Privately Constraining and Programming PRFs, the LWE Way

Chris Peikert Sina Shiehian

PKC 2018

Constrained Pseudorandom Functions [KPTZ'13,BW'13,BGI'14]

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, x)$.

Constrained Pseudorandom Functions [KPTZ'13,BW'13,BGI'14]

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, x)$.
(2) For any constraint $C \in \mathcal{C}$, can generate a constrained key $s k_{C}$ (using $m s k$).

Constrained Pseudorandom Functions [KPTZ'13,BW'13,BGI'14]

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, x)$.
(2) For any constraint $C \in \mathcal{C}$, can generate a constrained key $s k_{C}$ (using $m s k$).
(3) Constrained evaluation algorithm $\operatorname{CEval}\left(s k_{C}, x\right)$.

Constrained Pseudorandom Functions [KPTZ'13,BW'13,BGI'14]

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, x)$.
(2) For any constraint $C \in \mathcal{C}$, can generate a constrained key $s k_{C}$
(3) Constrained evaluation algorithm $\operatorname{CEval}\left(s k_{C}, x\right)$.

Correctness

- If $C(x)=0$ ("authorized") then $\operatorname{CEval}\left(s k_{C}, x\right)=\operatorname{Eval}(m s k, x)$.

Constrained Pseudorandom Functions [KPTZ'13,BW'13,BGI'14]

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, x)$.
(2) For any constraint $C \in \mathcal{C}$, can generate a constrained key $s k_{C}$
(3) Constrained evaluation algorithm $\operatorname{CEval}\left(s k_{C}, x\right)$.

Correctness

- If $C(x)=0$ ("authorized") then $\operatorname{CEval}\left(s k_{C}, x\right)=\operatorname{Eval}(m s k, x)$.

Security

- If $C(x)=1$ ("unauth") then Eval $(m s k, x) \stackrel{c}{\approx}$ random (even w/sk k_{C}.

Constrained Pseudorandom Functions [KPTZ'13,BW'13,BGI'14]

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, x)$.
(2) For any constraint $C \in \mathcal{C}$, can generate a constrained key $s k_{C}$
(3) Constrained evaluation algorithm $\operatorname{CEval}\left(s k_{C}, x\right)$.

Correctness

- If $C(x)=0$ ("authorized") then $\operatorname{CEval}\left(s k_{C}, x\right)=\operatorname{Eval}(m s k, x)$.

Security

- If $C(x)=1$ ("unauth") then $\operatorname{Eval}(m s k, x) \stackrel{c}{\approx}$ random (even $\mathrm{w} / s k_{C}$).
- Applications: uses of iO [SW'14], ID-based key exchange, broadcast encryption, ...

Privacy and Programmability [BonehLewiWu'17]

- Ordinarily, a constrained key $s k_{C}$ may reveal C. (It hides only the PRF output at unauthorized x.)

Privacy and Programmability [BonehLewiWu'17]

- Ordinarily, a constrained key $s k_{C}$ may reveal C. (It hides only the PRF output at unauthorized x.)

Privacy (a.k.a. Constraint Hiding)

- Constrained key $s k_{C}$ reveals nothing about C. In particular, it hides whether x is (un)authorized.

Privacy and Programmability [BonehLewiWu'17]

- Ordinarily, a constrained key $s k_{C}$ may reveal C. (It hides only the PRF output at unauthorized x.)

Privacy (a.k.a. Constraint Hiding)

- Constrained key $s k_{C}$ reveals nothing about C.

In particular, it hides whether x is (un)authorized.

- Applications: searchable encryption, function secret sharing [BGI'15].

Privacy and Programmability [BonehLewiWu'17]

- Ordinarily, a constrained key $s k_{C}$ may reveal C. (It hides only the PRF output at unauthorized x.)

Privacy (a.k.a. Constraint Hiding)

- Constrained key $s k_{C}$ reveals nothing about C.

In particular, it hides whether x is (un)authorized.

- Applications: searchable encryption, function secret sharing [BGI'15].

Programmability

- Can program $s k_{C}$ to produce a desired value at some unauthorized x^{*}. (Nontrivial only if unauthorized x are hidden.)

Privacy and Programmability [BonehLewiWu'17]

- Ordinarily, a constrained key $s k_{C}$ may reveal C. (It hides only the PRF output at unauthorized x.)

