$ with non-negl advantage. Define

$$p(\beta) = \Pr[\mathcal{O} \text{ accepts on } \text{LWE}_{q,\exp(\beta)} \text{ samples}].$$

Key Properties

1. $p(\beta)$ is ‘smooth’ (Lipschitz) because D_σ, D_τ are $(\frac{\tau}{\sigma} - 1)$-close.

2. For all $\beta \geq \log n$, $p(\beta) \approx p(\infty) = \Pr[\mathcal{O} \text{ accepts on uniform samples}]$, because huge Gaussian error is near-uniform mod $q\mathbb{Z}$.

3. $p(\log \alpha) - p(\infty)$ is noticeable, so there is a noticeable change in p somewhere between $\log \alpha$ and $\log n$.
Exploiting the Oracle

- **Theorem:** quantumly, (n/α)-SIVP \leq decision-LWE$_{q,\alpha}$ \forall $q \geq \sqrt{n}/\alpha$
Exploiting the Oracle

Theorem: quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \quad \forall \ q \geq \sqrt{n/\alpha}

Classical part of [Regev’05] reduction:

\[
\begin{align*}
\text{BDD}_{L^*}, \text{dist } d & \quad + \quad D_{L,r} \text{ samples} \\
\Rightarrow \quad \text{LWE}_{q,\alpha} \text{ samples} \\
\alpha &= dr/q
\end{align*}
\]
Exploiting the Oracle

▶ **Theorem:** quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \quad \forall q \geq \sqrt{n/\alpha}\)

▶ Classical part of [Regev’05] reduction:

\[
\text{BDD}_{L^*, \text{dist } d} + \text{D}_{L,r} \text{ samples} \implies \text{LWE}_{q,\alpha} \text{ samples}
\]

\[\alpha = dr/q\]

\((\text{D}_{L,r} \text{ samples come from previous iteration, quantumly. They’re eventually narrow enough to solve SIVP on } L.\))
Exploiting the Oracle

▶ **Theorem:** quantumly, \((n/\alpha)\text{-SIVP} \leq \text{decision-LWE}_{q,\alpha} \forall q \geq \sqrt{n/\alpha}

▶ Classical part of [Regev’05] reduction:

\[\text{BDD}_{\mathcal{L}^*}, \text{dist } d \quad + \quad D_{\mathcal{L},r} \text{ samples} \quad \Rightarrow \quad \text{LWE}_{q,\alpha} \text{ samples} \]

\[\alpha = dr/q \]

▶ Idea: perturb \(t \), use \(\mathcal{O} \) to check whether we’re closer to \(\mathcal{L}^* \) by how \(\alpha = dr/q \) changes.

We get a ‘suffix’ of \(p(\cdot) \).
Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \equiv$ error rate α
Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance \(d \leftrightarrow \) error rate \(\alpha \)
- \(R \)-LWE proof has \(n \)-parameter BDD offset \(e \leftrightarrow \) params \(\alpha = (\alpha_i) \).
 Gaussian error rate of \(\alpha_i \) in the \(i \)th dimension.
Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α.
- R-LWE proof has n-parameter BDD offset $e \Leftrightarrow$ params $\alpha = (\alpha_i)$. Gaussian error rate of α_i in the ith dimension.
- Classical part of [LPR’10] reduction:

\[
\text{BDD}_{\mathcal{I}^*}, \text{offset } e \quad + \quad D_{\mathcal{I},r} \text{ samples} \quad \Longrightarrow \quad R\text{-LWE}_{q,\alpha} \text{ samples}
\]

\[
\alpha_i = |e_i| r_i / q
\]
Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance \(d \leftrightarrow \) error rate \(\alpha \)
- \(R \)-LWE proof has \(n \)-parameter BDD offset \(e \leftrightarrow \) params \(\alpha = (\alpha_i) \).
 Gaussian error rate of \(\alpha_i \) in the \(i \)th dimension.
- Classical part of \([LPR'10]\) reduction:

 \[
 BDD_{I^*}, \text{ offset } e + D_{I,r} \text{ samples} \implies R\text{-LWE}_{q,\alpha} \text{ samples}
 \]

 \(\alpha_i = |e_i| r_i/q \)

- Now oracle’s acceptance prob. is \(p(\beta) \), mapping \((\mathbb{R}^+)^n \rightarrow [0, 1] \).
 - \(\lim_{\beta_i \rightarrow \infty} p(\beta) = p(\infty) \): huge error in one dim is ‘smooth’ mod \(R^\vee \).
Extending to the Ring Setting

The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α

R-LWE proof has n-parameter BDD offset $e \Leftrightarrow$ params $\alpha = (\alpha_i)$. Gaussian error rate of α_i in the ith dimension.

Classical part of [LPR’10] reduction:

Now oracle’s acceptance prob. is $p(\beta)$, mapping $(\mathbb{R}^+)^n \rightarrow [0, 1]$.