Privacy (a.k.a. Constraint Hiding)

- Constrained key $s k_{C}$ reveals nothing about C. In particular, it hides whether x is (un)authorized.
- Applications: searchable encryption, function secret sharing [BGI'15].

Programmability

- Can program $s k_{C}$ to produce a desired value at some unauthorized x^{*}. (Nontrivial only if unauthorized x are hidden.)
- Applications: watermarking PRFs, ???.

Prior Results

BLW'17 Private constrained PRFs for all functions, \& programmable PRFs, from $i O$.

Prior Results

BLW'17 Private constrained PRFs for all functions, \& programmable PRFs, from $i O$.

BKM'17 Private constrained PRFs for point functions, from LWE.

Prior Results

BLW'17 Private constrained PRFs for all functions, \& programmable PRFs, from $i O$.

BKM'17 Private constrained PRFs for point functions, from LWE. CC'17 Private constrained PRFs for N^{1} circuits, from LWE.

Prior Results

BLW'17 Private constrained PRFs for all functions, \& programmable PRFs, from $i O$.

BKM'17 Private constrained PRFs for point functions, from LWE.
CC'17 Private constrained PRFs for NC^{1} circuits, from LWE.
BTVW'17 Private constrained PRFs for all circuits, from LWE.

Prior Results

BLW'17 Private constrained PRFs for all functions, \& programmable PRFs, from $i O$.

BKM'17 Private constrained PRFs for point functions, from LWE.
CC'17 Private constrained PRFs for NC^{1} circuits, from LWE.
BTVW'17 Private constrained PRFs for all circuits, from LWE.
Caveat! Limited to one constrained key.
Two keys for arbitrary circuits $\Rightarrow i O$ [CC'17]

Prior Results

BLW'17 Private constrained PRFs for all functions, \& programmable PRFs, from $i O$.

BKM'17 Private constrained PRFs for point functions, from LWE.
CC'17 Private constrained PRFs for NC^{1} circuits, from LWE.
BTVW'17 Private constrained PRFs for all circuits, from LWE.
Caveat! Limited to one constrained key. Two keys for arbitrary circuits $\Rightarrow i O$ [CC'17]

Open Programmable PRFs from a non-iO assumption.

Our Results

Main Message

- A unified approach to private constrained and programmable PRFs from LWE: shift-hiding functions.
- Simple, modular constructions via the 'right' choice of shift function.

Our Results

Main Message

- A unified approach to private constrained and programmable PRFs from LWE: shift-hiding functions.
- Simple, modular constructions via the 'right' choice of shift function.

Constructions

(1) Shift-hiding functions from LWE by standard FHE/ABE/PE tech [GSW'13,BGG+'14,GVW'15]

Our Results

Main Message

- A unified approach to private constrained and programmable PRFs from LWE: shift-hiding functions.
- Simple, modular constructions via the 'right' choice of shift function.

Constructions

(1) Shift-hiding functions from LWE by standard FHE/ABE/PE tech [GSW'13,BGG+'14,GVW'15]
(2) Private constrained \& programmable PRFs, simply by letting shift $=$ constraint \times (pseudo)random function

Our Results

Main Message

- A unified approach to private constrained and programmable PRFs from LWE: shift-hiding functions.
- Simple, modular constructions via the 'right' choice of shift function.

Constructions

(1) Shift-hiding functions from LWE by standard FHE/ABE/PE tech [GSW'13,BGG+'14,GVW'15]
(2) Private constrained \& programmable PRFs, simply by letting shift $=$ constraint \times (pseudo)random function

In particular, the first programmable PRFs from non-iO assumptions.

Our Results

Main Message

- A unified approach to private constrained and programmable PRFs from LWE: shift-hiding functions.
- Simple, modular constructions via the 'right' choice of shift function.

Constructions

(1) Shift-hiding functions from LWE by standard FHE/ABE/PE tech [GSW'13,BGG+'14,GVW'15]
(2) Private constrained \& programmable PRFs, simply by letting shift $=$ constraint \times (pseudo)random function

In particular, the first programmable PRFs from non-iO assumptions. Selectively simulation-secure, for a priori bounded-size functions.

Shift-Hiding Functions

\Downarrow

Private/Programmable PRFs

Main Tool: Shift-Hiding Functions

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, \cdot): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.

Main Tool: Shift-Hiding Functions

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, \cdot): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(2) Shifting algorithm $s k_{H} \leftarrow \operatorname{Shift}(m s k, H)$ for shift fct $H: \mathcal{X} \rightarrow \mathbb{Z}_{q}$.

Main Tool: Shift-Hiding Functions

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, \cdot): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(2) Shifting algorithm $s k_{H} \leftarrow \operatorname{Shift}(m s k, H)$ for shift fct $H: \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(3) Shifted evaluation algorithm $\operatorname{SEval}\left(s k_{H}, \cdot\right): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.

Main Tool: Shift-Hiding Functions

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, \cdot): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(2) Shifting algorithm $s k_{H} \leftarrow \operatorname{Shift}(m s k, H)$ for shift fct $H: \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(3) Shifted evaluation algorithm $\operatorname{SEval}\left(s k_{H}, \cdot\right): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.

Shifting

- For every shift function H and every $x \in \mathcal{X}$:

$$
\operatorname{SEval}\left(s k_{H}, x\right) \approx \operatorname{Eval}(m s k, x)+H(x) \quad(\bmod q)
$$

Main Tool: Shift-Hiding Functions

(1) Ordinary evaluation algorithm $\operatorname{Eval}(m s k, \cdot): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(2) Shifting algorithm $s k_{H} \leftarrow \operatorname{Shift}(m s k, H)$ for shift fct $H: \mathcal{X} \rightarrow \mathbb{Z}_{q}$.
(3) Shifted evaluation algorithm $\operatorname{SEval}\left(s k_{H}, \cdot\right): \mathcal{X} \rightarrow \mathbb{Z}_{q}$.

Shifting

- For every shift function H and every $x \in \mathcal{X}$:

$$
\operatorname{SEval}\left(s k_{H}, x\right) \approx \operatorname{Eval}(m s k, x)+H(x) \quad(\bmod q)
$$

Hiding

- $s k_{H}$ reveals nothing about H.

Shift-Hiding Functions \Rightarrow Private Constrained PRFs

- $F(m s k, x):=\lfloor\operatorname{Eval}(m s k, x)\rceil$, where $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$ "rounds off."

Shift-Hiding Functions \Rightarrow Private Constrained PRFs

- $F(m s k, x):=\lfloor\operatorname{Eval}(m s k, x)\rceil$, where $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$ "rounds off."
- To generate a constrained key for circuit C, define shift function

$$
H(x)=C(x) \cdot \operatorname{PRF}_{k}(x)
$$

and output $s k_{C} \leftarrow \operatorname{Shift}(m s k, H)$. This hides H, hence C (and k).

Shift-Hiding Functions \Rightarrow Private Constrained PRFs

- $F(m s k, x):=\lfloor\operatorname{Eval}(m s k, x)\rceil$, where $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$ "rounds off."
- To generate a constrained key for circuit C, define shift function

$$
H(x)=C(x) \cdot \operatorname{PRF}_{k}(x)
$$

and output $s k_{C} \leftarrow \operatorname{Shift}(m s k, H)$. This hides H, hence C (and k).

- Constrained evaluation: $\left\lfloor\operatorname{SEval}\left(s k_{C}, x\right)\right\rceil$. By shifting property, this is

$$
\lfloor\operatorname{Eval}(m s k, x)+H(x)\rceil= \begin{cases}F(m s k, x) & \text { if } C(x)=0 \\ \underset{\sim}{c} \text { random } & \text { if } C(x)=1\end{cases}
$$

Shift-Hiding Functions \Rightarrow Programmable PRFs

- As before, $F(m s k, x):=\lfloor\operatorname{Eval}(m s k, x)\rceil$, where $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$.

Shift-Hiding Functions \Rightarrow Programmable PRFs

- As before, $F(m s k, x):=\lfloor\operatorname{Eval}(m s k, x)\rceil$, where $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$.
- To generate a programmed key that maps x^{*} to $y^{*} \in\{0,1\}$:

Choose random $z^{*} \in \mathbb{Z}_{q}$ s.t. $\left\lfloor z^{*}\right\rceil=y^{*}$, define shift function

$$
H(x)= \begin{cases}y^{*}-\operatorname{Eval}\left(m s k, x^{*}\right) & \text { if } x=x^{*} \\ 0 & \text { otherwise }\end{cases}
$$ and output $s k_{C}=\operatorname{Shift}(s k, H)$. This hides H, hence x^{*}.