- $\lim_{\beta_i \rightarrow \infty} p(\beta) = p(\infty)$: huge error in one dim is ‘smooth’ mod R^\vee.
- **Problem:** Reduction never produces spherical error (all α_i equal), so it’s hard to get anything useful from O.
Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $e \Leftrightarrow$ params $\alpha = (\alpha_i)$. Gaussian error rate of α_i in the ith dimension.

- Classical part of [LPR’10] reduction:

 \[
 \text{BDD}_{\mathcal{I}^*}, \text{offset } e \quad \quad D_{\mathcal{I},r} \text{ samples} \quad \quad R\text{-LWE}_{q,\alpha} \text{ samples}
 \]\[
 \alpha_i = |e_i| r_i / q
 \]

- Now oracle’s acceptance prob. is $p(\beta)$, mapping $(\mathbb{R}^+)^n \rightarrow [0, 1]$.
 - $\lim_{\beta_i \to \infty} p(\beta) = p(\infty)$: huge error in one dim is ‘smooth’ mod R^\vee.
 - **Problem**: Reduction never* produces spherical error (all α_i equal), so it’s hard to get anything useful from \mathcal{O}.
 - **Solution** from [LPR’10]: randomize the α_i: increase by $n^{1/4}$ factor.
Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $e \Leftrightarrow$ params $\alpha = (\alpha_i)$. Gaussian error rate of α_i in the ith dimension.
- Classical part of [LPR’10] reduction:

$$\begin{align*}
\text{BDD}_{I^*}, \text{offset } e & \quad + \quad D_{I,x} \text{ samples} \\
R\text{-LWE}_{q,\alpha} \text{ samples} & \quad \Rightarrow \\
\alpha_i & = |e_i|r_i/q
\end{align*}$$

- Now oracle’s acceptance prob. is $p(\beta)$, mapping $(\mathbb{R}^+)^n \rightarrow [0, 1]$.
 - $\lim_{\beta_i \rightarrow \infty} p(\beta) = p(\infty)$: huge error in one dim is ‘smooth’ mod R^\vee.
 - **Problem**: Reduction never* produces spherical error (all α_i equal), so it’s hard to get anything useful from \mathcal{O}.
 - **Solution** from [LPR’10]: randomize the α_i: increase by $n^{1/4}$ factor.
 - **Improvement**: randomization increases α_i by only $\omega(1)$ factor.
Final Thoughts and Open Problems

- \text{decision-} R\text{-LWE}_{q,\alpha} \text{ is worst-case hard for any ring } R = \mathcal{O}_K, \text{ mod } q

Open Questions

1. Hardness for spherical error: ⋆ Avoid $n^{1/4}$ degradation in α? ⋆ Support unbounded samples?
2. Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?
3. Classical reduction matching params of quantum reductions?
Final Thoughts and Open Problems

- \texttt{decision-}R-L\textsc{we}_{q,\alpha} \text{ is worst-case hard for any ring } R = \mathcal{O}_K, \text{ mod } q

- \texttt{decision-}L\textsc{we}_{q,\alpha} \text{ is hard for any } q; \text{ approx factor independent of } q
Final Thoughts and Open Problems

- decision-R-LWE$_{q,\alpha}$ is worst-case hard for any ring $R = \mathcal{O}_K$, mod q
- decision-LWE$_{q,\alpha}$ is hard for any q; approx factor independent of q

Open Questions

1. Hardness for spherical error:
 - Avoid $n^{1/4}$ degradation in α?

2. Support unbounded samples?

3. Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?

4. Classical reduction matching params of quantum reductions?
Final Thoughts and Open Problems

- decision-R-LWE$_{q,\alpha}$ is worst-case hard for any ring $R = \mathcal{O}_K$, mod q
- decision-LWE$_{q,\alpha}$ is hard for any q; approx factor independent of q

Open Questions

1. Hardness for spherical error:
 - Avoid $n^{1/4}$ degradation in α_i?
 - Support unbounded samples?
Final Thoughts and Open Problems

- decision-R-LWE$_{q,\alpha}$ is worst-case hard for any ring $R = \mathcal{O}_K$, mod q
- decision-LWE$_{q,\alpha}$ is hard for any q; approx factor independent of q

Open Questions

1. Hardness for spherical error:
 - Avoid $n^{1/4}$ degradation in α_i?
 - Support unbounded samples?

2. Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?
Final Thoughts and Open Problems

- decision-R-LWE$_{q,\alpha}$ is worst-case hard for any ring $R = \mathcal{O}_K$, mod q
- decision-LWE$_{q,\alpha}$ is hard for any q; approx factor independent of q

Open Questions

1. Hardness for spherical error:
 - Avoid $n^{1/4}$ degradation in α_i?
 - Support unbounded samples?

2. Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?

3. Classical reduction matching params of quantum reductions?