Shift-Hiding Functions \Rightarrow Programmable PRFs

- As before, $F(m s k, x):=\lfloor\operatorname{Eval}(m s k, x)\rceil$, where $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$.
- To generate a programmed key that maps x^{*} to $y^{*} \in\{0,1\}$:

Choose random $z^{*} \in \mathbb{Z}_{q}$ s.t. $\left\lfloor z^{*}\right\rceil=y^{*}$, define shift function

$$
H(x)= \begin{cases}y^{*}-\operatorname{Eval}\left(m s k, x^{*}\right) & \text { if } x=x^{*} \\ 0 & \text { otherwise }\end{cases}
$$

and output $s k_{C}=\operatorname{Shift}(s k, H)$. This hides H, hence x^{*}.

- As before, constrained evaluation is $\left\lfloor\operatorname{SEval}\left(s k_{C}, x\right)\right\rceil$. This is

$$
\lfloor\operatorname{Eval}(m s k, x)+H(x)\rceil= \begin{cases}\left\lfloor z^{*}\right\rceil=y^{*} & \text { if } x=x^{*} \\ F(m s k, x) & \text { otherwise }\end{cases}
$$

Construction Shift-Hiding Functions

Gadget Homomorphisms [MP'12,GSW'13,BGG+'14,GVW'15]

- Fixed 'gadget' matrix \mathbf{G}, public random matrices \mathbf{A}_{i} over \mathbb{Z}_{q}.

Gadget Homomorphisms [MP'12,GSW'13,BGG+'14,GVW'15]

- Fixed 'gadget' matrix \mathbf{G}, public random matrices \mathbf{A}_{i} over \mathbb{Z}_{q}.
- 'Embed' $x_{i} \in\{0,1\}$ or \mathbb{Z}_{q} w.r.t. \mathbf{A}_{i} as $\approx \mathbf{s}\left(\mathbf{A}_{i}+x_{i} \cdot \mathbf{G}\right)$

Gadget Homomorphisms [MP'12,GSW'13,BGG+'14,GVW'15]

- Fixed 'gadget' matrix \mathbf{G}, public random matrices \mathbf{A}_{i} over \mathbb{Z}_{q}.
- 'Embed' $x_{i} \in\{0,1\}$ or \mathbb{Z}_{q} w.r.t. \mathbf{A}_{i} as $\approx \mathbf{s}\left(\mathbf{A}_{i}+x_{i} \cdot \mathbf{G}\right)$
- Can compute embedded $f(x)$ w.r.t. \mathbf{A}_{f}, knowing x (but not \mathbf{s}) \ldots

Gadget Homomorphisms [MP'12,GSW'13,BGG+'14,GVW'15]

- Fixed 'gadget' matrix \mathbf{G}, public random matrices \mathbf{A}_{i} over \mathbb{Z}_{q}.
- 'Embed' $x_{i} \in\{0,1\}$ or \mathbb{Z}_{q} w.r.t. \mathbf{A}_{i} as $\approx \mathbf{s}\left(\mathbf{A}_{i}+x_{i} \cdot \mathbf{G}\right)$
- Can compute embedded $f(x)$ w.r.t. \mathbf{A}_{f}, knowing x (but not s) \ldots
- \ldots and embedded $\langle x, y\rangle \bmod q$ w.r.t. $\mathbf{A}_{\text {lin }}$, knowing $x($ but not $y, \mathbf{s})$.

x, y

Gadget Homomorphisms [MP'12,GSW'13,BGG+'14,GVW'15]

- Fixed 'gadget' matrix \mathbf{G}, public random matrices \mathbf{A}_{i} over \mathbb{Z}_{q}.
- 'Embed' $x_{i} \in\{0,1\}$ or \mathbb{Z}_{q} w.r.t. \mathbf{A}_{i} as $\approx \mathbf{s}\left(\mathbf{A}_{i}+x_{i} \cdot \mathbf{G}\right)$
- Can compute embedded $f(x)$ w.r.t. \mathbf{A}_{f}, knowing x (but not s) \ldots
- ... and embedded $\langle x, y\rangle \bmod q$ w.r.t. $\mathbf{A}_{\text {lin }}$, knowing $x($ but not $y, \mathbf{s})$.

Input Privacy [GorbunovVaikuntanathanWee'15]

- Goal: in gadget embedding, compute many known f on one private x.

Input Privacy [GorbunovVaikuntanathanWee'15]

- Goal: in gadget embedding, compute many known f on one private x.
(1) Encrypt x under FHE and embed $c t=\operatorname{FHE}(x), s k_{\text {FHE }}$.

$$
c t=\begin{gathered}
\mathrm{FHE} \\
x
\end{gathered}, s k_{\mathrm{FHE}}
$$

Input Privacy [GorbunovVaikuntanathanWee'15]

- Goal: in gadget embedding, compute many known f on one private x.
(1) Encrypt x under FHE and embed $c t=\operatorname{FHE}(x), s k_{\mathrm{FHE}}$.
(2) BoolEval \Rightarrow embedding of $c t^{\prime}=\operatorname{FHE} \cdot \operatorname{Eval}(f, c t)=\operatorname{FHE}(f(x))$.

$$
c t=\begin{gathered}
\mathrm{FHE} \\
x
\end{gathered}, s k_{\mathrm{FHE}}
$$

FHE.Eval $(f, \cdot), c t \downarrow$ BoolEval

$$
c t^{\prime}=\mathrm{FHE}, s k_{\mathrm{FHE}}
$$

Input Privacy [GorbunovVaikuntanathanWee'15]

- Goal: in gadget embedding, compute many known f on one private x.
(1) Encrypt x under FHE and embed $c t=\operatorname{FHE}(x), s k_{\text {FHE }}$.
(2) BoolEval \Rightarrow embedding of $c t^{\prime}=\operatorname{FHE} \cdot \operatorname{Eval}(f, c t)=\operatorname{FHE}(f(x))$.
(3) LinEval \Rightarrow embedding of $\left\langle c t^{\prime}, s k_{\mathrm{FHE}}\right\rangle \approx f(x) \bmod q$.

$$
c t=\begin{gathered}
\mathrm{FHE} \\
x
\end{gathered}, s k_{\mathrm{FHE}}
$$

FHE.Eval $(f, \cdot), c t \downarrow$ BoolEval

Switching Function and Input [BTVW'17,this work]

- Goal: in embedding, compute one private H on many known x.

Switching Function and Input [BTVW'17,this work]

- Goal: in embedding, compute one private H on many known x.
(1) Encrypt H under FHE and embed $c t, s k_{\text {FHE }}$.

$$
c t=\begin{gathered}
\mathrm{FHE} \\
H
\end{gathered}, s k_{\mathrm{FHE}}
$$

Switching Function and Input [BTVW'17,this work]

- Goal: in embedding, compute one private H on many known x.
(1) Encrypt H under FHE and embed $c t, s k_{\text {FHE }}$.
(2) For input x, FHE-evaluate universal circuit $U_{x}(H)=H(x)$.

$$
c t=\begin{gathered}
\mathrm{FHE} \\
H
\end{gathered}, s k_{\mathrm{FHE}}
$$

FHE.Eval $\left(U_{x}, \cdot\right), c t \mid$ BoolEval

$$
c t^{\prime}=\begin{aligned}
& \mathrm{FHE} \\
& H(x)
\end{aligned}, s k_{\mathrm{FHE}}
$$

Switching Function and Input [BTVW'17,this work]

- Goal: in embedding, compute one private H on many known x.
(1) Encrypt H under FHE and embed $c t, s k_{\text {FHE }}$.
(2) For input x, FHE-evaluate universal circuit $U_{x}(H)=H(x)$.

$$
c t=\begin{gathered}
\mathrm{FHE} \\
H
\end{gathered}, s k_{\mathrm{FHE}}
$$

FHE.Eval $\left(U_{x}, \cdot\right), c t \downarrow$ BoolEval

Constructing Shift-Hiding Functions

- Master secret key $m s k:=$ LWE secret \mathbf{s}, with $s_{1}=1$.

Constructing Shift-Hiding Functions

- Master secret key $m s k:=$ LWE secret \mathbf{s}, with $s_{1}=1$.

Constructing Shift-Hiding Functions

- Master secret key $m s k:=$ LWE secret \mathbf{s}, with $s_{1}=1$.

- SEval $\left(s k_{H}, x\right):=$ first entry of

$$
\approx \mathrm{s}\left(\mathbf{A}_{x}+(\approx H(x)) \cdot \mathbf{G}\right)
$$

Constructing Shift-Hiding Functions

- Master secret key $m s k:=$ LWE secret \mathbf{s}, with $s_{1}=1$.

Shifted key $s k_{H}:=\begin{gathered}\mathrm{FHE} \\ H\end{gathered}, s k_{\mathrm{FHE}}$

- $\operatorname{SEval}\left(s k_{H}, x\right):=$ first entry of $\approx \mathrm{s}\left(\mathbf{A}_{x}+(\approx H(x)) \cdot \mathbf{G}\right)$
- $\mathrm{Eval}(m s k, x):=$ first entry of $\mathbf{s} \mathbf{A}_{x}$.

Constructing Shift-Hiding Functions

- Master secret key $m s k:=$ LWE secret \mathbf{s}, with $s_{1}=1$.
\rightarrow Shifted key $s k_{H}:=\quad c t=\begin{gathered}\mathrm{FHE} \\ H\end{gathered}, s k_{\mathrm{FHE}}$
- SEval $\left(s k_{H}, x\right):=$ first entry of $\quad \approx \mathbf{s}\left(\mathbf{A}_{x}+(\approx H(x)) \cdot \mathbf{G}\right)$
- Eval $(m s k, x):=$ first entry of $\mathbf{s} \mathbf{A}_{x}$.

Shift Correctness

$$
\begin{aligned}
\operatorname{SEval}\left(s k_{H}, x\right) & \approx \mathbf{s}\left(\mathbf{A}_{x}+(\approx H(x)) \cdot \mathbf{G}\right) \cdot \mathbf{e}_{1} \\
& =\operatorname{Eval}(m s k, x)+\mathbf{s} \cdot(\approx H(x)) \cdot \mathbf{G} \cdot \mathbf{e}_{1}
\end{aligned}
$$

Constructing Shift-Hiding Functions

- Master secret key $m s k:=$ LWE secret \mathbf{s}, with $s_{1}=1$.
- Shifted key $s k_{H}:=\begin{gathered}\mathrm{FHE} \\ H\end{gathered}, s k_{\mathrm{FHE}}$
- SEval $\left(s k_{H}, x\right):=$ first entry of

$$
\approx \mathbf{s}\left(\mathbf{A}_{x}+(\approx H(x)) \cdot \mathbf{G}\right)
$$

- Eval $(m s k, x):=$ first entry of $\mathbf{s} \mathbf{A}_{x}$.

Shift Correctness

$$
\begin{aligned}
\operatorname{SEval}\left(s k_{H}, x\right) & \approx \mathbf{s}\left(\mathbf{A}_{x}+(\approx H(x)) \cdot \mathbf{G}\right) \cdot \mathbf{e}_{1} \\
& =\operatorname{Eval}(m s k, x)+\mathbf{s} \cdot(\approx H(x)) \cdot \mathbf{G} \cdot \mathbf{e}_{1} \\
& \approx \operatorname{Eval}(m s k, x)+H(x)
\end{aligned}
$$

Open Problems

(1) Better modulus-to-noise ratio?
(Currently exponential in size of shift function H.)

Open Problems

(1) Better modulus-to-noise ratio?
(Currently exponential in size of shift function H.)
(2) Adaptive security?
(Currently selective in choice of H.)

Open Problems

(1) Better modulus-to-noise ratio?
(Currently exponential in size of shift function H.)
(2) Adaptive security? (Currently selective in choice of H.)
(3) One construction for all circuit sizes?
(Currently 'leveled'; related to bootstrapping ABE.)

Open Problems

(1) Better modulus-to-noise ratio?
(Currently exponential in size of shift function H.)
(2) Adaptive security? (Currently selective in choice of H.)
(3) One construction for all circuit sizes?
(Currently 'leveled'; related to bootstrapping ABE.)
4 Programming superpolynomially many inputs?
(Currently limited to a priori polynomial.)

Open Problems

(1) Better modulus-to-noise ratio?
(Currently exponential in size of shift function H.)
(2) Adaptive security? (Currently selective in choice of H.)
(3) One construction for all circuit sizes?
(Currently 'leveled'; related to bootstrapping ABE.)
(4) Programming superpolynomially many inputs?
(Currently limited to a priori polynomial.)
Thanks!

